mirror of
https://git.hardenedbsd.org/hardenedbsd/HardenedBSD.git
synced 2025-01-11 17:04:19 +01:00
e96c1fdc3f
splbio()/splx()) are #included in time.
674 lines
17 KiB
C
674 lines
17 KiB
C
/*
|
|
* Copyright (c) 1982, 1986, 1989, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_time.c 8.1 (Berkeley) 6/10/93
|
|
* $Id: kern_time.c,v 1.65 1999/04/27 11:16:07 phk Exp $
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysent.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/time.h>
|
|
#include <sys/vnode.h>
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_extern.h>
|
|
|
|
struct timezone tz;
|
|
|
|
/*
|
|
* Time of day and interval timer support.
|
|
*
|
|
* These routines provide the kernel entry points to get and set
|
|
* the time-of-day and per-process interval timers. Subroutines
|
|
* here provide support for adding and subtracting timeval structures
|
|
* and decrementing interval timers, optionally reloading the interval
|
|
* timers when they expire.
|
|
*/
|
|
|
|
static int nanosleep1 __P((struct proc *p, struct timespec *rqt,
|
|
struct timespec *rmt));
|
|
static int settime __P((struct timeval *));
|
|
static void timevalfix __P((struct timeval *));
|
|
static void no_lease_updatetime __P((int));
|
|
|
|
static void
|
|
no_lease_updatetime(deltat)
|
|
int deltat;
|
|
{
|
|
}
|
|
|
|
void (*lease_updatetime) __P((int)) = no_lease_updatetime;
|
|
|
|
static int
|
|
settime(tv)
|
|
struct timeval *tv;
|
|
{
|
|
struct timeval delta, tv1, tv2;
|
|
static struct timeval maxtime, laststep;
|
|
struct timespec ts;
|
|
int s;
|
|
|
|
s = splclock();
|
|
microtime(&tv1);
|
|
delta = *tv;
|
|
timevalsub(&delta, &tv1);
|
|
|
|
/*
|
|
* If the system is secure, we do not allow the time to be
|
|
* set to a value earlier than 1 second less than the highest
|
|
* time we have yet seen. The worst a miscreant can do in
|
|
* this circumstance is "freeze" time. He couldn't go
|
|
* back to the past.
|
|
*
|
|
* We similarly do not allow the clock to be stepped more
|
|
* than one second, nor more than once per second. This allows
|
|
* a miscreant to make the clock march double-time, but no worse.
|
|
*/
|
|
if (securelevel > 1) {
|
|
if (delta.tv_sec < 0 || delta.tv_usec < 0) {
|
|
/*
|
|
* Update maxtime to latest time we've seen.
|
|
*/
|
|
if (tv1.tv_sec > maxtime.tv_sec)
|
|
maxtime = tv1;
|
|
tv2 = *tv;
|
|
timevalsub(&tv2, &maxtime);
|
|
if (tv2.tv_sec < -1) {
|
|
tv->tv_sec = maxtime.tv_sec - 1;
|
|
printf("Time adjustment clamped to -1 second\n");
|
|
}
|
|
} else {
|
|
if (tv1.tv_sec == laststep.tv_sec) {
|
|
splx(s);
|
|
return (EPERM);
|
|
}
|
|
if (delta.tv_sec > 1) {
|
|
tv->tv_sec = tv1.tv_sec + 1;
|
|
printf("Time adjustment clamped to +1 second\n");
|
|
}
|
|
laststep = *tv;
|
|
}
|
|
}
|
|
|
|
ts.tv_sec = tv->tv_sec;
|
|
ts.tv_nsec = tv->tv_usec * 1000;
|
|
set_timecounter(&ts);
|
|
(void) splsoftclock();
|
|
lease_updatetime(delta.tv_sec);
|
|
splx(s);
|
|
resettodr();
|
|
return (0);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct clock_gettime_args {
|
|
clockid_t clock_id;
|
|
struct timespec *tp;
|
|
};
|
|
#endif
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
clock_gettime(p, uap)
|
|
struct proc *p;
|
|
struct clock_gettime_args *uap;
|
|
{
|
|
struct timespec ats;
|
|
|
|
if (SCARG(uap, clock_id) != CLOCK_REALTIME)
|
|
return (EINVAL);
|
|
nanotime(&ats);
|
|
return (copyout(&ats, SCARG(uap, tp), sizeof(ats)));
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct clock_settime_args {
|
|
clockid_t clock_id;
|
|
const struct timespec *tp;
|
|
};
|
|
#endif
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
clock_settime(p, uap)
|
|
struct proc *p;
|
|
struct clock_settime_args *uap;
|
|
{
|
|
struct timeval atv;
|
|
struct timespec ats;
|
|
int error;
|
|
|
|
if ((error = suser(p)) != 0)
|
|
return (error);
|
|
if (SCARG(uap, clock_id) != CLOCK_REALTIME)
|
|
return (EINVAL);
|
|
if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
|
|
return (error);
|
|
if (ats.tv_nsec < 0 || ats.tv_nsec >= 1000000000)
|
|
return (EINVAL);
|
|
/* XXX Don't convert nsec->usec and back */
|
|
TIMESPEC_TO_TIMEVAL(&atv, &ats);
|
|
if ((error = settime(&atv)))
|
|
return (error);
|
|
return (0);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct clock_getres_args {
|
|
clockid_t clock_id;
|
|
struct timespec *tp;
|
|
};
|
|
#endif
|
|
|
|
int
|
|
clock_getres(p, uap)
|
|
struct proc *p;
|
|
struct clock_getres_args *uap;
|
|
{
|
|
struct timespec ts;
|
|
int error;
|
|
|
|
if (SCARG(uap, clock_id) != CLOCK_REALTIME)
|
|
return (EINVAL);
|
|
error = 0;
|
|
if (SCARG(uap, tp)) {
|
|
ts.tv_sec = 0;
|
|
ts.tv_nsec = 1000000000 / timecounter->tc_frequency;
|
|
error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static int nanowait;
|
|
|
|
static int
|
|
nanosleep1(p, rqt, rmt)
|
|
struct proc *p;
|
|
struct timespec *rqt, *rmt;
|
|
{
|
|
struct timespec ts, ts2, ts3;
|
|
struct timeval tv;
|
|
int error;
|
|
|
|
if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
|
|
return (EINVAL);
|
|
if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
|
|
return (0);
|
|
getnanouptime(&ts);
|
|
timespecadd(&ts, rqt);
|
|
TIMESPEC_TO_TIMEVAL(&tv, rqt);
|
|
for (;;) {
|
|
error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp",
|
|
tvtohz(&tv));
|
|
getnanouptime(&ts2);
|
|
if (error != EWOULDBLOCK) {
|
|
if (error == ERESTART)
|
|
error = EINTR;
|
|
if (rmt != NULL) {
|
|
timespecsub(&ts, &ts2);
|
|
if (ts.tv_sec < 0)
|
|
timespecclear(&ts);
|
|
*rmt = ts;
|
|
}
|
|
return (error);
|
|
}
|
|
if (timespeccmp(&ts2, &ts, >=))
|
|
return (0);
|
|
ts3 = ts;
|
|
timespecsub(&ts3, &ts2);
|
|
TIMESPEC_TO_TIMEVAL(&tv, &ts3);
|
|
}
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct nanosleep_args {
|
|
struct timespec *rqtp;
|
|
struct timespec *rmtp;
|
|
};
|
|
#endif
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
nanosleep(p, uap)
|
|
struct proc *p;
|
|
struct nanosleep_args *uap;
|
|
{
|
|
struct timespec rmt, rqt;
|
|
int error, error2;
|
|
|
|
error = copyin(SCARG(uap, rqtp), &rqt, sizeof(rqt));
|
|
if (error)
|
|
return (error);
|
|
if (SCARG(uap, rmtp))
|
|
if (!useracc((caddr_t)SCARG(uap, rmtp), sizeof(rmt), B_WRITE))
|
|
return (EFAULT);
|
|
error = nanosleep1(p, &rqt, &rmt);
|
|
if (error && SCARG(uap, rmtp)) {
|
|
error2 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
|
|
if (error2) /* XXX shouldn't happen, did useracc() above */
|
|
return (error2);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct gettimeofday_args {
|
|
struct timeval *tp;
|
|
struct timezone *tzp;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
gettimeofday(p, uap)
|
|
struct proc *p;
|
|
register struct gettimeofday_args *uap;
|
|
{
|
|
struct timeval atv;
|
|
int error = 0;
|
|
|
|
if (uap->tp) {
|
|
microtime(&atv);
|
|
if ((error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
|
|
sizeof (atv))))
|
|
return (error);
|
|
}
|
|
if (uap->tzp)
|
|
error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
|
|
sizeof (tz));
|
|
return (error);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct settimeofday_args {
|
|
struct timeval *tv;
|
|
struct timezone *tzp;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
settimeofday(p, uap)
|
|
struct proc *p;
|
|
struct settimeofday_args *uap;
|
|
{
|
|
struct timeval atv;
|
|
struct timezone atz;
|
|
int error;
|
|
|
|
if ((error = suser(p)))
|
|
return (error);
|
|
/* Verify all parameters before changing time. */
|
|
if (uap->tv) {
|
|
if ((error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
|
|
sizeof(atv))))
|
|
return (error);
|
|
if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
|
|
return (EINVAL);
|
|
}
|
|
if (uap->tzp &&
|
|
(error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
|
|
return (error);
|
|
if (uap->tv && (error = settime(&atv)))
|
|
return (error);
|
|
if (uap->tzp)
|
|
tz = atz;
|
|
return (0);
|
|
}
|
|
|
|
int tickdelta; /* current clock skew, us. per tick */
|
|
long timedelta; /* unapplied time correction, us. */
|
|
static long bigadj = 1000000; /* use 10x skew above bigadj us. */
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct adjtime_args {
|
|
struct timeval *delta;
|
|
struct timeval *olddelta;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
adjtime(p, uap)
|
|
struct proc *p;
|
|
register struct adjtime_args *uap;
|
|
{
|
|
struct timeval atv;
|
|
register long ndelta, ntickdelta, odelta;
|
|
int s, error;
|
|
|
|
if ((error = suser(p)))
|
|
return (error);
|
|
if ((error =
|
|
copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof(struct timeval))))
|
|
return (error);
|
|
|
|
/*
|
|
* Compute the total correction and the rate at which to apply it.
|
|
* Round the adjustment down to a whole multiple of the per-tick
|
|
* delta, so that after some number of incremental changes in
|
|
* hardclock(), tickdelta will become zero, lest the correction
|
|
* overshoot and start taking us away from the desired final time.
|
|
*/
|
|
ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
|
|
if (ndelta > bigadj || ndelta < -bigadj)
|
|
ntickdelta = 10 * tickadj;
|
|
else
|
|
ntickdelta = tickadj;
|
|
if (ndelta % ntickdelta)
|
|
ndelta = ndelta / ntickdelta * ntickdelta;
|
|
|
|
/*
|
|
* To make hardclock()'s job easier, make the per-tick delta negative
|
|
* if we want time to run slower; then hardclock can simply compute
|
|
* tick + tickdelta, and subtract tickdelta from timedelta.
|
|
*/
|
|
if (ndelta < 0)
|
|
ntickdelta = -ntickdelta;
|
|
s = splclock();
|
|
odelta = timedelta;
|
|
timedelta = ndelta;
|
|
tickdelta = ntickdelta;
|
|
splx(s);
|
|
|
|
if (uap->olddelta) {
|
|
atv.tv_sec = odelta / 1000000;
|
|
atv.tv_usec = odelta % 1000000;
|
|
(void) copyout((caddr_t)&atv, (caddr_t)uap->olddelta,
|
|
sizeof(struct timeval));
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Get value of an interval timer. The process virtual and
|
|
* profiling virtual time timers are kept in the p_stats area, since
|
|
* they can be swapped out. These are kept internally in the
|
|
* way they are specified externally: in time until they expire.
|
|
*
|
|
* The real time interval timer is kept in the process table slot
|
|
* for the process, and its value (it_value) is kept as an
|
|
* absolute time rather than as a delta, so that it is easy to keep
|
|
* periodic real-time signals from drifting.
|
|
*
|
|
* Virtual time timers are processed in the hardclock() routine of
|
|
* kern_clock.c. The real time timer is processed by a timeout
|
|
* routine, called from the softclock() routine. Since a callout
|
|
* may be delayed in real time due to interrupt processing in the system,
|
|
* it is possible for the real time timeout routine (realitexpire, given below),
|
|
* to be delayed in real time past when it is supposed to occur. It
|
|
* does not suffice, therefore, to reload the real timer .it_value from the
|
|
* real time timers .it_interval. Rather, we compute the next time in
|
|
* absolute time the timer should go off.
|
|
*/
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct getitimer_args {
|
|
u_int which;
|
|
struct itimerval *itv;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
getitimer(p, uap)
|
|
struct proc *p;
|
|
register struct getitimer_args *uap;
|
|
{
|
|
struct timeval ctv;
|
|
struct itimerval aitv;
|
|
int s;
|
|
|
|
if (uap->which > ITIMER_PROF)
|
|
return (EINVAL);
|
|
s = splclock(); /* XXX still needed ? */
|
|
if (uap->which == ITIMER_REAL) {
|
|
/*
|
|
* Convert from absolute to relative time in .it_value
|
|
* part of real time timer. If time for real time timer
|
|
* has passed return 0, else return difference between
|
|
* current time and time for the timer to go off.
|
|
*/
|
|
aitv = p->p_realtimer;
|
|
if (timevalisset(&aitv.it_value)) {
|
|
getmicrouptime(&ctv);
|
|
if (timevalcmp(&aitv.it_value, &ctv, <))
|
|
timevalclear(&aitv.it_value);
|
|
else
|
|
timevalsub(&aitv.it_value, &ctv);
|
|
}
|
|
} else
|
|
aitv = p->p_stats->p_timer[uap->which];
|
|
splx(s);
|
|
return (copyout((caddr_t)&aitv, (caddr_t)uap->itv,
|
|
sizeof (struct itimerval)));
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct setitimer_args {
|
|
u_int which;
|
|
struct itimerval *itv, *oitv;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
setitimer(p, uap)
|
|
struct proc *p;
|
|
register struct setitimer_args *uap;
|
|
{
|
|
struct itimerval aitv;
|
|
struct timeval ctv;
|
|
register struct itimerval *itvp;
|
|
int s, error;
|
|
|
|
if (uap->which > ITIMER_PROF)
|
|
return (EINVAL);
|
|
itvp = uap->itv;
|
|
if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
|
|
sizeof(struct itimerval))))
|
|
return (error);
|
|
if ((uap->itv = uap->oitv) &&
|
|
(error = getitimer(p, (struct getitimer_args *)uap)))
|
|
return (error);
|
|
if (itvp == 0)
|
|
return (0);
|
|
if (itimerfix(&aitv.it_value))
|
|
return (EINVAL);
|
|
if (!timevalisset(&aitv.it_value))
|
|
timevalclear(&aitv.it_interval);
|
|
else if (itimerfix(&aitv.it_interval))
|
|
return (EINVAL);
|
|
s = splclock(); /* XXX: still needed ? */
|
|
if (uap->which == ITIMER_REAL) {
|
|
if (timevalisset(&p->p_realtimer.it_value))
|
|
untimeout(realitexpire, (caddr_t)p, p->p_ithandle);
|
|
if (timevalisset(&aitv.it_value))
|
|
p->p_ithandle = timeout(realitexpire, (caddr_t)p,
|
|
tvtohz(&aitv.it_value));
|
|
getmicrouptime(&ctv);
|
|
timevaladd(&aitv.it_value, &ctv);
|
|
p->p_realtimer = aitv;
|
|
} else
|
|
p->p_stats->p_timer[uap->which] = aitv;
|
|
splx(s);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Real interval timer expired:
|
|
* send process whose timer expired an alarm signal.
|
|
* If time is not set up to reload, then just return.
|
|
* Else compute next time timer should go off which is > current time.
|
|
* This is where delay in processing this timeout causes multiple
|
|
* SIGALRM calls to be compressed into one.
|
|
* tvtohz() always adds 1 to allow for the time until the next clock
|
|
* interrupt being strictly less than 1 clock tick, but we don't want
|
|
* that here since we want to appear to be in sync with the clock
|
|
* interrupt even when we're delayed.
|
|
*/
|
|
void
|
|
realitexpire(arg)
|
|
void *arg;
|
|
{
|
|
register struct proc *p;
|
|
struct timeval ctv, ntv;
|
|
int s;
|
|
|
|
p = (struct proc *)arg;
|
|
psignal(p, SIGALRM);
|
|
if (!timevalisset(&p->p_realtimer.it_interval)) {
|
|
timevalclear(&p->p_realtimer.it_value);
|
|
return;
|
|
}
|
|
for (;;) {
|
|
s = splclock(); /* XXX: still neeeded ? */
|
|
timevaladd(&p->p_realtimer.it_value,
|
|
&p->p_realtimer.it_interval);
|
|
getmicrouptime(&ctv);
|
|
if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
|
|
ntv = p->p_realtimer.it_value;
|
|
timevalsub(&ntv, &ctv);
|
|
p->p_ithandle = timeout(realitexpire, (caddr_t)p,
|
|
tvtohz(&ntv) - 1);
|
|
splx(s);
|
|
return;
|
|
}
|
|
splx(s);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check that a proposed value to load into the .it_value or
|
|
* .it_interval part of an interval timer is acceptable, and
|
|
* fix it to have at least minimal value (i.e. if it is less
|
|
* than the resolution of the clock, round it up.)
|
|
*/
|
|
int
|
|
itimerfix(tv)
|
|
struct timeval *tv;
|
|
{
|
|
|
|
if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
|
|
tv->tv_usec < 0 || tv->tv_usec >= 1000000)
|
|
return (EINVAL);
|
|
if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
|
|
tv->tv_usec = tick;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Decrement an interval timer by a specified number
|
|
* of microseconds, which must be less than a second,
|
|
* i.e. < 1000000. If the timer expires, then reload
|
|
* it. In this case, carry over (usec - old value) to
|
|
* reduce the value reloaded into the timer so that
|
|
* the timer does not drift. This routine assumes
|
|
* that it is called in a context where the timers
|
|
* on which it is operating cannot change in value.
|
|
*/
|
|
int
|
|
itimerdecr(itp, usec)
|
|
register struct itimerval *itp;
|
|
int usec;
|
|
{
|
|
|
|
if (itp->it_value.tv_usec < usec) {
|
|
if (itp->it_value.tv_sec == 0) {
|
|
/* expired, and already in next interval */
|
|
usec -= itp->it_value.tv_usec;
|
|
goto expire;
|
|
}
|
|
itp->it_value.tv_usec += 1000000;
|
|
itp->it_value.tv_sec--;
|
|
}
|
|
itp->it_value.tv_usec -= usec;
|
|
usec = 0;
|
|
if (timevalisset(&itp->it_value))
|
|
return (1);
|
|
/* expired, exactly at end of interval */
|
|
expire:
|
|
if (timevalisset(&itp->it_interval)) {
|
|
itp->it_value = itp->it_interval;
|
|
itp->it_value.tv_usec -= usec;
|
|
if (itp->it_value.tv_usec < 0) {
|
|
itp->it_value.tv_usec += 1000000;
|
|
itp->it_value.tv_sec--;
|
|
}
|
|
} else
|
|
itp->it_value.tv_usec = 0; /* sec is already 0 */
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Add and subtract routines for timevals.
|
|
* N.B.: subtract routine doesn't deal with
|
|
* results which are before the beginning,
|
|
* it just gets very confused in this case.
|
|
* Caveat emptor.
|
|
*/
|
|
void
|
|
timevaladd(t1, t2)
|
|
struct timeval *t1, *t2;
|
|
{
|
|
|
|
t1->tv_sec += t2->tv_sec;
|
|
t1->tv_usec += t2->tv_usec;
|
|
timevalfix(t1);
|
|
}
|
|
|
|
void
|
|
timevalsub(t1, t2)
|
|
struct timeval *t1, *t2;
|
|
{
|
|
|
|
t1->tv_sec -= t2->tv_sec;
|
|
t1->tv_usec -= t2->tv_usec;
|
|
timevalfix(t1);
|
|
}
|
|
|
|
static void
|
|
timevalfix(t1)
|
|
struct timeval *t1;
|
|
{
|
|
|
|
if (t1->tv_usec < 0) {
|
|
t1->tv_sec--;
|
|
t1->tv_usec += 1000000;
|
|
}
|
|
if (t1->tv_usec >= 1000000) {
|
|
t1->tv_sec++;
|
|
t1->tv_usec -= 1000000;
|
|
}
|
|
}
|