HardenedBSD/sys/geom/eli/g_eli_key_cache.c
John Baldwin 4a711b8d04 Use zfree() instead of explicit_bzero() and free().
In addition to reducing lines of code, this also ensures that the full
allocation is always zeroed avoiding possible bugs with incorrect
lengths passed to explicit_bzero().

Suggested by:	cem
Reviewed by:	cem, delphij
Approved by:	csprng (cem)
Sponsored by:	Chelsio Communications
Differential Revision:	https://reviews.freebsd.org/D25435
2020-06-25 20:17:34 +00:00

388 lines
11 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2011-2019 Pawel Jakub Dawidek <pawel@dawidek.net>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#ifdef _KERNEL
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#endif /* _KERNEL */
#include <sys/queue.h>
#include <sys/tree.h>
#include <geom/geom.h>
#include <geom/eli/g_eli.h>
#ifdef _KERNEL
MALLOC_DECLARE(M_ELI);
SYSCTL_DECL(_kern_geom_eli);
/*
* The default limit (8192 keys) will allow to cache all keys for 4TB
* provider with 512 bytes sectors and will take around 1MB of memory.
*/
static u_int g_eli_key_cache_limit = 8192;
SYSCTL_UINT(_kern_geom_eli, OID_AUTO, key_cache_limit, CTLFLAG_RDTUN,
&g_eli_key_cache_limit, 0, "Maximum number of encryption keys to cache");
static uint64_t g_eli_key_cache_hits;
SYSCTL_UQUAD(_kern_geom_eli, OID_AUTO, key_cache_hits, CTLFLAG_RW,
&g_eli_key_cache_hits, 0, "Key cache hits");
static uint64_t g_eli_key_cache_misses;
SYSCTL_UQUAD(_kern_geom_eli, OID_AUTO, key_cache_misses, CTLFLAG_RW,
&g_eli_key_cache_misses, 0, "Key cache misses");
static int
g_eli_key_cmp(const struct g_eli_key *a, const struct g_eli_key *b)
{
if (a->gek_keyno > b->gek_keyno)
return (1);
else if (a->gek_keyno < b->gek_keyno)
return (-1);
return (0);
}
#endif /* _KERNEL */
void
g_eli_key_fill(struct g_eli_softc *sc, struct g_eli_key *key, uint64_t keyno)
{
const uint8_t *ekey;
struct {
char magic[4];
uint8_t keyno[8];
} __packed hmacdata;
if ((sc->sc_flags & G_ELI_FLAG_ENC_IVKEY) != 0)
ekey = sc->sc_mkey;
else
ekey = sc->sc_ekey;
bcopy("ekey", hmacdata.magic, 4);
le64enc(hmacdata.keyno, keyno);
g_eli_crypto_hmac(ekey, G_ELI_MAXKEYLEN, (uint8_t *)&hmacdata,
sizeof(hmacdata), key->gek_key, 0);
key->gek_keyno = keyno;
key->gek_count = 0;
key->gek_magic = G_ELI_KEY_MAGIC;
}
#ifdef _KERNEL
RB_PROTOTYPE(g_eli_key_tree, g_eli_key, gek_link, g_eli_key_cmp);
RB_GENERATE(g_eli_key_tree, g_eli_key, gek_link, g_eli_key_cmp);
static struct g_eli_key *
g_eli_key_allocate(struct g_eli_softc *sc, uint64_t keyno)
{
struct g_eli_key *key, *ekey, keysearch;
mtx_assert(&sc->sc_ekeys_lock, MA_OWNED);
mtx_unlock(&sc->sc_ekeys_lock);
key = malloc(sizeof(*key), M_ELI, M_WAITOK);
g_eli_key_fill(sc, key, keyno);
mtx_lock(&sc->sc_ekeys_lock);
/*
* Recheck if the key wasn't added while we weren't holding the lock.
*/
keysearch.gek_keyno = keyno;
ekey = RB_FIND(g_eli_key_tree, &sc->sc_ekeys_tree, &keysearch);
if (ekey != NULL) {
zfree(key, M_ELI);
key = ekey;
TAILQ_REMOVE(&sc->sc_ekeys_queue, key, gek_next);
} else {
RB_INSERT(g_eli_key_tree, &sc->sc_ekeys_tree, key);
sc->sc_ekeys_allocated++;
}
TAILQ_INSERT_TAIL(&sc->sc_ekeys_queue, key, gek_next);
return (key);
}
static struct g_eli_key *
g_eli_key_find_last(struct g_eli_softc *sc)
{
struct g_eli_key *key;
mtx_assert(&sc->sc_ekeys_lock, MA_OWNED);
TAILQ_FOREACH(key, &sc->sc_ekeys_queue, gek_next) {
if (key->gek_count == 0)
break;
}
return (key);
}
static void
g_eli_key_replace(struct g_eli_softc *sc, struct g_eli_key *key, uint64_t keyno)
{
mtx_assert(&sc->sc_ekeys_lock, MA_OWNED);
KASSERT(key->gek_magic == G_ELI_KEY_MAGIC, ("Invalid magic."));
RB_REMOVE(g_eli_key_tree, &sc->sc_ekeys_tree, key);
TAILQ_REMOVE(&sc->sc_ekeys_queue, key, gek_next);
KASSERT(key->gek_count == 0, ("gek_count=%d", key->gek_count));
g_eli_key_fill(sc, key, keyno);
RB_INSERT(g_eli_key_tree, &sc->sc_ekeys_tree, key);
TAILQ_INSERT_TAIL(&sc->sc_ekeys_queue, key, gek_next);
}
static void
g_eli_key_remove(struct g_eli_softc *sc, struct g_eli_key *key)
{
mtx_assert(&sc->sc_ekeys_lock, MA_OWNED);
KASSERT(key->gek_magic == G_ELI_KEY_MAGIC, ("Invalid magic."));
KASSERT(key->gek_count == 0, ("gek_count=%d", key->gek_count));
RB_REMOVE(g_eli_key_tree, &sc->sc_ekeys_tree, key);
TAILQ_REMOVE(&sc->sc_ekeys_queue, key, gek_next);
sc->sc_ekeys_allocated--;
zfree(key, M_ELI);
}
void
g_eli_key_init(struct g_eli_softc *sc)
{
uint8_t *mkey;
mtx_lock(&sc->sc_ekeys_lock);
mkey = sc->sc_mkey + sizeof(sc->sc_ivkey);
if ((sc->sc_flags & G_ELI_FLAG_AUTH) == 0)
bcopy(mkey, sc->sc_ekey, G_ELI_DATAKEYLEN);
else {
/*
* The encryption key is: ekey = HMAC_SHA512(Data-Key, 0x10)
*/
g_eli_crypto_hmac(mkey, G_ELI_MAXKEYLEN, "\x10", 1,
sc->sc_ekey, 0);
}
if ((sc->sc_flags & G_ELI_FLAG_SINGLE_KEY) != 0) {
sc->sc_ekeys_total = 1;
sc->sc_ekeys_allocated = 0;
} else {
off_t mediasize;
size_t blocksize;
if ((sc->sc_flags & G_ELI_FLAG_AUTH) != 0) {
struct g_provider *pp;
pp = LIST_FIRST(&sc->sc_geom->consumer)->provider;
mediasize = pp->mediasize;
blocksize = pp->sectorsize;
} else {
mediasize = sc->sc_mediasize;
blocksize = sc->sc_sectorsize;
}
sc->sc_ekeys_total =
((mediasize - 1) >> G_ELI_KEY_SHIFT) / blocksize + 1;
sc->sc_ekeys_allocated = 0;
TAILQ_INIT(&sc->sc_ekeys_queue);
RB_INIT(&sc->sc_ekeys_tree);
if (sc->sc_ekeys_total <= g_eli_key_cache_limit) {
uint64_t keyno;
for (keyno = 0; keyno < sc->sc_ekeys_total; keyno++)
(void)g_eli_key_allocate(sc, keyno);
KASSERT(sc->sc_ekeys_total == sc->sc_ekeys_allocated,
("sc_ekeys_total=%ju != sc_ekeys_allocated=%ju",
(uintmax_t)sc->sc_ekeys_total,
(uintmax_t)sc->sc_ekeys_allocated));
}
}
mtx_unlock(&sc->sc_ekeys_lock);
}
void
g_eli_key_destroy(struct g_eli_softc *sc)
{
mtx_lock(&sc->sc_ekeys_lock);
if ((sc->sc_flags & G_ELI_FLAG_SINGLE_KEY) != 0) {
explicit_bzero(sc->sc_ekey, sizeof(sc->sc_ekey));
} else {
struct g_eli_key *key;
while ((key = TAILQ_FIRST(&sc->sc_ekeys_queue)) != NULL)
g_eli_key_remove(sc, key);
TAILQ_INIT(&sc->sc_ekeys_queue);
RB_INIT(&sc->sc_ekeys_tree);
}
mtx_unlock(&sc->sc_ekeys_lock);
}
void
g_eli_key_resize(struct g_eli_softc *sc)
{
uint64_t new_ekeys_total;
off_t mediasize;
size_t blocksize;
if ((sc->sc_flags & G_ELI_FLAG_SINGLE_KEY) != 0) {
return;
}
mtx_lock(&sc->sc_ekeys_lock);
if ((sc->sc_flags & G_ELI_FLAG_AUTH) != 0) {
struct g_provider *pp;
pp = LIST_FIRST(&sc->sc_geom->consumer)->provider;
mediasize = pp->mediasize;
blocksize = pp->sectorsize;
} else {
mediasize = sc->sc_mediasize;
blocksize = sc->sc_sectorsize;
}
new_ekeys_total = ((mediasize - 1) >> G_ELI_KEY_SHIFT) / blocksize + 1;
/* We only allow to grow. */
KASSERT(new_ekeys_total >= sc->sc_ekeys_total,
("new_ekeys_total=%ju < sc_ekeys_total=%ju",
(uintmax_t)new_ekeys_total, (uintmax_t)sc->sc_ekeys_total));
if (new_ekeys_total <= g_eli_key_cache_limit) {
uint64_t keyno;
for (keyno = sc->sc_ekeys_total; keyno < new_ekeys_total;
keyno++) {
(void)g_eli_key_allocate(sc, keyno);
}
KASSERT(new_ekeys_total == sc->sc_ekeys_allocated,
("new_ekeys_total=%ju != sc_ekeys_allocated=%ju",
(uintmax_t)new_ekeys_total,
(uintmax_t)sc->sc_ekeys_allocated));
}
sc->sc_ekeys_total = new_ekeys_total;
mtx_unlock(&sc->sc_ekeys_lock);
}
/*
* Select encryption key. If G_ELI_FLAG_SINGLE_KEY is present we only have one
* key available for all the data. If the flag is not present select the key
* based on data offset.
*/
uint8_t *
g_eli_key_hold(struct g_eli_softc *sc, off_t offset, size_t blocksize)
{
struct g_eli_key *key, keysearch;
uint64_t keyno;
if ((sc->sc_flags & G_ELI_FLAG_SINGLE_KEY) != 0)
return (sc->sc_ekey);
/* We switch key every 2^G_ELI_KEY_SHIFT blocks. */
keyno = (offset >> G_ELI_KEY_SHIFT) / blocksize;
KASSERT(keyno < sc->sc_ekeys_total,
("%s: keyno=%ju >= sc_ekeys_total=%ju",
__func__, (uintmax_t)keyno, (uintmax_t)sc->sc_ekeys_total));
keysearch.gek_keyno = keyno;
if (sc->sc_ekeys_total == sc->sc_ekeys_allocated) {
/* We have all the keys, so avoid some overhead. */
key = RB_FIND(g_eli_key_tree, &sc->sc_ekeys_tree, &keysearch);
KASSERT(key != NULL, ("No key %ju found.", (uintmax_t)keyno));
KASSERT(key->gek_magic == G_ELI_KEY_MAGIC,
("Invalid key magic."));
return (key->gek_key);
}
mtx_lock(&sc->sc_ekeys_lock);
key = RB_FIND(g_eli_key_tree, &sc->sc_ekeys_tree, &keysearch);
if (key != NULL) {
g_eli_key_cache_hits++;
TAILQ_REMOVE(&sc->sc_ekeys_queue, key, gek_next);
TAILQ_INSERT_TAIL(&sc->sc_ekeys_queue, key, gek_next);
} else {
/*
* No key in cache, find the least recently unreferenced key
* or allocate one if we haven't reached our limit yet.
*/
if (sc->sc_ekeys_allocated < g_eli_key_cache_limit) {
key = g_eli_key_allocate(sc, keyno);
} else {
g_eli_key_cache_misses++;
key = g_eli_key_find_last(sc);
if (key != NULL) {
g_eli_key_replace(sc, key, keyno);
} else {
/* All keys are referenced? Allocate one. */
key = g_eli_key_allocate(sc, keyno);
}
}
}
key->gek_count++;
mtx_unlock(&sc->sc_ekeys_lock);
KASSERT(key->gek_magic == G_ELI_KEY_MAGIC, ("Invalid key magic."));
return (key->gek_key);
}
void
g_eli_key_drop(struct g_eli_softc *sc, uint8_t *rawkey)
{
struct g_eli_key *key = (struct g_eli_key *)rawkey;
if ((sc->sc_flags & G_ELI_FLAG_SINGLE_KEY) != 0)
return;
KASSERT(key->gek_magic == G_ELI_KEY_MAGIC, ("Invalid key magic."));
if (sc->sc_ekeys_total == sc->sc_ekeys_allocated)
return;
mtx_lock(&sc->sc_ekeys_lock);
KASSERT(key->gek_count > 0, ("key->gek_count=%d", key->gek_count));
key->gek_count--;
while (sc->sc_ekeys_allocated > g_eli_key_cache_limit) {
key = g_eli_key_find_last(sc);
if (key == NULL)
break;
g_eli_key_remove(sc, key);
}
mtx_unlock(&sc->sc_ekeys_lock);
}
#endif /* _KERNEL */