HardenedBSD/tests/sys/fifo/fifo_kqueue.c
Warner Losh 6dced2c635 tests: Automated cleanup of cdefs and other formatting
Apply the following automated changes to try to eliminate
no-longer-needed sys/cdefs.h includes as well as now-empty
blank lines in a row.

Remove /^#if.*\n#endif.*\n#include\s+<sys/cdefs.h>.*\n/
Remove /\n+#include\s+<sys/cdefs.h>.*\n+#if.*\n#endif.*\n+/
Remove /\n+#if.*\n#endif.*\n+/
Remove /^#if.*\n#endif.*\n/
Remove /\n+#include\s+<sys/cdefs.h>\n#include\s+<sys/types.h>/
Remove /\n+#include\s+<sys/cdefs.h>\n#include\s+<sys/param.h>/
Remove /\n+#include\s+<sys/cdefs.h>\n#include\s+<sys/capsicum.h>/

Sponsored by:		Netflix
2023-11-26 22:24:01 -07:00

431 lines
12 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2020 Jan Kokemüller
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/event.h>
#include <sys/stat.h>
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <poll.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <unistd.h>
#include <atf-c.h>
ATF_TC_WITHOUT_HEAD(fifo_kqueue__writes);
ATF_TC_BODY(fifo_kqueue__writes, tc)
{
int p[2] = { -1, -1 };
ATF_REQUIRE(mkfifo("testfifo", 0600) == 0);
ATF_REQUIRE((p[0] = open("testfifo",
O_RDONLY | O_CLOEXEC | O_NONBLOCK)) >= 0);
ATF_REQUIRE((p[1] = open("testfifo",
O_WRONLY | O_CLOEXEC | O_NONBLOCK)) >= 0);
int kq = kqueue();
ATF_REQUIRE(kq >= 0);
struct kevent kev[32];
EV_SET(&kev[0], p[1], EVFILT_WRITE, EV_ADD | EV_CLEAR, 0, 0, 0);
EV_SET(&kev[1], p[1], EVFILT_READ, EV_ADD | EV_CLEAR, 0, 0, 0);
ATF_REQUIRE(kevent(kq, kev, 2, NULL, 0, NULL) == 0);
/* A new writer should immediately get a EVFILT_WRITE event. */
ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev),
&(struct timespec) { 0, 0 }) == 1);
ATF_REQUIRE(kev[0].ident == (uintptr_t)p[1]);
ATF_REQUIRE(kev[0].filter == EVFILT_WRITE);
ATF_REQUIRE(kev[0].flags == EV_CLEAR);
ATF_REQUIRE(kev[0].fflags == 0);
ATF_REQUIRE(kev[0].data == 16384);
ATF_REQUIRE(kev[0].udata == 0);
/* Filling up the pipe should make the EVFILT_WRITE disappear. */
char c = 0;
ssize_t r;
while ((r = write(p[1], &c, 1)) == 1) {
}
ATF_REQUIRE(r < 0);
ATF_REQUIRE(errno == EAGAIN || errno == EWOULDBLOCK);
ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev),
&(struct timespec) { 0, 0 }) == 0);
/* Reading (PIPE_BUF - 1) bytes will not trigger a EVFILT_WRITE yet. */
for (int i = 0; i < PIPE_BUF - 1; ++i) {
ATF_REQUIRE(read(p[0], &c, 1) == 1);
}
ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev),
&(struct timespec) { 0, 0 }) == 0);
/* Reading one additional byte triggers the EVFILT_WRITE. */
ATF_REQUIRE(read(p[0], &c, 1) == 1);
ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev),
&(struct timespec) { 0, 0 }) == 1);
ATF_REQUIRE(kev[0].ident == (uintptr_t)p[1]);
ATF_REQUIRE(kev[0].filter == EVFILT_WRITE);
ATF_REQUIRE(kev[0].flags == EV_CLEAR);
ATF_REQUIRE(kev[0].fflags == 0);
ATF_REQUIRE(kev[0].data == PIPE_BUF);
ATF_REQUIRE(kev[0].udata == 0);
/*
* Reading another byte triggers the EVFILT_WRITE again with a changed
* 'data' field.
*/
ATF_REQUIRE(read(p[0], &c, 1) == 1);
ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev),
&(struct timespec) { 0, 0 }) == 1);
ATF_REQUIRE(kev[0].ident == (uintptr_t)p[1]);
ATF_REQUIRE(kev[0].filter == EVFILT_WRITE);
ATF_REQUIRE(kev[0].flags == EV_CLEAR);
ATF_REQUIRE(kev[0].fflags == 0);
ATF_REQUIRE(kev[0].data == PIPE_BUF + 1);
ATF_REQUIRE(kev[0].udata == 0);
/*
* Closing the read end should make a EV_EOF appear but leave the 'data'
* field unchanged.
*/
ATF_REQUIRE(close(p[0]) == 0);
ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev), NULL) == 1);
ATF_REQUIRE(kev[0].ident == (uintptr_t)p[1]);
ATF_REQUIRE(kev[0].filter == EVFILT_WRITE);
ATF_REQUIRE(kev[0].flags == (EV_CLEAR | EV_EOF));
ATF_REQUIRE(kev[0].fflags == 0);
ATF_REQUIRE(kev[0].data == PIPE_BUF + 1);
ATF_REQUIRE(kev[0].udata == 0);
ATF_REQUIRE(close(kq) == 0);
ATF_REQUIRE(close(p[1]) == 0);
}
ATF_TC_WITHOUT_HEAD(fifo_kqueue__connecting_reader);
ATF_TC_BODY(fifo_kqueue__connecting_reader, tc)
{
int p[2] = { -1, -1 };
ATF_REQUIRE(mkfifo("testfifo", 0600) == 0);
ATF_REQUIRE((p[0] = open("testfifo",
O_RDONLY | O_CLOEXEC | O_NONBLOCK)) >= 0);
ATF_REQUIRE((p[1] = open("testfifo",
O_WRONLY | O_CLOEXEC | O_NONBLOCK)) >= 0);
int kq = kqueue();
ATF_REQUIRE(kq >= 0);
struct kevent kev[32];
EV_SET(&kev[0], p[1], EVFILT_WRITE, EV_ADD | EV_CLEAR, 0, 0, 0);
EV_SET(&kev[1], p[1], EVFILT_READ, EV_ADD | EV_CLEAR, 0, 0, 0);
ATF_REQUIRE(kevent(kq, kev, 2, NULL, 0, NULL) == 0);
/* A new writer should immediately get a EVFILT_WRITE event. */
ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev),
&(struct timespec) { 0, 0 }) == 1);
ATF_REQUIRE(kev[0].ident == (uintptr_t)p[1]);
ATF_REQUIRE(kev[0].filter == EVFILT_WRITE);
ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev),
&(struct timespec) { 0, 0 }) == 0);
/*
* Filling the pipe, reading (PIPE_BUF + 1) bytes, then closing the
* read end leads to a EVFILT_WRITE with EV_EOF set.
*/
char c = 0;
ssize_t r;
while ((r = write(p[1], &c, 1)) == 1) {
}
ATF_REQUIRE(r < 0);
ATF_REQUIRE(errno == EAGAIN || errno == EWOULDBLOCK);
for (int i = 0; i < PIPE_BUF + 1; ++i) {
ATF_REQUIRE(read(p[0], &c, 1) == 1);
}
ATF_REQUIRE(close(p[0]) == 0);
ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev), NULL) == 1);
ATF_REQUIRE(kev[0].filter == EVFILT_WRITE);
ATF_REQUIRE((kev[0].flags & EV_EOF) != 0);
ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev),
&(struct timespec) { 0, 0 }) == 0);
/* Opening the reader again must trigger the EVFILT_WRITE. */
ATF_REQUIRE((p[0] = open("testfifo",
O_RDONLY | O_CLOEXEC | O_NONBLOCK)) >= 0);
r = kevent(kq, NULL, 0, kev, nitems(kev), &(struct timespec) { 1, 0 });
ATF_REQUIRE(r == 1);
ATF_REQUIRE(kev[0].ident == (uintptr_t)p[1]);
ATF_REQUIRE(kev[0].filter == EVFILT_WRITE);
ATF_REQUIRE(kev[0].flags == EV_CLEAR);
ATF_REQUIRE(kev[0].fflags == 0);
ATF_REQUIRE(kev[0].data == PIPE_BUF + 1);
ATF_REQUIRE(kev[0].udata == 0);
ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev),
&(struct timespec) { 0, 0 }) == 0);
ATF_REQUIRE(close(kq) == 0);
ATF_REQUIRE(close(p[0]) == 0);
ATF_REQUIRE(close(p[1]) == 0);
}
/* Check that EVFILT_READ behaves sensibly on a FIFO reader. */
ATF_TC_WITHOUT_HEAD(fifo_kqueue__reads);
ATF_TC_BODY(fifo_kqueue__reads, tc)
{
struct kevent kev[32];
ssize_t bytes, i, n;
int kq, p[2];
char c;
ATF_REQUIRE(mkfifo("testfifo", 0600) == 0);
ATF_REQUIRE((p[0] = open("testfifo",
O_RDONLY | O_CLOEXEC | O_NONBLOCK)) >= 0);
ATF_REQUIRE((p[1] = open("testfifo",
O_WRONLY | O_CLOEXEC | O_NONBLOCK)) >= 0);
bytes = 0;
c = 0;
while ((n = write(p[1], &c, 1)) == 1)
bytes++;
ATF_REQUIRE(n < 0);
ATF_REQUIRE(errno == EAGAIN || errno == EWOULDBLOCK);
ATF_REQUIRE(bytes > 1);
for (i = 0; i < bytes / 2; i++)
ATF_REQUIRE(read(p[0], &c, 1) == 1);
bytes -= i;
kq = kqueue();
ATF_REQUIRE(kq >= 0);
EV_SET(&kev[0], p[0], EVFILT_READ, EV_ADD | EV_CLEAR, 0, 0, 0);
ATF_REQUIRE(kevent(kq, kev, 1, NULL, 0, NULL) == 0);
ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev),
&(struct timespec){ 0, 0 }) == 1);
ATF_REQUIRE(kev[0].ident == (uintptr_t)p[0]);
ATF_REQUIRE(kev[0].filter == EVFILT_READ);
ATF_REQUIRE(kev[0].flags == EV_CLEAR);
ATF_REQUIRE(kev[0].fflags == 0);
ATF_REQUIRE(kev[0].data == bytes);
ATF_REQUIRE(kev[0].udata == 0);
while (bytes-- > 0)
ATF_REQUIRE(read(p[0], &c, 1) == 1);
n = read(p[0], &c, 1);
ATF_REQUIRE(n < 0);
ATF_REQUIRE(errno == EAGAIN || errno == EWOULDBLOCK);
ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev),
&(struct timespec) { 0, 0 }) == 0);
ATF_REQUIRE(close(kq) == 0);
ATF_REQUIRE(close(p[0]) == 0);
ATF_REQUIRE(close(p[1]) == 0);
}
ATF_TC_WITHOUT_HEAD(fifo_kqueue__read_eof_wakeups);
ATF_TC_BODY(fifo_kqueue__read_eof_wakeups, tc)
{
int p[2] = { -1, -1 };
ATF_REQUIRE(mkfifo("testfifo", 0600) == 0);
ATF_REQUIRE((p[0] = open("testfifo",
O_RDONLY | O_CLOEXEC | O_NONBLOCK)) >= 0);
ATF_REQUIRE((p[1] = open("testfifo",
O_WRONLY | O_CLOEXEC | O_NONBLOCK)) >= 0);
int kq = kqueue();
ATF_REQUIRE(kq >= 0);
struct kevent kev[32];
EV_SET(&kev[0], p[0], EVFILT_READ, EV_ADD | EV_CLEAR, 0, 0, 0);
ATF_REQUIRE(kevent(kq, kev, 1, NULL, 0, NULL) == 0);
ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev),
&(struct timespec) { 0, 0 }) == 0);
/*
* Closing the writer must trigger a EVFILT_READ edge with EV_EOF set.
*/
ATF_REQUIRE(close(p[1]) == 0);
ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev),
&(struct timespec) { 0, 0 }) == 1);
ATF_REQUIRE(kev[0].ident == (uintptr_t)p[0]);
ATF_REQUIRE(kev[0].filter == EVFILT_READ);
ATF_REQUIRE(kev[0].flags == (EV_EOF | EV_CLEAR));
ATF_REQUIRE(kev[0].fflags == 0);
ATF_REQUIRE(kev[0].data == 0);
ATF_REQUIRE(kev[0].udata == 0);
/*
* Trying to read from a closed pipe should not trigger EVFILT_READ
* edges.
*/
char c;
ATF_REQUIRE(read(p[0], &c, 1) == 0);
ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev),
&(struct timespec) { 0, 0 }) == 0);
ATF_REQUIRE(close(kq) == 0);
ATF_REQUIRE(close(p[0]) == 0);
}
ATF_TC_WITHOUT_HEAD(fifo_kqueue__read_eof_state_when_reconnecting);
ATF_TC_BODY(fifo_kqueue__read_eof_state_when_reconnecting, tc)
{
int p[2] = { -1, -1 };
ATF_REQUIRE(mkfifo("testfifo", 0600) == 0);
ATF_REQUIRE((p[0] = open("testfifo",
O_RDONLY | O_CLOEXEC | O_NONBLOCK)) >= 0);
ATF_REQUIRE((p[1] = open("testfifo",
O_WRONLY | O_CLOEXEC | O_NONBLOCK)) >= 0);
int kq = kqueue();
ATF_REQUIRE(kq >= 0);
struct kevent kev[32];
EV_SET(&kev[0], p[0], EVFILT_READ, EV_ADD | EV_CLEAR, 0, 0, 0);
ATF_REQUIRE(kevent(kq, kev, 1, NULL, 0, NULL) == 0);
ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev),
&(struct timespec) { 0, 0 }) == 0);
/*
* Closing the writer must trigger a EVFILT_READ edge with EV_EOF set.
*/
ATF_REQUIRE(close(p[1]) == 0);
ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev),
&(struct timespec) { 0, 0 }) == 1);
ATF_REQUIRE(kev[0].ident == (uintptr_t)p[0]);
ATF_REQUIRE(kev[0].filter == EVFILT_READ);
ATF_REQUIRE(kev[0].flags == (EV_EOF | EV_CLEAR));
ATF_REQUIRE(kev[0].fflags == 0);
ATF_REQUIRE(kev[0].data == 0);
ATF_REQUIRE(kev[0].udata == 0);
/* A new reader shouldn't see the EOF flag. */
{
int new_reader;
ATF_REQUIRE((new_reader = open("testfifo",
O_RDONLY | O_CLOEXEC | O_NONBLOCK)) >= 0);
int new_kq = kqueue();
ATF_REQUIRE(new_kq >= 0);
struct kevent new_kev[32];
EV_SET(&new_kev[0], new_reader, EVFILT_READ, EV_ADD | EV_CLEAR,
0, 0, 0);
ATF_REQUIRE(kevent(new_kq, new_kev, 1, NULL, 0, NULL) == 0);
ATF_REQUIRE(kevent(new_kq, NULL, 0, new_kev, nitems(new_kev),
&(struct timespec) { 0, 0 }) == 0);
ATF_REQUIRE(close(new_kq) == 0);
ATF_REQUIRE(close(new_reader) == 0);
}
/*
* Simply reopening the writer does not trigger the EVFILT_READ again --
* EV_EOF should be cleared, but there is no data yet so the filter
* does not trigger.
*/
ATF_REQUIRE((p[1] = open("testfifo",
O_WRONLY | O_CLOEXEC | O_NONBLOCK)) >= 0);
ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev),
&(struct timespec) { 0, 0 }) == 0);
/* Writing a byte should trigger a EVFILT_READ. */
char c = 0;
ATF_REQUIRE(write(p[1], &c, 1) == 1);
ATF_REQUIRE(kevent(kq, NULL, 0, kev, nitems(kev),
&(struct timespec) { 0, 0 }) == 1);
ATF_REQUIRE(kev[0].ident == (uintptr_t)p[0]);
ATF_REQUIRE(kev[0].filter == EVFILT_READ);
ATF_REQUIRE(kev[0].flags == EV_CLEAR);
ATF_REQUIRE(kev[0].fflags == 0);
ATF_REQUIRE(kev[0].data == 1);
ATF_REQUIRE(kev[0].udata == 0);
ATF_REQUIRE(close(kq) == 0);
ATF_REQUIRE(close(p[0]) == 0);
ATF_REQUIRE(close(p[1]) == 0);
}
ATF_TP_ADD_TCS(tp)
{
ATF_TP_ADD_TC(tp, fifo_kqueue__writes);
ATF_TP_ADD_TC(tp, fifo_kqueue__connecting_reader);
ATF_TP_ADD_TC(tp, fifo_kqueue__reads);
ATF_TP_ADD_TC(tp, fifo_kqueue__read_eof_wakeups);
ATF_TP_ADD_TC(tp, fifo_kqueue__read_eof_state_when_reconnecting);
return atf_no_error();
}