mirror of
https://git.hardenedbsd.org/hardenedbsd/HardenedBSD.git
synced 2024-11-23 08:21:09 +01:00
9c296a2105
As documented in the HiFive Unmatched Software Reference Manual. Reviewed by: imp, mhorne Sponsored by: The FreeBSD Foundation Differential Revision: https://reviews.freebsd.org/D34010
1452 lines
46 KiB
C
1452 lines
46 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/bio.h>
|
|
#include <sys/diskmbr.h>
|
|
#include <sys/gsb_crc32.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/gpt.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kobj.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/sbuf.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/uuid.h>
|
|
#include <geom/geom.h>
|
|
#include <geom/geom_int.h>
|
|
#include <geom/part/g_part.h>
|
|
|
|
#include "g_part_if.h"
|
|
|
|
FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support");
|
|
|
|
SYSCTL_DECL(_kern_geom_part);
|
|
static SYSCTL_NODE(_kern_geom_part, OID_AUTO, gpt,
|
|
CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
|
|
"GEOM_PART_GPT GUID Partition Table");
|
|
|
|
static u_int allow_nesting = 0;
|
|
SYSCTL_UINT(_kern_geom_part_gpt, OID_AUTO, allow_nesting,
|
|
CTLFLAG_RWTUN, &allow_nesting, 0, "Allow GPT to be nested inside other schemes");
|
|
|
|
CTASSERT(offsetof(struct gpt_hdr, padding) == 92);
|
|
CTASSERT(sizeof(struct gpt_ent) == 128);
|
|
|
|
extern u_int geom_part_check_integrity;
|
|
|
|
#define EQUUID(a,b) (memcmp(a, b, sizeof(struct uuid)) == 0)
|
|
|
|
#define MBRSIZE 512
|
|
|
|
enum gpt_elt {
|
|
GPT_ELT_PRIHDR,
|
|
GPT_ELT_PRITBL,
|
|
GPT_ELT_SECHDR,
|
|
GPT_ELT_SECTBL,
|
|
GPT_ELT_COUNT
|
|
};
|
|
|
|
enum gpt_state {
|
|
GPT_STATE_UNKNOWN, /* Not determined. */
|
|
GPT_STATE_MISSING, /* No signature found. */
|
|
GPT_STATE_CORRUPT, /* Checksum mismatch. */
|
|
GPT_STATE_INVALID, /* Nonconformant/invalid. */
|
|
GPT_STATE_OK /* Perfectly fine. */
|
|
};
|
|
|
|
struct g_part_gpt_table {
|
|
struct g_part_table base;
|
|
u_char mbr[MBRSIZE];
|
|
struct gpt_hdr *hdr;
|
|
quad_t lba[GPT_ELT_COUNT];
|
|
enum gpt_state state[GPT_ELT_COUNT];
|
|
int bootcamp;
|
|
};
|
|
|
|
struct g_part_gpt_entry {
|
|
struct g_part_entry base;
|
|
struct gpt_ent ent;
|
|
};
|
|
|
|
static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t);
|
|
static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t);
|
|
static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *);
|
|
|
|
static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *,
|
|
struct g_part_parms *);
|
|
static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *);
|
|
static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *);
|
|
static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *);
|
|
static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *,
|
|
struct sbuf *, const char *);
|
|
static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *);
|
|
static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *,
|
|
struct g_part_parms *);
|
|
static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *,
|
|
char *, size_t);
|
|
static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *);
|
|
static int g_part_gpt_read(struct g_part_table *, struct g_consumer *);
|
|
static int g_part_gpt_setunset(struct g_part_table *table,
|
|
struct g_part_entry *baseentry, const char *attrib, unsigned int set);
|
|
static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *,
|
|
char *, size_t);
|
|
static int g_part_gpt_write(struct g_part_table *, struct g_consumer *);
|
|
static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *,
|
|
struct g_part_parms *);
|
|
static int g_part_gpt_recover(struct g_part_table *);
|
|
|
|
static kobj_method_t g_part_gpt_methods[] = {
|
|
KOBJMETHOD(g_part_add, g_part_gpt_add),
|
|
KOBJMETHOD(g_part_bootcode, g_part_gpt_bootcode),
|
|
KOBJMETHOD(g_part_create, g_part_gpt_create),
|
|
KOBJMETHOD(g_part_destroy, g_part_gpt_destroy),
|
|
KOBJMETHOD(g_part_dumpconf, g_part_gpt_dumpconf),
|
|
KOBJMETHOD(g_part_dumpto, g_part_gpt_dumpto),
|
|
KOBJMETHOD(g_part_modify, g_part_gpt_modify),
|
|
KOBJMETHOD(g_part_resize, g_part_gpt_resize),
|
|
KOBJMETHOD(g_part_name, g_part_gpt_name),
|
|
KOBJMETHOD(g_part_probe, g_part_gpt_probe),
|
|
KOBJMETHOD(g_part_read, g_part_gpt_read),
|
|
KOBJMETHOD(g_part_recover, g_part_gpt_recover),
|
|
KOBJMETHOD(g_part_setunset, g_part_gpt_setunset),
|
|
KOBJMETHOD(g_part_type, g_part_gpt_type),
|
|
KOBJMETHOD(g_part_write, g_part_gpt_write),
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static struct g_part_scheme g_part_gpt_scheme = {
|
|
"GPT",
|
|
g_part_gpt_methods,
|
|
sizeof(struct g_part_gpt_table),
|
|
.gps_entrysz = sizeof(struct g_part_gpt_entry),
|
|
.gps_minent = 128,
|
|
.gps_maxent = 4096,
|
|
.gps_bootcodesz = MBRSIZE,
|
|
};
|
|
G_PART_SCHEME_DECLARE(g_part_gpt);
|
|
MODULE_VERSION(geom_part_gpt, 0);
|
|
|
|
static struct uuid gpt_uuid_apple_apfs = GPT_ENT_TYPE_APPLE_APFS;
|
|
static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT;
|
|
static struct uuid gpt_uuid_apple_core_storage =
|
|
GPT_ENT_TYPE_APPLE_CORE_STORAGE;
|
|
static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS;
|
|
static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL;
|
|
static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID;
|
|
static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE;
|
|
static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY;
|
|
static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS;
|
|
static struct uuid gpt_uuid_apple_zfs = GPT_ENT_TYPE_APPLE_ZFS;
|
|
static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT;
|
|
static struct uuid gpt_uuid_chromeos_firmware = GPT_ENT_TYPE_CHROMEOS_FIRMWARE;
|
|
static struct uuid gpt_uuid_chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL;
|
|
static struct uuid gpt_uuid_chromeos_reserved = GPT_ENT_TYPE_CHROMEOS_RESERVED;
|
|
static struct uuid gpt_uuid_chromeos_root = GPT_ENT_TYPE_CHROMEOS_ROOT;
|
|
static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD;
|
|
static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER;
|
|
static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2;
|
|
static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32;
|
|
static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64;
|
|
static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY;
|
|
static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP;
|
|
static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1;
|
|
static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM;
|
|
static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI;
|
|
static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD;
|
|
static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
|
|
static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS;
|
|
static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
|
|
static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
|
|
static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
|
|
static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
|
|
static struct uuid gpt_uuid_hifive_fsbl = GPT_ENT_TYPE_HIFIVE_FSBL;
|
|
static struct uuid gpt_uuid_hifive_bbl = GPT_ENT_TYPE_HIFIVE_BBL;
|
|
static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA;
|
|
static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM;
|
|
static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID;
|
|
static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP;
|
|
static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR;
|
|
static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA;
|
|
static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA;
|
|
static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA;
|
|
static struct uuid gpt_uuid_ms_recovery = GPT_ENT_TYPE_MS_RECOVERY;
|
|
static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED;
|
|
static struct uuid gpt_uuid_ms_spaces = GPT_ENT_TYPE_MS_SPACES;
|
|
static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD;
|
|
static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD;
|
|
static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS;
|
|
static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS;
|
|
static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID;
|
|
static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP;
|
|
static struct uuid gpt_uuid_openbsd_data = GPT_ENT_TYPE_OPENBSD_DATA;
|
|
static struct uuid gpt_uuid_prep_boot = GPT_ENT_TYPE_PREP_BOOT;
|
|
static struct uuid gpt_uuid_solaris_boot = GPT_ENT_TYPE_SOLARIS_BOOT;
|
|
static struct uuid gpt_uuid_solaris_root = GPT_ENT_TYPE_SOLARIS_ROOT;
|
|
static struct uuid gpt_uuid_solaris_swap = GPT_ENT_TYPE_SOLARIS_SWAP;
|
|
static struct uuid gpt_uuid_solaris_backup = GPT_ENT_TYPE_SOLARIS_BACKUP;
|
|
static struct uuid gpt_uuid_solaris_var = GPT_ENT_TYPE_SOLARIS_VAR;
|
|
static struct uuid gpt_uuid_solaris_home = GPT_ENT_TYPE_SOLARIS_HOME;
|
|
static struct uuid gpt_uuid_solaris_altsec = GPT_ENT_TYPE_SOLARIS_ALTSEC;
|
|
static struct uuid gpt_uuid_solaris_reserved = GPT_ENT_TYPE_SOLARIS_RESERVED;
|
|
static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED;
|
|
static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS;
|
|
static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG;
|
|
static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED;
|
|
static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR;
|
|
|
|
static struct g_part_uuid_alias {
|
|
struct uuid *uuid;
|
|
int alias;
|
|
int mbrtype;
|
|
} gpt_uuid_alias_match[] = {
|
|
{ &gpt_uuid_apple_apfs, G_PART_ALIAS_APPLE_APFS, 0 },
|
|
{ &gpt_uuid_apple_boot, G_PART_ALIAS_APPLE_BOOT, 0xab },
|
|
{ &gpt_uuid_apple_core_storage, G_PART_ALIAS_APPLE_CORE_STORAGE, 0 },
|
|
{ &gpt_uuid_apple_hfs, G_PART_ALIAS_APPLE_HFS, 0xaf },
|
|
{ &gpt_uuid_apple_label, G_PART_ALIAS_APPLE_LABEL, 0 },
|
|
{ &gpt_uuid_apple_raid, G_PART_ALIAS_APPLE_RAID, 0 },
|
|
{ &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 },
|
|
{ &gpt_uuid_apple_tv_recovery, G_PART_ALIAS_APPLE_TV_RECOVERY, 0 },
|
|
{ &gpt_uuid_apple_ufs, G_PART_ALIAS_APPLE_UFS, 0 },
|
|
{ &gpt_uuid_apple_zfs, G_PART_ALIAS_APPLE_ZFS, 0 },
|
|
{ &gpt_uuid_bios_boot, G_PART_ALIAS_BIOS_BOOT, 0 },
|
|
{ &gpt_uuid_chromeos_firmware, G_PART_ALIAS_CHROMEOS_FIRMWARE, 0 },
|
|
{ &gpt_uuid_chromeos_kernel, G_PART_ALIAS_CHROMEOS_KERNEL, 0 },
|
|
{ &gpt_uuid_chromeos_reserved, G_PART_ALIAS_CHROMEOS_RESERVED, 0 },
|
|
{ &gpt_uuid_chromeos_root, G_PART_ALIAS_CHROMEOS_ROOT, 0 },
|
|
{ &gpt_uuid_dfbsd_ccd, G_PART_ALIAS_DFBSD_CCD, 0 },
|
|
{ &gpt_uuid_dfbsd_hammer, G_PART_ALIAS_DFBSD_HAMMER, 0 },
|
|
{ &gpt_uuid_dfbsd_hammer2, G_PART_ALIAS_DFBSD_HAMMER2, 0 },
|
|
{ &gpt_uuid_dfbsd_label32, G_PART_ALIAS_DFBSD, 0xa5 },
|
|
{ &gpt_uuid_dfbsd_label64, G_PART_ALIAS_DFBSD64, 0xa5 },
|
|
{ &gpt_uuid_dfbsd_legacy, G_PART_ALIAS_DFBSD_LEGACY, 0 },
|
|
{ &gpt_uuid_dfbsd_swap, G_PART_ALIAS_DFBSD_SWAP, 0 },
|
|
{ &gpt_uuid_dfbsd_ufs1, G_PART_ALIAS_DFBSD_UFS, 0 },
|
|
{ &gpt_uuid_dfbsd_vinum, G_PART_ALIAS_DFBSD_VINUM, 0 },
|
|
{ &gpt_uuid_efi, G_PART_ALIAS_EFI, 0xee },
|
|
{ &gpt_uuid_freebsd, G_PART_ALIAS_FREEBSD, 0xa5 },
|
|
{ &gpt_uuid_freebsd_boot, G_PART_ALIAS_FREEBSD_BOOT, 0 },
|
|
{ &gpt_uuid_freebsd_nandfs, G_PART_ALIAS_FREEBSD_NANDFS, 0 },
|
|
{ &gpt_uuid_freebsd_swap, G_PART_ALIAS_FREEBSD_SWAP, 0 },
|
|
{ &gpt_uuid_freebsd_ufs, G_PART_ALIAS_FREEBSD_UFS, 0 },
|
|
{ &gpt_uuid_freebsd_vinum, G_PART_ALIAS_FREEBSD_VINUM, 0 },
|
|
{ &gpt_uuid_freebsd_zfs, G_PART_ALIAS_FREEBSD_ZFS, 0 },
|
|
{ &gpt_uuid_hifive_fsbl, G_PART_ALIAS_HIFIVE_FSBL, 0 },
|
|
{ &gpt_uuid_hifive_bbl, G_PART_ALIAS_HIFIVE_BBL, 0 },
|
|
{ &gpt_uuid_linux_data, G_PART_ALIAS_LINUX_DATA, 0x0b },
|
|
{ &gpt_uuid_linux_lvm, G_PART_ALIAS_LINUX_LVM, 0 },
|
|
{ &gpt_uuid_linux_raid, G_PART_ALIAS_LINUX_RAID, 0 },
|
|
{ &gpt_uuid_linux_swap, G_PART_ALIAS_LINUX_SWAP, 0 },
|
|
{ &gpt_uuid_mbr, G_PART_ALIAS_MBR, 0 },
|
|
{ &gpt_uuid_ms_basic_data, G_PART_ALIAS_MS_BASIC_DATA, 0x0b },
|
|
{ &gpt_uuid_ms_ldm_data, G_PART_ALIAS_MS_LDM_DATA, 0 },
|
|
{ &gpt_uuid_ms_ldm_metadata, G_PART_ALIAS_MS_LDM_METADATA, 0 },
|
|
{ &gpt_uuid_ms_recovery, G_PART_ALIAS_MS_RECOVERY, 0 },
|
|
{ &gpt_uuid_ms_reserved, G_PART_ALIAS_MS_RESERVED, 0 },
|
|
{ &gpt_uuid_ms_spaces, G_PART_ALIAS_MS_SPACES, 0 },
|
|
{ &gpt_uuid_netbsd_ccd, G_PART_ALIAS_NETBSD_CCD, 0 },
|
|
{ &gpt_uuid_netbsd_cgd, G_PART_ALIAS_NETBSD_CGD, 0 },
|
|
{ &gpt_uuid_netbsd_ffs, G_PART_ALIAS_NETBSD_FFS, 0 },
|
|
{ &gpt_uuid_netbsd_lfs, G_PART_ALIAS_NETBSD_LFS, 0 },
|
|
{ &gpt_uuid_netbsd_raid, G_PART_ALIAS_NETBSD_RAID, 0 },
|
|
{ &gpt_uuid_netbsd_swap, G_PART_ALIAS_NETBSD_SWAP, 0 },
|
|
{ &gpt_uuid_openbsd_data, G_PART_ALIAS_OPENBSD_DATA, 0 },
|
|
{ &gpt_uuid_prep_boot, G_PART_ALIAS_PREP_BOOT, 0x41 },
|
|
{ &gpt_uuid_solaris_boot, G_PART_ALIAS_SOLARIS_BOOT, 0 },
|
|
{ &gpt_uuid_solaris_root, G_PART_ALIAS_SOLARIS_ROOT, 0 },
|
|
{ &gpt_uuid_solaris_swap, G_PART_ALIAS_SOLARIS_SWAP, 0 },
|
|
{ &gpt_uuid_solaris_backup, G_PART_ALIAS_SOLARIS_BACKUP, 0 },
|
|
{ &gpt_uuid_solaris_var, G_PART_ALIAS_SOLARIS_VAR, 0 },
|
|
{ &gpt_uuid_solaris_home, G_PART_ALIAS_SOLARIS_HOME, 0 },
|
|
{ &gpt_uuid_solaris_altsec, G_PART_ALIAS_SOLARIS_ALTSEC, 0 },
|
|
{ &gpt_uuid_solaris_reserved, G_PART_ALIAS_SOLARIS_RESERVED, 0 },
|
|
{ &gpt_uuid_vmfs, G_PART_ALIAS_VMFS, 0 },
|
|
{ &gpt_uuid_vmkdiag, G_PART_ALIAS_VMKDIAG, 0 },
|
|
{ &gpt_uuid_vmreserved, G_PART_ALIAS_VMRESERVED, 0 },
|
|
{ &gpt_uuid_vmvsanhdr, G_PART_ALIAS_VMVSANHDR, 0 },
|
|
{ NULL, 0, 0 }
|
|
};
|
|
|
|
static int
|
|
gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start,
|
|
quad_t end)
|
|
{
|
|
|
|
if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX)
|
|
return (EINVAL);
|
|
|
|
mbr += DOSPARTOFF + idx * DOSPARTSIZE;
|
|
mbr[0] = 0;
|
|
if (start == 1) {
|
|
/*
|
|
* Treat the PMBR partition specially to maximize
|
|
* interoperability with BIOSes.
|
|
*/
|
|
mbr[1] = mbr[3] = 0;
|
|
mbr[2] = 2;
|
|
} else
|
|
mbr[1] = mbr[2] = mbr[3] = 0xff;
|
|
mbr[4] = typ;
|
|
mbr[5] = mbr[6] = mbr[7] = 0xff;
|
|
le32enc(mbr + 8, (uint32_t)start);
|
|
le32enc(mbr + 12, (uint32_t)(end - start + 1));
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
gpt_map_type(struct uuid *t)
|
|
{
|
|
struct g_part_uuid_alias *uap;
|
|
|
|
for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
|
|
if (EQUUID(t, uap->uuid))
|
|
return (uap->mbrtype);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp)
|
|
{
|
|
|
|
bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
|
|
gpt_write_mbr_entry(table->mbr, 0, 0xee, 1,
|
|
MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX));
|
|
le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC);
|
|
}
|
|
|
|
/*
|
|
* Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the
|
|
* whole disk anymore. Rather, it covers the GPT table and the EFI
|
|
* system partition only. This way the HFS+ partition and any FAT
|
|
* partitions can be added to the MBR without creating an overlap.
|
|
*/
|
|
static int
|
|
gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname)
|
|
{
|
|
uint8_t *p;
|
|
|
|
p = table->mbr + DOSPARTOFF;
|
|
if (p[4] != 0xee || le32dec(p + 8) != 1)
|
|
return (0);
|
|
|
|
p += DOSPARTSIZE;
|
|
if (p[4] != 0xaf)
|
|
return (0);
|
|
|
|
printf("GEOM: %s: enabling Boot Camp\n", provname);
|
|
return (1);
|
|
}
|
|
|
|
static void
|
|
gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp)
|
|
{
|
|
struct g_part_entry *baseentry;
|
|
struct g_part_gpt_entry *entry;
|
|
struct g_part_gpt_table *table;
|
|
int bootable, error, index, slices, typ;
|
|
|
|
table = (struct g_part_gpt_table *)basetable;
|
|
|
|
bootable = -1;
|
|
for (index = 0; index < NDOSPART; index++) {
|
|
if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index])
|
|
bootable = index;
|
|
}
|
|
|
|
bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
|
|
slices = 0;
|
|
LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
|
|
if (baseentry->gpe_deleted)
|
|
continue;
|
|
index = baseentry->gpe_index - 1;
|
|
if (index >= NDOSPART)
|
|
continue;
|
|
|
|
entry = (struct g_part_gpt_entry *)baseentry;
|
|
|
|
switch (index) {
|
|
case 0: /* This must be the EFI system partition. */
|
|
if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi))
|
|
goto disable;
|
|
error = gpt_write_mbr_entry(table->mbr, index, 0xee,
|
|
1ull, entry->ent.ent_lba_end);
|
|
break;
|
|
case 1: /* This must be the HFS+ partition. */
|
|
if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs))
|
|
goto disable;
|
|
error = gpt_write_mbr_entry(table->mbr, index, 0xaf,
|
|
entry->ent.ent_lba_start, entry->ent.ent_lba_end);
|
|
break;
|
|
default:
|
|
typ = gpt_map_type(&entry->ent.ent_type);
|
|
error = gpt_write_mbr_entry(table->mbr, index, typ,
|
|
entry->ent.ent_lba_start, entry->ent.ent_lba_end);
|
|
break;
|
|
}
|
|
if (error)
|
|
continue;
|
|
|
|
if (index == bootable)
|
|
table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80;
|
|
slices |= 1 << index;
|
|
}
|
|
if ((slices & 3) == 3)
|
|
return;
|
|
|
|
disable:
|
|
table->bootcamp = 0;
|
|
gpt_create_pmbr(table, pp);
|
|
}
|
|
|
|
static struct gpt_hdr *
|
|
gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp,
|
|
enum gpt_elt elt)
|
|
{
|
|
struct gpt_hdr *buf, *hdr;
|
|
struct g_provider *pp;
|
|
quad_t lba, last;
|
|
int error;
|
|
uint32_t crc, sz;
|
|
|
|
pp = cp->provider;
|
|
last = (pp->mediasize / pp->sectorsize) - 1;
|
|
table->state[elt] = GPT_STATE_MISSING;
|
|
/*
|
|
* If the primary header is valid look for secondary
|
|
* header in AlternateLBA, otherwise in the last medium's LBA.
|
|
*/
|
|
if (elt == GPT_ELT_SECHDR) {
|
|
if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK)
|
|
table->lba[elt] = last;
|
|
} else
|
|
table->lba[elt] = 1;
|
|
buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize,
|
|
&error);
|
|
if (buf == NULL)
|
|
return (NULL);
|
|
hdr = NULL;
|
|
if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0)
|
|
goto fail;
|
|
|
|
table->state[elt] = GPT_STATE_CORRUPT;
|
|
sz = le32toh(buf->hdr_size);
|
|
if (sz < 92 || sz > pp->sectorsize)
|
|
goto fail;
|
|
|
|
hdr = g_malloc(sz, M_WAITOK | M_ZERO);
|
|
bcopy(buf, hdr, sz);
|
|
hdr->hdr_size = sz;
|
|
|
|
crc = le32toh(buf->hdr_crc_self);
|
|
buf->hdr_crc_self = 0;
|
|
if (crc32(buf, sz) != crc)
|
|
goto fail;
|
|
hdr->hdr_crc_self = crc;
|
|
|
|
table->state[elt] = GPT_STATE_INVALID;
|
|
hdr->hdr_revision = le32toh(buf->hdr_revision);
|
|
if (hdr->hdr_revision < GPT_HDR_REVISION)
|
|
goto fail;
|
|
hdr->hdr_lba_self = le64toh(buf->hdr_lba_self);
|
|
if (hdr->hdr_lba_self != table->lba[elt])
|
|
goto fail;
|
|
hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt);
|
|
if (hdr->hdr_lba_alt == hdr->hdr_lba_self)
|
|
goto fail;
|
|
if (hdr->hdr_lba_alt > last && geom_part_check_integrity)
|
|
goto fail;
|
|
|
|
/* Check the managed area. */
|
|
hdr->hdr_lba_start = le64toh(buf->hdr_lba_start);
|
|
if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last)
|
|
goto fail;
|
|
hdr->hdr_lba_end = le64toh(buf->hdr_lba_end);
|
|
if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last)
|
|
goto fail;
|
|
|
|
/* Check the table location and size of the table. */
|
|
hdr->hdr_entries = le32toh(buf->hdr_entries);
|
|
hdr->hdr_entsz = le32toh(buf->hdr_entsz);
|
|
if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 ||
|
|
(hdr->hdr_entsz & 7) != 0)
|
|
goto fail;
|
|
hdr->hdr_lba_table = le64toh(buf->hdr_lba_table);
|
|
if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last)
|
|
goto fail;
|
|
if (hdr->hdr_lba_table >= hdr->hdr_lba_start &&
|
|
hdr->hdr_lba_table <= hdr->hdr_lba_end)
|
|
goto fail;
|
|
lba = hdr->hdr_lba_table +
|
|
howmany(hdr->hdr_entries * hdr->hdr_entsz, pp->sectorsize) - 1;
|
|
if (lba >= last)
|
|
goto fail;
|
|
if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end)
|
|
goto fail;
|
|
|
|
table->state[elt] = GPT_STATE_OK;
|
|
le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid);
|
|
hdr->hdr_crc_table = le32toh(buf->hdr_crc_table);
|
|
|
|
/* save LBA for secondary header */
|
|
if (elt == GPT_ELT_PRIHDR)
|
|
table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt;
|
|
|
|
g_free(buf);
|
|
return (hdr);
|
|
|
|
fail:
|
|
if (hdr != NULL)
|
|
g_free(hdr);
|
|
g_free(buf);
|
|
return (NULL);
|
|
}
|
|
|
|
static struct gpt_ent *
|
|
gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp,
|
|
enum gpt_elt elt, struct gpt_hdr *hdr)
|
|
{
|
|
struct g_provider *pp;
|
|
struct gpt_ent *ent, *tbl;
|
|
char *buf, *p;
|
|
unsigned int idx, sectors, tblsz, size;
|
|
int error;
|
|
|
|
if (hdr == NULL)
|
|
return (NULL);
|
|
|
|
pp = cp->provider;
|
|
table->lba[elt] = hdr->hdr_lba_table;
|
|
|
|
table->state[elt] = GPT_STATE_MISSING;
|
|
tblsz = hdr->hdr_entries * hdr->hdr_entsz;
|
|
sectors = howmany(tblsz, pp->sectorsize);
|
|
buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO);
|
|
for (idx = 0; idx < sectors; idx += maxphys / pp->sectorsize) {
|
|
size = (sectors - idx > maxphys / pp->sectorsize) ? maxphys:
|
|
(sectors - idx) * pp->sectorsize;
|
|
p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize,
|
|
size, &error);
|
|
if (p == NULL) {
|
|
g_free(buf);
|
|
return (NULL);
|
|
}
|
|
bcopy(p, buf + idx * pp->sectorsize, size);
|
|
g_free(p);
|
|
}
|
|
table->state[elt] = GPT_STATE_CORRUPT;
|
|
if (crc32(buf, tblsz) != hdr->hdr_crc_table) {
|
|
g_free(buf);
|
|
return (NULL);
|
|
}
|
|
|
|
table->state[elt] = GPT_STATE_OK;
|
|
tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent),
|
|
M_WAITOK | M_ZERO);
|
|
|
|
for (idx = 0, ent = tbl, p = buf;
|
|
idx < hdr->hdr_entries;
|
|
idx++, ent++, p += hdr->hdr_entsz) {
|
|
le_uuid_dec(p, &ent->ent_type);
|
|
le_uuid_dec(p + 16, &ent->ent_uuid);
|
|
ent->ent_lba_start = le64dec(p + 32);
|
|
ent->ent_lba_end = le64dec(p + 40);
|
|
ent->ent_attr = le64dec(p + 48);
|
|
/* Keep UTF-16 in little-endian. */
|
|
bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name));
|
|
}
|
|
|
|
g_free(buf);
|
|
return (tbl);
|
|
}
|
|
|
|
static int
|
|
gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec)
|
|
{
|
|
|
|
if (pri == NULL || sec == NULL)
|
|
return (0);
|
|
|
|
if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid))
|
|
return (0);
|
|
return ((pri->hdr_revision == sec->hdr_revision &&
|
|
pri->hdr_size == sec->hdr_size &&
|
|
pri->hdr_lba_start == sec->hdr_lba_start &&
|
|
pri->hdr_lba_end == sec->hdr_lba_end &&
|
|
pri->hdr_entries == sec->hdr_entries &&
|
|
pri->hdr_entsz == sec->hdr_entsz &&
|
|
pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0);
|
|
}
|
|
|
|
static int
|
|
gpt_parse_type(const char *type, struct uuid *uuid)
|
|
{
|
|
struct uuid tmp;
|
|
const char *alias;
|
|
int error;
|
|
struct g_part_uuid_alias *uap;
|
|
|
|
if (type[0] == '!') {
|
|
error = parse_uuid(type + 1, &tmp);
|
|
if (error)
|
|
return (error);
|
|
if (EQUUID(&tmp, &gpt_uuid_unused))
|
|
return (EINVAL);
|
|
*uuid = tmp;
|
|
return (0);
|
|
}
|
|
for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
|
|
alias = g_part_alias_name(uap->alias);
|
|
if (!strcasecmp(type, alias)) {
|
|
*uuid = *uap->uuid;
|
|
return (0);
|
|
}
|
|
}
|
|
return (EINVAL);
|
|
}
|
|
|
|
static int
|
|
g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
|
|
struct g_part_parms *gpp)
|
|
{
|
|
struct g_part_gpt_entry *entry;
|
|
int error;
|
|
|
|
entry = (struct g_part_gpt_entry *)baseentry;
|
|
error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
|
|
if (error)
|
|
return (error);
|
|
kern_uuidgen(&entry->ent.ent_uuid, 1);
|
|
entry->ent.ent_lba_start = baseentry->gpe_start;
|
|
entry->ent.ent_lba_end = baseentry->gpe_end;
|
|
if (baseentry->gpe_deleted) {
|
|
entry->ent.ent_attr = 0;
|
|
bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name));
|
|
}
|
|
if (gpp->gpp_parms & G_PART_PARM_LABEL)
|
|
g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
|
|
sizeof(entry->ent.ent_name) /
|
|
sizeof(entry->ent.ent_name[0]));
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
|
|
{
|
|
struct g_part_gpt_table *table;
|
|
size_t codesz;
|
|
|
|
codesz = DOSPARTOFF;
|
|
table = (struct g_part_gpt_table *)basetable;
|
|
bzero(table->mbr, codesz);
|
|
codesz = MIN(codesz, gpp->gpp_codesize);
|
|
if (codesz > 0)
|
|
bcopy(gpp->gpp_codeptr, table->mbr, codesz);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp)
|
|
{
|
|
struct g_provider *pp;
|
|
struct g_part_gpt_table *table;
|
|
size_t tblsz;
|
|
|
|
/* Our depth should be 0 unless nesting was explicitly enabled. */
|
|
if (!allow_nesting && basetable->gpt_depth != 0)
|
|
return (ENXIO);
|
|
|
|
table = (struct g_part_gpt_table *)basetable;
|
|
pp = gpp->gpp_provider;
|
|
tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent),
|
|
pp->sectorsize);
|
|
if (pp->sectorsize < MBRSIZE ||
|
|
pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) *
|
|
pp->sectorsize)
|
|
return (ENOSPC);
|
|
|
|
gpt_create_pmbr(table, pp);
|
|
|
|
/* Allocate space for the header */
|
|
table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO);
|
|
|
|
bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
|
|
table->hdr->hdr_revision = GPT_HDR_REVISION;
|
|
table->hdr->hdr_size = offsetof(struct gpt_hdr, padding);
|
|
kern_uuidgen(&table->hdr->hdr_uuid, 1);
|
|
table->hdr->hdr_entries = basetable->gpt_entries;
|
|
table->hdr->hdr_entsz = sizeof(struct gpt_ent);
|
|
|
|
g_gpt_set_defaults(basetable, pp);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
|
|
{
|
|
struct g_part_gpt_table *table;
|
|
struct g_provider *pp;
|
|
|
|
table = (struct g_part_gpt_table *)basetable;
|
|
pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
|
|
g_free(table->hdr);
|
|
table->hdr = NULL;
|
|
|
|
/*
|
|
* Wipe the first 2 sectors and last one to clear the partitioning.
|
|
* Wipe sectors only if they have valid metadata.
|
|
*/
|
|
if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK)
|
|
basetable->gpt_smhead |= 3;
|
|
if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
|
|
table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1)
|
|
basetable->gpt_smtail |= 1;
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
g_part_gpt_efimedia(struct g_part_gpt_entry *entry, struct sbuf *sb)
|
|
{
|
|
sbuf_printf(sb, "HD(%d,GPT,", entry->base.gpe_index);
|
|
sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
|
|
sbuf_printf(sb, ",%#jx,%#jx)", (intmax_t)entry->base.gpe_start,
|
|
(intmax_t)(entry->base.gpe_end - entry->base.gpe_start + 1));
|
|
}
|
|
|
|
static void
|
|
g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry,
|
|
struct sbuf *sb, const char *indent)
|
|
{
|
|
struct g_part_gpt_entry *entry;
|
|
|
|
entry = (struct g_part_gpt_entry *)baseentry;
|
|
if (indent == NULL) {
|
|
/* conftxt: libdisk compatibility */
|
|
sbuf_cat(sb, " xs GPT xt ");
|
|
sbuf_printf_uuid(sb, &entry->ent.ent_type);
|
|
} else if (entry != NULL) {
|
|
/* confxml: partition entry information */
|
|
sbuf_printf(sb, "%s<label>", indent);
|
|
g_gpt_printf_utf16(sb, entry->ent.ent_name,
|
|
sizeof(entry->ent.ent_name) >> 1);
|
|
sbuf_cat(sb, "</label>\n");
|
|
if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)
|
|
sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent);
|
|
if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) {
|
|
sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n",
|
|
indent);
|
|
}
|
|
if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) {
|
|
sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n",
|
|
indent);
|
|
}
|
|
sbuf_printf(sb, "%s<rawtype>", indent);
|
|
sbuf_printf_uuid(sb, &entry->ent.ent_type);
|
|
sbuf_cat(sb, "</rawtype>\n");
|
|
sbuf_printf(sb, "%s<rawuuid>", indent);
|
|
sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
|
|
sbuf_cat(sb, "</rawuuid>\n");
|
|
sbuf_printf(sb, "%s<efimedia>", indent);
|
|
g_part_gpt_efimedia(entry, sb);
|
|
sbuf_cat(sb, "</efimedia>\n");
|
|
} else {
|
|
/* confxml: scheme information */
|
|
}
|
|
}
|
|
|
|
static int
|
|
g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)
|
|
{
|
|
struct g_part_gpt_entry *entry;
|
|
|
|
entry = (struct g_part_gpt_entry *)baseentry;
|
|
return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) ||
|
|
EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) ||
|
|
EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0);
|
|
}
|
|
|
|
static int
|
|
g_part_gpt_modify(struct g_part_table *basetable,
|
|
struct g_part_entry *baseentry, struct g_part_parms *gpp)
|
|
{
|
|
struct g_part_gpt_entry *entry;
|
|
int error;
|
|
|
|
entry = (struct g_part_gpt_entry *)baseentry;
|
|
if (gpp->gpp_parms & G_PART_PARM_TYPE) {
|
|
error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
if (gpp->gpp_parms & G_PART_PARM_LABEL)
|
|
g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
|
|
sizeof(entry->ent.ent_name) /
|
|
sizeof(entry->ent.ent_name[0]));
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
g_part_gpt_resize(struct g_part_table *basetable,
|
|
struct g_part_entry *baseentry, struct g_part_parms *gpp)
|
|
{
|
|
struct g_part_gpt_entry *entry;
|
|
|
|
if (baseentry == NULL)
|
|
return (g_part_gpt_recover(basetable));
|
|
|
|
entry = (struct g_part_gpt_entry *)baseentry;
|
|
baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
|
|
entry->ent.ent_lba_end = baseentry->gpe_end;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static const char *
|
|
g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry,
|
|
char *buf, size_t bufsz)
|
|
{
|
|
struct g_part_gpt_entry *entry;
|
|
char c;
|
|
|
|
entry = (struct g_part_gpt_entry *)baseentry;
|
|
c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p';
|
|
snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index);
|
|
return (buf);
|
|
}
|
|
|
|
static int
|
|
g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp)
|
|
{
|
|
struct g_provider *pp;
|
|
u_char *buf;
|
|
int error, index, pri, res;
|
|
|
|
/* Our depth should be 0 unless nesting was explicitly enabled. */
|
|
if (!allow_nesting && table->gpt_depth != 0)
|
|
return (ENXIO);
|
|
|
|
pp = cp->provider;
|
|
|
|
/*
|
|
* Sanity-check the provider. Since the first sector on the provider
|
|
* must be a PMBR and a PMBR is 512 bytes large, the sector size
|
|
* must be at least 512 bytes. Also, since the theoretical minimum
|
|
* number of sectors needed by GPT is 6, any medium that has less
|
|
* than 6 sectors is never going to be able to hold a GPT. The
|
|
* number 6 comes from:
|
|
* 1 sector for the PMBR
|
|
* 2 sectors for the GPT headers (each 1 sector)
|
|
* 2 sectors for the GPT tables (each 1 sector)
|
|
* 1 sector for an actual partition
|
|
* It's better to catch this pathological case early than behaving
|
|
* pathologically later on...
|
|
*/
|
|
if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize)
|
|
return (ENOSPC);
|
|
|
|
/*
|
|
* Check that there's a MBR or a PMBR. If it's a PMBR, we return
|
|
* as the highest priority on a match, otherwise we assume some
|
|
* GPT-unaware tool has destroyed the GPT by recreating a MBR and
|
|
* we really want the MBR scheme to take precedence.
|
|
*/
|
|
buf = g_read_data(cp, 0L, pp->sectorsize, &error);
|
|
if (buf == NULL)
|
|
return (error);
|
|
res = le16dec(buf + DOSMAGICOFFSET);
|
|
pri = G_PART_PROBE_PRI_LOW;
|
|
if (res == DOSMAGIC) {
|
|
for (index = 0; index < NDOSPART; index++) {
|
|
if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee)
|
|
pri = G_PART_PROBE_PRI_HIGH;
|
|
}
|
|
g_free(buf);
|
|
|
|
/* Check that there's a primary header. */
|
|
buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error);
|
|
if (buf == NULL)
|
|
return (error);
|
|
res = memcmp(buf, GPT_HDR_SIG, 8);
|
|
g_free(buf);
|
|
if (res == 0)
|
|
return (pri);
|
|
} else
|
|
g_free(buf);
|
|
|
|
/* No primary? Check that there's a secondary. */
|
|
buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
|
|
&error);
|
|
if (buf == NULL)
|
|
return (error);
|
|
res = memcmp(buf, GPT_HDR_SIG, 8);
|
|
g_free(buf);
|
|
return ((res == 0) ? pri : ENXIO);
|
|
}
|
|
|
|
static int
|
|
g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp)
|
|
{
|
|
struct gpt_hdr *prihdr, *sechdr;
|
|
struct gpt_ent *tbl, *pritbl, *sectbl;
|
|
struct g_provider *pp;
|
|
struct g_part_gpt_table *table;
|
|
struct g_part_gpt_entry *entry;
|
|
u_char *buf;
|
|
uint64_t last;
|
|
int error, index;
|
|
|
|
table = (struct g_part_gpt_table *)basetable;
|
|
pp = cp->provider;
|
|
last = (pp->mediasize / pp->sectorsize) - 1;
|
|
|
|
/* Read the PMBR */
|
|
buf = g_read_data(cp, 0, pp->sectorsize, &error);
|
|
if (buf == NULL)
|
|
return (error);
|
|
bcopy(buf, table->mbr, MBRSIZE);
|
|
g_free(buf);
|
|
|
|
/* Read the primary header and table. */
|
|
prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR);
|
|
if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) {
|
|
pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr);
|
|
} else {
|
|
table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
|
|
pritbl = NULL;
|
|
}
|
|
|
|
/* Read the secondary header and table. */
|
|
sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR);
|
|
if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) {
|
|
sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr);
|
|
} else {
|
|
table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
|
|
sectbl = NULL;
|
|
}
|
|
|
|
/* Fail if we haven't got any good tables at all. */
|
|
if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK &&
|
|
table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
|
|
printf("GEOM: %s: corrupt or invalid GPT detected.\n",
|
|
pp->name);
|
|
printf("GEOM: %s: GPT rejected -- may not be recoverable.\n",
|
|
pp->name);
|
|
if (prihdr != NULL)
|
|
g_free(prihdr);
|
|
if (pritbl != NULL)
|
|
g_free(pritbl);
|
|
if (sechdr != NULL)
|
|
g_free(sechdr);
|
|
if (sectbl != NULL)
|
|
g_free(sectbl);
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* If both headers are good but they disagree with each other,
|
|
* then invalidate one. We prefer to keep the primary header,
|
|
* unless the primary table is corrupt.
|
|
*/
|
|
if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK &&
|
|
table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
|
|
!gpt_matched_hdrs(prihdr, sechdr)) {
|
|
if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) {
|
|
table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID;
|
|
table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
|
|
g_free(sechdr);
|
|
sechdr = NULL;
|
|
} else {
|
|
table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID;
|
|
table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
|
|
g_free(prihdr);
|
|
prihdr = NULL;
|
|
}
|
|
}
|
|
|
|
if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) {
|
|
printf("GEOM: %s: the primary GPT table is corrupt or "
|
|
"invalid.\n", pp->name);
|
|
printf("GEOM: %s: using the secondary instead -- recovery "
|
|
"strongly advised.\n", pp->name);
|
|
table->hdr = sechdr;
|
|
basetable->gpt_corrupt = 1;
|
|
if (prihdr != NULL)
|
|
g_free(prihdr);
|
|
tbl = sectbl;
|
|
if (pritbl != NULL)
|
|
g_free(pritbl);
|
|
} else {
|
|
if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
|
|
printf("GEOM: %s: the secondary GPT table is corrupt "
|
|
"or invalid.\n", pp->name);
|
|
printf("GEOM: %s: using the primary only -- recovery "
|
|
"suggested.\n", pp->name);
|
|
basetable->gpt_corrupt = 1;
|
|
} else if (table->lba[GPT_ELT_SECHDR] != last) {
|
|
printf( "GEOM: %s: the secondary GPT header is not in "
|
|
"the last LBA.\n", pp->name);
|
|
basetable->gpt_corrupt = 1;
|
|
}
|
|
table->hdr = prihdr;
|
|
if (sechdr != NULL)
|
|
g_free(sechdr);
|
|
tbl = pritbl;
|
|
if (sectbl != NULL)
|
|
g_free(sectbl);
|
|
}
|
|
|
|
basetable->gpt_first = table->hdr->hdr_lba_start;
|
|
basetable->gpt_last = table->hdr->hdr_lba_end;
|
|
basetable->gpt_entries = table->hdr->hdr_entries;
|
|
|
|
for (index = basetable->gpt_entries - 1; index >= 0; index--) {
|
|
if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused))
|
|
continue;
|
|
entry = (struct g_part_gpt_entry *)g_part_new_entry(
|
|
basetable, index + 1, tbl[index].ent_lba_start,
|
|
tbl[index].ent_lba_end);
|
|
entry->ent = tbl[index];
|
|
}
|
|
|
|
g_free(tbl);
|
|
|
|
/*
|
|
* Under Mac OS X, the MBR mirrors the first 4 GPT partitions
|
|
* if (and only if) any FAT32 or FAT16 partitions have been
|
|
* created. This happens irrespective of whether Boot Camp is
|
|
* used/enabled, though it's generally understood to be done
|
|
* to support legacy Windows under Boot Camp. We refer to this
|
|
* mirroring simply as Boot Camp. We try to detect Boot Camp
|
|
* so that we can update the MBR if and when GPT changes have
|
|
* been made. Note that we do not enable Boot Camp if not
|
|
* previously enabled because we can't assume that we're on a
|
|
* Mac alongside Mac OS X.
|
|
*/
|
|
table->bootcamp = gpt_is_bootcamp(table, pp->name);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
g_part_gpt_recover(struct g_part_table *basetable)
|
|
{
|
|
struct g_part_gpt_table *table;
|
|
struct g_provider *pp;
|
|
|
|
table = (struct g_part_gpt_table *)basetable;
|
|
pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
|
|
gpt_create_pmbr(table, pp);
|
|
g_gpt_set_defaults(basetable, pp);
|
|
basetable->gpt_corrupt = 0;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
g_part_gpt_setunset(struct g_part_table *basetable,
|
|
struct g_part_entry *baseentry, const char *attrib, unsigned int set)
|
|
{
|
|
struct g_part_gpt_entry *entry;
|
|
struct g_part_gpt_table *table;
|
|
struct g_provider *pp;
|
|
uint8_t *p;
|
|
uint64_t attr;
|
|
int i;
|
|
|
|
table = (struct g_part_gpt_table *)basetable;
|
|
entry = (struct g_part_gpt_entry *)baseentry;
|
|
|
|
if (strcasecmp(attrib, "active") == 0) {
|
|
if (table->bootcamp) {
|
|
/* The active flag must be set on a valid entry. */
|
|
if (entry == NULL)
|
|
return (ENXIO);
|
|
if (baseentry->gpe_index > NDOSPART)
|
|
return (EINVAL);
|
|
for (i = 0; i < NDOSPART; i++) {
|
|
p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
|
|
p[0] = (i == baseentry->gpe_index - 1)
|
|
? ((set) ? 0x80 : 0) : 0;
|
|
}
|
|
} else {
|
|
/* The PMBR is marked as active without an entry. */
|
|
if (entry != NULL)
|
|
return (ENXIO);
|
|
for (i = 0; i < NDOSPART; i++) {
|
|
p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
|
|
p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0;
|
|
}
|
|
}
|
|
return (0);
|
|
} else if (strcasecmp(attrib, "lenovofix") == 0) {
|
|
/*
|
|
* Write the 0xee GPT entry to slot #1 (2nd slot) in the pMBR.
|
|
* This workaround allows Lenovo X220, T420, T520, etc to boot
|
|
* from GPT Partitions in BIOS mode.
|
|
*/
|
|
|
|
if (entry != NULL)
|
|
return (ENXIO);
|
|
|
|
pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
|
|
bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
|
|
gpt_write_mbr_entry(table->mbr, ((set) ? 1 : 0), 0xee, 1,
|
|
MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX));
|
|
return (0);
|
|
}
|
|
|
|
if (entry == NULL)
|
|
return (ENODEV);
|
|
|
|
attr = 0;
|
|
if (strcasecmp(attrib, "bootme") == 0) {
|
|
attr |= GPT_ENT_ATTR_BOOTME;
|
|
} else if (strcasecmp(attrib, "bootonce") == 0) {
|
|
attr |= GPT_ENT_ATTR_BOOTONCE;
|
|
if (set)
|
|
attr |= GPT_ENT_ATTR_BOOTME;
|
|
} else if (strcasecmp(attrib, "bootfailed") == 0) {
|
|
/*
|
|
* It should only be possible to unset BOOTFAILED, but it might
|
|
* be useful for test purposes to also be able to set it.
|
|
*/
|
|
attr |= GPT_ENT_ATTR_BOOTFAILED;
|
|
}
|
|
if (attr == 0)
|
|
return (EINVAL);
|
|
|
|
if (set)
|
|
attr = entry->ent.ent_attr | attr;
|
|
else
|
|
attr = entry->ent.ent_attr & ~attr;
|
|
if (attr != entry->ent.ent_attr) {
|
|
entry->ent.ent_attr = attr;
|
|
if (!baseentry->gpe_created)
|
|
baseentry->gpe_modified = 1;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static const char *
|
|
g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry,
|
|
char *buf, size_t bufsz)
|
|
{
|
|
struct g_part_gpt_entry *entry;
|
|
struct uuid *type;
|
|
struct g_part_uuid_alias *uap;
|
|
|
|
entry = (struct g_part_gpt_entry *)baseentry;
|
|
type = &entry->ent.ent_type;
|
|
for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++)
|
|
if (EQUUID(type, uap->uuid))
|
|
return (g_part_alias_name(uap->alias));
|
|
buf[0] = '!';
|
|
snprintf_uuid(buf + 1, bufsz - 1, type);
|
|
|
|
return (buf);
|
|
}
|
|
|
|
static int
|
|
g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp)
|
|
{
|
|
unsigned char *buf, *bp;
|
|
struct g_provider *pp;
|
|
struct g_part_entry *baseentry;
|
|
struct g_part_gpt_entry *entry;
|
|
struct g_part_gpt_table *table;
|
|
size_t tblsz;
|
|
uint32_t crc;
|
|
int error, index;
|
|
|
|
pp = cp->provider;
|
|
table = (struct g_part_gpt_table *)basetable;
|
|
tblsz = howmany(table->hdr->hdr_entries * table->hdr->hdr_entsz,
|
|
pp->sectorsize);
|
|
|
|
/* Reconstruct the MBR from the GPT if under Boot Camp. */
|
|
if (table->bootcamp)
|
|
gpt_update_bootcamp(basetable, pp);
|
|
|
|
/* Write the PMBR */
|
|
buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO);
|
|
bcopy(table->mbr, buf, MBRSIZE);
|
|
error = g_write_data(cp, 0, buf, pp->sectorsize);
|
|
g_free(buf);
|
|
if (error)
|
|
return (error);
|
|
|
|
/* Allocate space for the header and entries. */
|
|
buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO);
|
|
|
|
memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
|
|
le32enc(buf + 8, table->hdr->hdr_revision);
|
|
le32enc(buf + 12, table->hdr->hdr_size);
|
|
le64enc(buf + 40, table->hdr->hdr_lba_start);
|
|
le64enc(buf + 48, table->hdr->hdr_lba_end);
|
|
le_uuid_enc(buf + 56, &table->hdr->hdr_uuid);
|
|
le32enc(buf + 80, table->hdr->hdr_entries);
|
|
le32enc(buf + 84, table->hdr->hdr_entsz);
|
|
|
|
LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
|
|
if (baseentry->gpe_deleted)
|
|
continue;
|
|
entry = (struct g_part_gpt_entry *)baseentry;
|
|
index = baseentry->gpe_index - 1;
|
|
bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index;
|
|
le_uuid_enc(bp, &entry->ent.ent_type);
|
|
le_uuid_enc(bp + 16, &entry->ent.ent_uuid);
|
|
le64enc(bp + 32, entry->ent.ent_lba_start);
|
|
le64enc(bp + 40, entry->ent.ent_lba_end);
|
|
le64enc(bp + 48, entry->ent.ent_attr);
|
|
memcpy(bp + 56, entry->ent.ent_name,
|
|
sizeof(entry->ent.ent_name));
|
|
}
|
|
|
|
crc = crc32(buf + pp->sectorsize,
|
|
table->hdr->hdr_entries * table->hdr->hdr_entsz);
|
|
le32enc(buf + 88, crc);
|
|
|
|
/* Write primary meta-data. */
|
|
le32enc(buf + 16, 0); /* hdr_crc_self. */
|
|
le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_self. */
|
|
le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_alt. */
|
|
le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]); /* hdr_lba_table. */
|
|
crc = crc32(buf, table->hdr->hdr_size);
|
|
le32enc(buf + 16, crc);
|
|
|
|
for (index = 0; index < tblsz; index += maxphys / pp->sectorsize) {
|
|
error = g_write_data(cp,
|
|
(table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize,
|
|
buf + (index + 1) * pp->sectorsize,
|
|
(tblsz - index > maxphys / pp->sectorsize) ? maxphys :
|
|
(tblsz - index) * pp->sectorsize);
|
|
if (error)
|
|
goto out;
|
|
}
|
|
error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize,
|
|
buf, pp->sectorsize);
|
|
if (error)
|
|
goto out;
|
|
|
|
/* Write secondary meta-data. */
|
|
le32enc(buf + 16, 0); /* hdr_crc_self. */
|
|
le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_self. */
|
|
le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_alt. */
|
|
le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]); /* hdr_lba_table. */
|
|
crc = crc32(buf, table->hdr->hdr_size);
|
|
le32enc(buf + 16, crc);
|
|
|
|
for (index = 0; index < tblsz; index += maxphys / pp->sectorsize) {
|
|
error = g_write_data(cp,
|
|
(table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize,
|
|
buf + (index + 1) * pp->sectorsize,
|
|
(tblsz - index > maxphys / pp->sectorsize) ? maxphys :
|
|
(tblsz - index) * pp->sectorsize);
|
|
if (error)
|
|
goto out;
|
|
}
|
|
error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize,
|
|
buf, pp->sectorsize);
|
|
|
|
out:
|
|
g_free(buf);
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp)
|
|
{
|
|
struct g_part_entry *baseentry;
|
|
struct g_part_gpt_entry *entry;
|
|
struct g_part_gpt_table *table;
|
|
quad_t start, end, min, max;
|
|
quad_t lba, last;
|
|
size_t spb, tblsz;
|
|
|
|
table = (struct g_part_gpt_table *)basetable;
|
|
last = pp->mediasize / pp->sectorsize - 1;
|
|
tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent),
|
|
pp->sectorsize);
|
|
|
|
table->lba[GPT_ELT_PRIHDR] = 1;
|
|
table->lba[GPT_ELT_PRITBL] = 2;
|
|
table->lba[GPT_ELT_SECHDR] = last;
|
|
table->lba[GPT_ELT_SECTBL] = last - tblsz;
|
|
table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK;
|
|
table->state[GPT_ELT_PRITBL] = GPT_STATE_OK;
|
|
table->state[GPT_ELT_SECHDR] = GPT_STATE_OK;
|
|
table->state[GPT_ELT_SECTBL] = GPT_STATE_OK;
|
|
|
|
max = start = 2 + tblsz;
|
|
min = end = last - tblsz - 1;
|
|
LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
|
|
if (baseentry->gpe_deleted)
|
|
continue;
|
|
entry = (struct g_part_gpt_entry *)baseentry;
|
|
if (entry->ent.ent_lba_start < min)
|
|
min = entry->ent.ent_lba_start;
|
|
if (entry->ent.ent_lba_end > max)
|
|
max = entry->ent.ent_lba_end;
|
|
}
|
|
spb = 4096 / pp->sectorsize;
|
|
if (spb > 1) {
|
|
lba = start + ((start % spb) ? spb - start % spb : 0);
|
|
if (lba <= min)
|
|
start = lba;
|
|
lba = end - (end + 1) % spb;
|
|
if (max <= lba)
|
|
end = lba;
|
|
}
|
|
table->hdr->hdr_lba_start = start;
|
|
table->hdr->hdr_lba_end = end;
|
|
|
|
basetable->gpt_first = start;
|
|
basetable->gpt_last = end;
|
|
}
|
|
|
|
static void
|
|
g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len)
|
|
{
|
|
u_int bo;
|
|
uint32_t ch;
|
|
uint16_t c;
|
|
|
|
bo = LITTLE_ENDIAN; /* GPT is little-endian */
|
|
while (len > 0 && *str != 0) {
|
|
ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str);
|
|
str++, len--;
|
|
if ((ch & 0xf800) == 0xd800) {
|
|
if (len > 0) {
|
|
c = (bo == BIG_ENDIAN) ? be16toh(*str)
|
|
: le16toh(*str);
|
|
str++, len--;
|
|
} else
|
|
c = 0xfffd;
|
|
if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) {
|
|
ch = ((ch & 0x3ff) << 10) + (c & 0x3ff);
|
|
ch += 0x10000;
|
|
} else
|
|
ch = 0xfffd;
|
|
} else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */
|
|
bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN;
|
|
continue;
|
|
} else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */
|
|
continue;
|
|
|
|
/* Write the Unicode character in UTF-8 */
|
|
if (ch < 0x80)
|
|
g_conf_printf_escaped(sb, "%c", ch);
|
|
else if (ch < 0x800)
|
|
g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6),
|
|
0x80 | (ch & 0x3f));
|
|
else if (ch < 0x10000)
|
|
g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12),
|
|
0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
|
|
else if (ch < 0x200000)
|
|
g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 |
|
|
(ch >> 18), 0x80 | ((ch >> 12) & 0x3f),
|
|
0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
|
|
}
|
|
}
|
|
|
|
static void
|
|
g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len)
|
|
{
|
|
size_t s16idx, s8idx;
|
|
uint32_t utfchar;
|
|
unsigned int c, utfbytes;
|
|
|
|
s8idx = s16idx = 0;
|
|
utfchar = 0;
|
|
utfbytes = 0;
|
|
bzero(s16, s16len << 1);
|
|
while (s8[s8idx] != 0 && s16idx < s16len) {
|
|
c = s8[s8idx++];
|
|
if ((c & 0xc0) != 0x80) {
|
|
/* Initial characters. */
|
|
if (utfbytes != 0) {
|
|
/* Incomplete encoding of previous char. */
|
|
s16[s16idx++] = htole16(0xfffd);
|
|
}
|
|
if ((c & 0xf8) == 0xf0) {
|
|
utfchar = c & 0x07;
|
|
utfbytes = 3;
|
|
} else if ((c & 0xf0) == 0xe0) {
|
|
utfchar = c & 0x0f;
|
|
utfbytes = 2;
|
|
} else if ((c & 0xe0) == 0xc0) {
|
|
utfchar = c & 0x1f;
|
|
utfbytes = 1;
|
|
} else {
|
|
utfchar = c & 0x7f;
|
|
utfbytes = 0;
|
|
}
|
|
} else {
|
|
/* Followup characters. */
|
|
if (utfbytes > 0) {
|
|
utfchar = (utfchar << 6) + (c & 0x3f);
|
|
utfbytes--;
|
|
} else if (utfbytes == 0)
|
|
utfbytes = ~0;
|
|
}
|
|
/*
|
|
* Write the complete Unicode character as UTF-16 when we
|
|
* have all the UTF-8 charactars collected.
|
|
*/
|
|
if (utfbytes == 0) {
|
|
/*
|
|
* If we need to write 2 UTF-16 characters, but
|
|
* we only have room for 1, then we truncate the
|
|
* string by writing a 0 instead.
|
|
*/
|
|
if (utfchar >= 0x10000 && s16idx < s16len - 1) {
|
|
s16[s16idx++] =
|
|
htole16(0xd800 | ((utfchar >> 10) - 0x40));
|
|
s16[s16idx++] =
|
|
htole16(0xdc00 | (utfchar & 0x3ff));
|
|
} else
|
|
s16[s16idx++] = (utfchar >= 0x10000) ? 0 :
|
|
htole16(utfchar);
|
|
}
|
|
}
|
|
/*
|
|
* If our input string was truncated, append an invalid encoding
|
|
* character to the output string.
|
|
*/
|
|
if (utfbytes != 0 && s16idx < s16len)
|
|
s16[s16idx++] = htole16(0xfffd);
|
|
}
|