mirror of
https://git.hardenedbsd.org/hardenedbsd/HardenedBSD.git
synced 2025-01-11 17:04:19 +01:00
1194 lines
29 KiB
C
1194 lines
29 KiB
C
/*
|
|
* Copyright (c) University of British Columbia, 1984
|
|
* Copyright (C) Computer Science Department IV,
|
|
* University of Erlangen-Nuremberg, Germany, 1992
|
|
* Copyright (c) 1991, 1992, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by the
|
|
* Laboratory for Computation Vision and the Computer Science Department
|
|
* of the the University of British Columbia and the Computer Science
|
|
* Department (IV) of the University of Erlangen-Nuremberg, Germany.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)pk_subr.c 8.1 (Berkeley) 6/10/93
|
|
* $Id: pk_subr.c,v 1.3 1994/12/13 22:32:17 wollman Exp $
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/time.h>
|
|
#include <sys/kernel.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/route.h>
|
|
|
|
#include <netccitt/dll.h>
|
|
#include <netccitt/x25.h>
|
|
#include <netccitt/x25err.h>
|
|
#include <netccitt/pk.h>
|
|
#include <netccitt/pk_var.h>
|
|
|
|
int pk_sendspace = 1024 * 2 + 8;
|
|
int pk_recvspace = 1024 * 2 + 8;
|
|
|
|
struct pklcd_q pklcd_q = {&pklcd_q, &pklcd_q};
|
|
|
|
struct x25bitslice x25_bitslice[] = {
|
|
/* mask, shift value */
|
|
{ 0xf0, 0x4 },
|
|
{ 0xf, 0x0 },
|
|
{ 0x80, 0x7 },
|
|
{ 0x40, 0x6 },
|
|
{ 0x30, 0x4 },
|
|
{ 0xe0, 0x5 },
|
|
{ 0x10, 0x4 },
|
|
{ 0xe, 0x1 },
|
|
{ 0x1, 0x0 }
|
|
};
|
|
|
|
|
|
/*
|
|
* Attach X.25 protocol to socket, allocate logical channel descripter
|
|
* and buffer space, and enter LISTEN state if we are to accept
|
|
* IN-COMMING CALL packets.
|
|
*
|
|
*/
|
|
|
|
struct pklcd *
|
|
pk_attach (so)
|
|
struct socket *so;
|
|
{
|
|
register struct pklcd *lcp;
|
|
register int error = ENOBUFS;
|
|
int pk_output ();
|
|
|
|
MALLOC(lcp, struct pklcd *, sizeof (*lcp), M_PCB, M_NOWAIT);
|
|
if (lcp) {
|
|
bzero ((caddr_t)lcp, sizeof (*lcp));
|
|
insque (&lcp -> lcd_q, &pklcd_q);
|
|
lcp -> lcd_state = READY;
|
|
lcp -> lcd_send = pk_output;
|
|
if (so) {
|
|
error = soreserve (so, pk_sendspace, pk_recvspace);
|
|
lcp -> lcd_so = so;
|
|
if (so -> so_options & SO_ACCEPTCONN)
|
|
lcp -> lcd_state = LISTEN;
|
|
} else
|
|
sbreserve (&lcp -> lcd_sb, pk_sendspace);
|
|
}
|
|
if (so) {
|
|
so -> so_pcb = (caddr_t) lcp;
|
|
so -> so_error = error;
|
|
}
|
|
return (lcp);
|
|
}
|
|
|
|
/*
|
|
* Disconnect X.25 protocol from socket.
|
|
*/
|
|
|
|
pk_disconnect (lcp)
|
|
register struct pklcd *lcp;
|
|
{
|
|
register struct socket *so = lcp -> lcd_so;
|
|
register struct pklcd *l, *p;
|
|
|
|
switch (lcp -> lcd_state) {
|
|
case LISTEN:
|
|
for (p = 0, l = pk_listenhead; l && l != lcp; p = l, l = l -> lcd_listen);
|
|
if (p == 0) {
|
|
if (l != 0)
|
|
pk_listenhead = l -> lcd_listen;
|
|
}
|
|
else
|
|
if (l != 0)
|
|
p -> lcd_listen = l -> lcd_listen;
|
|
pk_close (lcp);
|
|
break;
|
|
|
|
case READY:
|
|
pk_acct (lcp);
|
|
pk_close (lcp);
|
|
break;
|
|
|
|
case SENT_CLEAR:
|
|
case RECEIVED_CLEAR:
|
|
break;
|
|
|
|
default:
|
|
pk_acct (lcp);
|
|
if (so) {
|
|
soisdisconnecting (so);
|
|
sbflush (&so -> so_rcv);
|
|
}
|
|
pk_clear (lcp, 241, 0); /* Normal Disconnect */
|
|
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Close an X.25 Logical Channel. Discard all space held by the
|
|
* connection and internal descriptors. Wake up any sleepers.
|
|
*/
|
|
|
|
pk_close (lcp)
|
|
struct pklcd *lcp;
|
|
{
|
|
register struct socket *so = lcp -> lcd_so;
|
|
|
|
/*
|
|
* If the X.25 connection is torn down due to link
|
|
* level failure (e.g. LLC2 FRMR) and at the same the user
|
|
* level is still filling up the socket send buffer that
|
|
* send buffer is locked. An attempt to sbflush () that send
|
|
* buffer will lead us into - no, not temptation but - panic!
|
|
* So - we'll just check wether the send buffer is locked
|
|
* and if that's the case we'll mark the lcp as zombie and
|
|
* have the pk_timer () do the cleaning ...
|
|
*/
|
|
|
|
if (so && so -> so_snd.sb_flags & SB_LOCK)
|
|
lcp -> lcd_state = LCN_ZOMBIE;
|
|
else
|
|
pk_freelcd (lcp);
|
|
|
|
if (so == NULL)
|
|
return;
|
|
|
|
so -> so_pcb = 0;
|
|
soisdisconnected (so);
|
|
/* sofree (so); /* gak!!! you can't do that here */
|
|
}
|
|
|
|
/*
|
|
* Create a template to be used to send X.25 packets on a logical
|
|
* channel. It allocates an mbuf and fills in a skeletal packet
|
|
* depending on its type. This packet is passed to pk_output where
|
|
* the remainer of the packet is filled in.
|
|
*/
|
|
|
|
struct mbuf *
|
|
pk_template (lcn, type)
|
|
int lcn, type;
|
|
{
|
|
register struct mbuf *m;
|
|
register struct x25_packet *xp;
|
|
|
|
MGETHDR (m, M_DONTWAIT, MT_HEADER);
|
|
if (m == 0)
|
|
panic ("pk_template");
|
|
m -> m_act = 0;
|
|
|
|
/*
|
|
* Efficiency hack: leave a four byte gap at the beginning
|
|
* of the packet level header with the hope that this will
|
|
* be enough room for the link level to insert its header.
|
|
*/
|
|
m -> m_data += max_linkhdr;
|
|
m -> m_pkthdr.len = m -> m_len = PKHEADERLN;
|
|
|
|
xp = mtod (m, struct x25_packet *);
|
|
*(long *)xp = 0; /* ugly, but fast */
|
|
/* xp -> q_bit = 0;*/
|
|
X25SBITS(xp -> bits, fmt_identifier, 1);
|
|
/* xp -> lc_group_number = 0;*/
|
|
|
|
SET_LCN(xp, lcn);
|
|
xp -> packet_type = type;
|
|
|
|
return (m);
|
|
}
|
|
|
|
/*
|
|
* This routine restarts all the virtual circuits. Actually,
|
|
* the virtual circuits are not "restarted" as such. Instead,
|
|
* any active switched circuit is simply returned to READY
|
|
* state.
|
|
*/
|
|
|
|
pk_restart (pkp, restart_cause)
|
|
register struct pkcb *pkp;
|
|
int restart_cause;
|
|
{
|
|
register struct mbuf *m;
|
|
register struct pklcd *lcp;
|
|
register int i;
|
|
|
|
/* Restart all logical channels. */
|
|
if (pkp -> pk_chan == 0)
|
|
return;
|
|
|
|
/*
|
|
* Don't do this if we're doing a restart issued from
|
|
* inside pk_connect () --- which is only done if and
|
|
* only if the X.25 link is down, i.e. a RESTART needs
|
|
* to be done to get it up.
|
|
*/
|
|
if (!(pkp -> pk_dxerole & DTE_CONNECTPENDING)) {
|
|
for (i = 1; i <= pkp -> pk_maxlcn; ++i)
|
|
if ((lcp = pkp -> pk_chan[i]) != NULL) {
|
|
if (lcp -> lcd_so) {
|
|
lcp -> lcd_so -> so_error = ENETRESET;
|
|
pk_close (lcp);
|
|
} else {
|
|
pk_flush (lcp);
|
|
lcp -> lcd_state = READY;
|
|
if (lcp -> lcd_upper)
|
|
lcp -> lcd_upper (lcp, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (restart_cause < 0)
|
|
return;
|
|
|
|
pkp -> pk_state = DTE_SENT_RESTART;
|
|
pkp -> pk_dxerole &= ~(DTE_PLAYDCE | DTE_PLAYDTE);
|
|
lcp = pkp -> pk_chan[0];
|
|
m = lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_RESTART);
|
|
m -> m_pkthdr.len = m -> m_len += 2;
|
|
mtod (m, struct x25_packet *) -> packet_data = 0; /* DTE only */
|
|
mtod (m, octet *)[4] = restart_cause;
|
|
pk_output (lcp);
|
|
}
|
|
|
|
|
|
/*
|
|
* This procedure frees up the Logical Channel Descripter.
|
|
*/
|
|
|
|
pk_freelcd (lcp)
|
|
register struct pklcd *lcp;
|
|
{
|
|
if (lcp == NULL)
|
|
return;
|
|
|
|
if (lcp -> lcd_lcn > 0)
|
|
lcp -> lcd_pkp -> pk_chan[lcp -> lcd_lcn] = NULL;
|
|
|
|
pk_flush (lcp);
|
|
remque (&lcp -> lcd_q);
|
|
free ((caddr_t)lcp, M_PCB);
|
|
}
|
|
|
|
static struct x25_ifaddr *
|
|
pk_ifwithaddr (sx)
|
|
struct sockaddr_x25 *sx;
|
|
{
|
|
struct ifnet *ifp;
|
|
struct ifaddr *ifa;
|
|
register struct x25_ifaddr *ia;
|
|
char *addr = sx -> x25_addr;
|
|
|
|
for (ifp = ifnet; ifp; ifp = ifp -> if_next)
|
|
for (ifa = ifp -> if_addrlist; ifa; ifa = ifa -> ifa_next)
|
|
if (ifa -> ifa_addr -> sa_family == AF_CCITT) {
|
|
ia = (struct x25_ifaddr *)ifa;
|
|
if (bcmp (addr, ia -> ia_xc.xc_addr.x25_addr,
|
|
16) == 0)
|
|
return (ia);
|
|
|
|
}
|
|
return ((struct x25_ifaddr *)0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Bind a address and protocol value to a socket. The important
|
|
* part is the protocol value - the first four characters of the
|
|
* Call User Data field.
|
|
*/
|
|
|
|
#define XTRACTPKP(rt) ((rt) -> rt_flags & RTF_GATEWAY ? \
|
|
((rt) -> rt_llinfo ? \
|
|
(struct pkcb *) ((struct rtentry *)((rt) -> rt_llinfo)) -> rt_llinfo : \
|
|
(struct pkcb *) NULL) : \
|
|
(struct pkcb *)((rt) -> rt_llinfo))
|
|
|
|
pk_bind (lcp, nam)
|
|
struct pklcd *lcp;
|
|
struct mbuf *nam;
|
|
{
|
|
register struct pklcd *pp;
|
|
register struct sockaddr_x25 *sa;
|
|
|
|
if (nam == NULL)
|
|
return (EADDRNOTAVAIL);
|
|
if (lcp -> lcd_ceaddr) /* XXX */
|
|
return (EADDRINUSE);
|
|
if (pk_checksockaddr (nam))
|
|
return (EINVAL);
|
|
sa = mtod (nam, struct sockaddr_x25 *);
|
|
|
|
/*
|
|
* If the user wishes to accept calls only from a particular
|
|
* net (net != 0), make sure the net is known
|
|
*/
|
|
|
|
if (sa -> x25_addr[0]) {
|
|
if (!pk_ifwithaddr (sa))
|
|
return (ENETUNREACH);
|
|
} else if (sa -> x25_net) {
|
|
if (!ifa_ifwithnet ((struct sockaddr *)sa))
|
|
return (ENETUNREACH);
|
|
}
|
|
|
|
/*
|
|
* For ISO's sake permit default listeners, but only one such . . .
|
|
*/
|
|
for (pp = pk_listenhead; pp; pp = pp -> lcd_listen) {
|
|
register struct sockaddr_x25 *sa2 = pp -> lcd_ceaddr;
|
|
if ((sa2 -> x25_udlen == sa -> x25_udlen) &&
|
|
(sa2 -> x25_udlen == 0 ||
|
|
(bcmp (sa2 -> x25_udata, sa -> x25_udata,
|
|
min (sa2 -> x25_udlen, sa -> x25_udlen)) == 0)))
|
|
return (EADDRINUSE);
|
|
}
|
|
lcp -> lcd_laddr = *sa;
|
|
lcp -> lcd_ceaddr = &lcp -> lcd_laddr;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Include a bound control block in the list of listeners.
|
|
*/
|
|
pk_listen (lcp)
|
|
register struct pklcd *lcp;
|
|
{
|
|
register struct pklcd **pp;
|
|
|
|
if (lcp -> lcd_ceaddr == 0)
|
|
return (EDESTADDRREQ);
|
|
|
|
lcp -> lcd_state = LISTEN;
|
|
/*
|
|
* Add default listener at end, any others at start.
|
|
*/
|
|
if (lcp -> lcd_ceaddr -> x25_udlen == 0) {
|
|
for (pp = &pk_listenhead; *pp; )
|
|
pp = &((*pp) -> lcd_listen);
|
|
*pp = lcp;
|
|
} else {
|
|
lcp -> lcd_listen = pk_listenhead;
|
|
pk_listenhead = lcp;
|
|
}
|
|
return (0);
|
|
}
|
|
/*
|
|
* Include a listening control block for the benefit of other protocols.
|
|
*/
|
|
pk_protolisten (spi, spilen, callee)
|
|
int (*callee) ();
|
|
{
|
|
register struct pklcd *lcp = pk_attach ((struct socket *)0);
|
|
register struct mbuf *nam;
|
|
register struct sockaddr_x25 *sa;
|
|
int error = ENOBUFS;
|
|
|
|
if (lcp) {
|
|
if (nam = m_getclr (MT_SONAME, M_DONTWAIT)) {
|
|
sa = mtod (nam, struct sockaddr_x25 *);
|
|
sa -> x25_family = AF_CCITT;
|
|
sa -> x25_len = nam -> m_len = sizeof (*sa);
|
|
sa -> x25_udlen = spilen;
|
|
sa -> x25_udata[0] = spi;
|
|
lcp -> lcd_upper = callee;
|
|
lcp -> lcd_flags = X25_MBS_HOLD;
|
|
if ((error = pk_bind (lcp, nam)) == 0)
|
|
error = pk_listen (lcp);
|
|
(void) m_free (nam);
|
|
}
|
|
if (error)
|
|
pk_freelcd (lcp);
|
|
}
|
|
return error; /* Hopefully Zero !*/
|
|
}
|
|
|
|
/*
|
|
* Associate a logical channel descriptor with a network.
|
|
* Fill in the default network specific parameters and then
|
|
* set any parameters explicitly specified by the user or
|
|
* by the remote DTE.
|
|
*/
|
|
|
|
pk_assoc (pkp, lcp, sa)
|
|
register struct pkcb *pkp;
|
|
register struct pklcd *lcp;
|
|
register struct sockaddr_x25 *sa;
|
|
{
|
|
|
|
lcp -> lcd_pkp = pkp;
|
|
lcp -> lcd_packetsize = pkp -> pk_xcp -> xc_psize;
|
|
lcp -> lcd_windowsize = pkp -> pk_xcp -> xc_pwsize;
|
|
lcp -> lcd_rsn = MODULUS - 1;
|
|
pkp -> pk_chan[lcp -> lcd_lcn] = lcp;
|
|
|
|
if (sa -> x25_opts.op_psize)
|
|
lcp -> lcd_packetsize = sa -> x25_opts.op_psize;
|
|
else
|
|
sa -> x25_opts.op_psize = lcp -> lcd_packetsize;
|
|
if (sa -> x25_opts.op_wsize)
|
|
lcp -> lcd_windowsize = sa -> x25_opts.op_wsize;
|
|
else
|
|
sa -> x25_opts.op_wsize = lcp -> lcd_windowsize;
|
|
sa -> x25_net = pkp -> pk_xcp -> xc_addr.x25_net;
|
|
lcp -> lcd_flags |= sa -> x25_opts.op_flags;
|
|
lcp -> lcd_stime = time.tv_sec;
|
|
}
|
|
|
|
pk_connect (lcp, sa)
|
|
register struct pklcd *lcp;
|
|
register struct sockaddr_x25 *sa;
|
|
{
|
|
register struct pkcb *pkp;
|
|
register struct rtentry *rt;
|
|
register struct rtentry *nrt;
|
|
|
|
struct rtentry *npaidb_enter ();
|
|
struct pkcb *pk_newlink ();
|
|
|
|
if (sa -> x25_addr[0] == '\0')
|
|
return (EDESTADDRREQ);
|
|
|
|
/*
|
|
* Is the destination address known?
|
|
*/
|
|
if (!(rt = rtalloc1 ((struct sockaddr *)sa, 1, 0UL)))
|
|
return (ENETUNREACH);
|
|
|
|
if (!(pkp = XTRACTPKP(rt)))
|
|
pkp = pk_newlink ((struct x25_ifaddr *) (rt -> rt_ifa),
|
|
(caddr_t) 0);
|
|
|
|
/*
|
|
* Have we entered the LLC address?
|
|
*/
|
|
if (nrt = npaidb_enter (rt -> rt_gateway, rt_key (rt), rt, 0))
|
|
pkp -> pk_llrt = nrt;
|
|
|
|
/*
|
|
* Have we allocated an LLC2 link yet?
|
|
*/
|
|
if (pkp -> pk_llnext == (caddr_t)0 && pkp -> pk_llctlinput) {
|
|
struct dll_ctlinfo ctlinfo;
|
|
|
|
ctlinfo.dlcti_rt = rt;
|
|
ctlinfo.dlcti_pcb = (caddr_t) pkp;
|
|
ctlinfo.dlcti_conf =
|
|
(struct dllconfig *) (&((struct x25_ifaddr *)(rt -> rt_ifa)) -> ia_xc);
|
|
pkp -> pk_llnext =
|
|
(pkp -> pk_llctlinput) (PRC_CONNECT_REQUEST, 0, &ctlinfo);
|
|
}
|
|
|
|
if (pkp -> pk_state != DTE_READY && pkp -> pk_state != DTE_WAITING)
|
|
return (ENETDOWN);
|
|
if ((lcp -> lcd_lcn = pk_getlcn (pkp)) == 0)
|
|
return (EMFILE);
|
|
|
|
lcp -> lcd_faddr = *sa;
|
|
lcp -> lcd_ceaddr = & lcp -> lcd_faddr;
|
|
pk_assoc (pkp, lcp, lcp -> lcd_ceaddr);
|
|
|
|
/*
|
|
* If the link is not up yet, initiate an X.25 RESTART
|
|
*/
|
|
if (pkp -> pk_state == DTE_WAITING) {
|
|
pkp -> pk_dxerole |= DTE_CONNECTPENDING;
|
|
pk_ctlinput (PRC_LINKUP, (struct sockaddr *)0, pkp);
|
|
if (lcp -> lcd_so)
|
|
soisconnecting (lcp -> lcd_so);
|
|
return 0;
|
|
}
|
|
|
|
if (lcp -> lcd_so)
|
|
soisconnecting (lcp -> lcd_so);
|
|
lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_CALL);
|
|
pk_callrequest (lcp, lcp -> lcd_ceaddr, pkp -> pk_xcp);
|
|
return (*pkp -> pk_ia -> ia_start) (lcp);
|
|
}
|
|
|
|
/*
|
|
* Complete all pending X.25 call requests --- this gets called after
|
|
* the X.25 link has been restarted.
|
|
*/
|
|
#define RESHUFFLELCN(maxlcn, lcn) ((maxlcn) - (lcn) + 1)
|
|
|
|
pk_callcomplete (pkp)
|
|
register struct pkcb *pkp;
|
|
{
|
|
register struct pklcd *lcp;
|
|
register int i;
|
|
register int ni;
|
|
|
|
|
|
if (pkp -> pk_dxerole & DTE_CONNECTPENDING)
|
|
pkp -> pk_dxerole &= ~DTE_CONNECTPENDING;
|
|
else return;
|
|
|
|
if (pkp -> pk_chan == 0)
|
|
return;
|
|
|
|
/*
|
|
* We pretended to be a DTE for allocating lcns, if
|
|
* it turns out that we are in reality performing as a
|
|
* DCE we need to reshuffle the lcps.
|
|
*
|
|
* /+---------------+-------- -
|
|
* / | a (maxlcn-1) | \
|
|
* / +---------------+ \
|
|
* +--- * | b (maxlcn-2) | \
|
|
* | \ +---------------+ \
|
|
* r | \ | c (maxlcn-3) | \
|
|
* e | \+---------------+ |
|
|
* s | | . |
|
|
* h | | . | m
|
|
* u | | . | a
|
|
* f | | . | x
|
|
* f | | . | l
|
|
* l | /+---------------+ | c
|
|
* e | / | c' ( 3 ) | | n
|
|
* | / +---------------+ |
|
|
* +--> * | b' ( 2 ) | /
|
|
* \ +---------------+ /
|
|
* \ | a' ( 1 ) | /
|
|
* \+---------------+ /
|
|
* | 0 | /
|
|
* +---------------+-------- -
|
|
*
|
|
*/
|
|
if (pkp -> pk_dxerole & DTE_PLAYDCE) {
|
|
/* Sigh, reshuffle it */
|
|
for (i = pkp -> pk_maxlcn; i > 0; --i)
|
|
if (pkp -> pk_chan[i]) {
|
|
ni = RESHUFFLELCN(pkp -> pk_maxlcn, i);
|
|
pkp -> pk_chan[ni] = pkp -> pk_chan[i];
|
|
pkp -> pk_chan[i] = NULL;
|
|
pkp -> pk_chan[ni] -> lcd_lcn = ni;
|
|
}
|
|
}
|
|
|
|
for (i = 1; i <= pkp -> pk_maxlcn; ++i)
|
|
if ((lcp = pkp -> pk_chan[i]) != NULL) {
|
|
/* if (lcp -> lcd_so)
|
|
soisconnecting (lcp -> lcd_so); */
|
|
lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_CALL);
|
|
pk_callrequest (lcp, lcp -> lcd_ceaddr, pkp -> pk_xcp);
|
|
(*pkp -> pk_ia -> ia_start) (lcp);
|
|
}
|
|
}
|
|
|
|
struct bcdinfo {
|
|
octet *cp;
|
|
unsigned posn;
|
|
};
|
|
/*
|
|
* Build the rest of the CALL REQUEST packet. Fill in calling
|
|
* address, facilities fields and the user data field.
|
|
*/
|
|
|
|
pk_callrequest (lcp, sa, xcp)
|
|
struct pklcd *lcp;
|
|
register struct sockaddr_x25 *sa;
|
|
register struct x25config *xcp;
|
|
{
|
|
register struct x25_calladdr *a;
|
|
register struct mbuf *m = lcp -> lcd_template;
|
|
register struct x25_packet *xp = mtod (m, struct x25_packet *);
|
|
struct bcdinfo b;
|
|
|
|
if (lcp -> lcd_flags & X25_DBIT)
|
|
X25SBITS(xp -> bits, d_bit, 1);
|
|
a = (struct x25_calladdr *) &xp -> packet_data;
|
|
b.cp = (octet *) a -> address_field;
|
|
b.posn = 0;
|
|
X25SBITS(a -> addrlens, called_addrlen, to_bcd (&b, sa, xcp));
|
|
X25SBITS(a -> addrlens, calling_addrlen, to_bcd (&b, &xcp -> xc_addr, xcp));
|
|
if (b.posn & 0x01)
|
|
*b.cp++ &= 0xf0;
|
|
m -> m_pkthdr.len = m -> m_len += b.cp - (octet *) a;
|
|
|
|
if (lcp -> lcd_facilities) {
|
|
m -> m_pkthdr.len +=
|
|
(m -> m_next = lcp -> lcd_facilities) -> m_pkthdr.len;
|
|
lcp -> lcd_facilities = 0;
|
|
} else
|
|
pk_build_facilities (m, sa, (int)xcp -> xc_type);
|
|
|
|
m_copyback (m, m -> m_pkthdr.len, sa -> x25_udlen, sa -> x25_udata);
|
|
}
|
|
|
|
pk_build_facilities (m, sa, type)
|
|
register struct mbuf *m;
|
|
struct sockaddr_x25 *sa;
|
|
{
|
|
register octet *cp;
|
|
register octet *fcp;
|
|
register int revcharge;
|
|
|
|
cp = mtod (m, octet *) + m -> m_len;
|
|
fcp = cp + 1;
|
|
revcharge = sa -> x25_opts.op_flags & X25_REVERSE_CHARGE ? 1 : 0;
|
|
/*
|
|
* This is specific to Datapac X.25(1976) DTEs. International
|
|
* calls must have the "hi priority" bit on.
|
|
*/
|
|
if (type == X25_1976 && sa -> x25_opts.op_psize == X25_PS128)
|
|
revcharge |= 02;
|
|
if (revcharge) {
|
|
*fcp++ = FACILITIES_REVERSE_CHARGE;
|
|
*fcp++ = revcharge;
|
|
}
|
|
switch (type) {
|
|
case X25_1980:
|
|
case X25_1984:
|
|
*fcp++ = FACILITIES_PACKETSIZE;
|
|
*fcp++ = sa -> x25_opts.op_psize;
|
|
*fcp++ = sa -> x25_opts.op_psize;
|
|
|
|
*fcp++ = FACILITIES_WINDOWSIZE;
|
|
*fcp++ = sa -> x25_opts.op_wsize;
|
|
*fcp++ = sa -> x25_opts.op_wsize;
|
|
}
|
|
*cp = fcp - cp - 1;
|
|
m -> m_pkthdr.len = (m -> m_len += *cp + 1);
|
|
}
|
|
|
|
to_bcd (b, sa, xcp)
|
|
register struct bcdinfo *b;
|
|
struct sockaddr_x25 *sa;
|
|
register struct x25config *xcp;
|
|
{
|
|
register char *x = sa -> x25_addr;
|
|
unsigned start = b -> posn;
|
|
/*
|
|
* The nodnic and prepnd0 stuff looks tedious,
|
|
* but it does allow full X.121 addresses to be used,
|
|
* which is handy for routing info (& OSI type 37 addresses).
|
|
*/
|
|
if (xcp -> xc_addr.x25_net && (xcp -> xc_nodnic || xcp -> xc_prepnd0)) {
|
|
char dnicname[sizeof (long) * NBBY/3 + 2];
|
|
register char *p = dnicname;
|
|
|
|
sprintf (p, "%d", xcp -> xc_addr.x25_net & 0x7fff);
|
|
for (; *p; p++) /* *p == 0 means dnic matched */
|
|
if ((*p ^ *x++) & 0x0f)
|
|
break;
|
|
if (*p || xcp -> xc_nodnic == 0)
|
|
x = sa -> x25_addr;
|
|
if (*p && xcp -> xc_prepnd0) {
|
|
if ((b -> posn)++ & 0x01)
|
|
*(b -> cp)++;
|
|
else
|
|
*(b -> cp) = 0;
|
|
}
|
|
}
|
|
while (*x)
|
|
if ((b -> posn)++ & 0x01)
|
|
*(b -> cp)++ |= *x++ & 0x0F;
|
|
else
|
|
*(b -> cp) = *x++ << 4;
|
|
return ((b -> posn) - start);
|
|
}
|
|
|
|
/*
|
|
* This routine gets the first available logical channel number. The
|
|
* search is
|
|
* - from the highest number to lowest number if playing DTE, and
|
|
* - from lowest to highest number if playing DCE.
|
|
*/
|
|
|
|
pk_getlcn (pkp)
|
|
register struct pkcb *pkp;
|
|
{
|
|
register int i;
|
|
|
|
if (pkp -> pk_chan == 0)
|
|
return (0);
|
|
if ( pkp -> pk_dxerole & DTE_PLAYDCE ) {
|
|
for (i = 1; i <= pkp -> pk_maxlcn; ++i)
|
|
if (pkp -> pk_chan[i] == NULL)
|
|
break;
|
|
} else {
|
|
for (i = pkp -> pk_maxlcn; i > 0; --i)
|
|
if (pkp -> pk_chan[i] == NULL)
|
|
break;
|
|
}
|
|
i = ( i > pkp -> pk_maxlcn ? 0 : i );
|
|
return (i);
|
|
}
|
|
|
|
/*
|
|
* This procedure sends a CLEAR request packet. The lc state is
|
|
* set to "SENT_CLEAR".
|
|
*/
|
|
|
|
pk_clear (lcp, diagnostic, abortive)
|
|
register struct pklcd *lcp;
|
|
{
|
|
register struct mbuf *m = pk_template (lcp -> lcd_lcn, X25_CLEAR);
|
|
|
|
m -> m_len += 2;
|
|
m -> m_pkthdr.len += 2;
|
|
mtod (m, struct x25_packet *) -> packet_data = 0;
|
|
mtod (m, octet *)[4] = diagnostic;
|
|
if (lcp -> lcd_facilities) {
|
|
m -> m_next = lcp -> lcd_facilities;
|
|
m -> m_pkthdr.len += m -> m_next -> m_len;
|
|
lcp -> lcd_facilities = 0;
|
|
}
|
|
if (abortive)
|
|
lcp -> lcd_template = m;
|
|
else {
|
|
struct socket *so = lcp -> lcd_so;
|
|
struct sockbuf *sb = so ? & so -> so_snd : & lcp -> lcd_sb;
|
|
sbappendrecord (sb, m);
|
|
}
|
|
pk_output (lcp);
|
|
|
|
}
|
|
|
|
/*
|
|
* This procedure generates RNR's or RR's to inhibit or enable
|
|
* inward data flow, if the current state changes (blocked ==> open or
|
|
* vice versa), or if forced to generate one. One forces RNR's to ack data.
|
|
*/
|
|
pk_flowcontrol (lcp, inhibit, forced)
|
|
register struct pklcd *lcp;
|
|
{
|
|
inhibit = (inhibit != 0);
|
|
if (lcp == 0 || lcp -> lcd_state != DATA_TRANSFER ||
|
|
(forced == 0 && lcp -> lcd_rxrnr_condition == inhibit))
|
|
return;
|
|
lcp -> lcd_rxrnr_condition = inhibit;
|
|
lcp -> lcd_template =
|
|
pk_template (lcp -> lcd_lcn, inhibit ? X25_RNR : X25_RR);
|
|
pk_output (lcp);
|
|
}
|
|
|
|
/*
|
|
* This procedure sends a RESET request packet. It re-intializes
|
|
* virtual circuit.
|
|
*/
|
|
|
|
static
|
|
pk_reset (lcp, diagnostic)
|
|
register struct pklcd *lcp;
|
|
{
|
|
register struct mbuf *m;
|
|
register struct socket *so = lcp -> lcd_so;
|
|
|
|
if (lcp -> lcd_state != DATA_TRANSFER)
|
|
return;
|
|
|
|
if (so)
|
|
so -> so_error = ECONNRESET;
|
|
lcp -> lcd_reset_condition = TRUE;
|
|
|
|
/* Reset all the control variables for the channel. */
|
|
pk_flush (lcp);
|
|
lcp -> lcd_window_condition = lcp -> lcd_rnr_condition =
|
|
lcp -> lcd_intrconf_pending = FALSE;
|
|
lcp -> lcd_rsn = MODULUS - 1;
|
|
lcp -> lcd_ssn = 0;
|
|
lcp -> lcd_output_window = lcp -> lcd_input_window =
|
|
lcp -> lcd_last_transmitted_pr = 0;
|
|
m = lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_RESET);
|
|
m -> m_pkthdr.len = m -> m_len += 2;
|
|
mtod (m, struct x25_packet *) -> packet_data = 0;
|
|
mtod (m, octet *)[4] = diagnostic;
|
|
pk_output (lcp);
|
|
|
|
}
|
|
|
|
/*
|
|
* This procedure frees all data queued for output or delivery on a
|
|
* virtual circuit.
|
|
*/
|
|
|
|
pk_flush (lcp)
|
|
register struct pklcd *lcp;
|
|
{
|
|
register struct socket *so;
|
|
|
|
if (lcp -> lcd_template)
|
|
m_freem (lcp -> lcd_template);
|
|
|
|
if (lcp -> lcd_cps) {
|
|
m_freem (lcp -> lcd_cps);
|
|
lcp -> lcd_cps = 0;
|
|
}
|
|
if (lcp -> lcd_facilities) {
|
|
m_freem (lcp -> lcd_facilities);
|
|
lcp -> lcd_facilities = 0;
|
|
}
|
|
if (so = lcp -> lcd_so)
|
|
sbflush (&so -> so_snd);
|
|
else
|
|
sbflush (&lcp -> lcd_sb);
|
|
}
|
|
|
|
/*
|
|
* This procedure handles all local protocol procedure errors.
|
|
*/
|
|
|
|
pk_procerror (error, lcp, errstr, diagnostic)
|
|
register struct pklcd *lcp;
|
|
char *errstr;
|
|
{
|
|
|
|
pk_message (lcp -> lcd_lcn, lcp -> lcd_pkp -> pk_xcp, errstr);
|
|
|
|
switch (error) {
|
|
case CLEAR:
|
|
if (lcp -> lcd_so) {
|
|
lcp -> lcd_so -> so_error = ECONNABORTED;
|
|
soisdisconnecting (lcp -> lcd_so);
|
|
}
|
|
pk_clear (lcp, diagnostic, 1);
|
|
break;
|
|
|
|
case RESET:
|
|
pk_reset (lcp, diagnostic);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This procedure is called during the DATA TRANSFER state to check
|
|
* and process the P(R) values received in the DATA, RR OR RNR
|
|
* packets.
|
|
*/
|
|
|
|
pk_ack (lcp, pr)
|
|
struct pklcd *lcp;
|
|
unsigned pr;
|
|
{
|
|
register struct socket *so = lcp -> lcd_so;
|
|
|
|
if (lcp -> lcd_output_window == pr)
|
|
return (PACKET_OK);
|
|
if (lcp -> lcd_output_window < lcp -> lcd_ssn) {
|
|
if (pr < lcp -> lcd_output_window || pr > lcp -> lcd_ssn) {
|
|
pk_procerror (RESET, lcp,
|
|
"p(r) flow control error", 2);
|
|
return (ERROR_PACKET);
|
|
}
|
|
}
|
|
else {
|
|
if (pr < lcp -> lcd_output_window && pr > lcp -> lcd_ssn) {
|
|
pk_procerror (RESET, lcp,
|
|
"p(r) flow control error #2", 2);
|
|
return (ERROR_PACKET);
|
|
}
|
|
}
|
|
|
|
lcp -> lcd_output_window = pr; /* Rotate window. */
|
|
if (lcp -> lcd_window_condition == TRUE)
|
|
lcp -> lcd_window_condition = FALSE;
|
|
|
|
if (so && ((so -> so_snd.sb_flags & SB_WAIT) ||
|
|
(so -> so_snd.sb_flags & SB_NOTIFY)))
|
|
sowwakeup (so);
|
|
|
|
return (PACKET_OK);
|
|
}
|
|
|
|
/*
|
|
* This procedure decodes the X.25 level 3 packet returning a
|
|
* code to be used in switchs or arrays.
|
|
*/
|
|
|
|
pk_decode (xp)
|
|
register struct x25_packet *xp;
|
|
{
|
|
register int type;
|
|
|
|
if (X25GBITS(xp -> bits, fmt_identifier) != 1)
|
|
return (INVALID_PACKET);
|
|
#ifdef ancient_history
|
|
/*
|
|
* Make sure that the logical channel group number is 0.
|
|
* This restriction may be removed at some later date.
|
|
*/
|
|
if (xp -> lc_group_number != 0)
|
|
return (INVALID_PACKET);
|
|
#endif
|
|
/*
|
|
* Test for data packet first.
|
|
*/
|
|
if (!(xp -> packet_type & DATA_PACKET_DESIGNATOR))
|
|
return (DATA);
|
|
|
|
/*
|
|
* Test if flow control packet (RR or RNR).
|
|
*/
|
|
if (!(xp -> packet_type & RR_OR_RNR_PACKET_DESIGNATOR))
|
|
switch (xp -> packet_type & 0x1f) {
|
|
case X25_RR:
|
|
return (RR);
|
|
case X25_RNR:
|
|
return (RNR);
|
|
case X25_REJECT:
|
|
return (REJECT);
|
|
}
|
|
|
|
/*
|
|
* Determine the rest of the packet types.
|
|
*/
|
|
switch (xp -> packet_type) {
|
|
case X25_CALL:
|
|
type = CALL;
|
|
break;
|
|
|
|
case X25_CALL_ACCEPTED:
|
|
type = CALL_ACCEPTED;
|
|
break;
|
|
|
|
case X25_CLEAR:
|
|
type = CLEAR;
|
|
break;
|
|
|
|
case X25_CLEAR_CONFIRM:
|
|
type = CLEAR_CONF;
|
|
break;
|
|
|
|
case X25_INTERRUPT:
|
|
type = INTERRUPT;
|
|
break;
|
|
|
|
case X25_INTERRUPT_CONFIRM:
|
|
type = INTERRUPT_CONF;
|
|
break;
|
|
|
|
case X25_RESET:
|
|
type = RESET;
|
|
break;
|
|
|
|
case X25_RESET_CONFIRM:
|
|
type = RESET_CONF;
|
|
break;
|
|
|
|
case X25_RESTART:
|
|
type = RESTART;
|
|
break;
|
|
|
|
case X25_RESTART_CONFIRM:
|
|
type = RESTART_CONF;
|
|
break;
|
|
|
|
case X25_DIAGNOSTIC:
|
|
type = DIAG_TYPE;
|
|
break;
|
|
|
|
default:
|
|
type = INVALID_PACKET;
|
|
}
|
|
return (type);
|
|
}
|
|
|
|
/*
|
|
* A restart packet has been received. Print out the reason
|
|
* for the restart.
|
|
*/
|
|
|
|
pk_restartcause (pkp, xp)
|
|
struct pkcb *pkp;
|
|
register struct x25_packet *xp;
|
|
{
|
|
register struct x25config *xcp = pkp -> pk_xcp;
|
|
register int lcn = LCN(xp);
|
|
|
|
switch (xp -> packet_data) {
|
|
case X25_RESTART_LOCAL_PROCEDURE_ERROR:
|
|
pk_message (lcn, xcp, "restart: local procedure error");
|
|
break;
|
|
|
|
case X25_RESTART_NETWORK_CONGESTION:
|
|
pk_message (lcn, xcp, "restart: network congestion");
|
|
break;
|
|
|
|
case X25_RESTART_NETWORK_OPERATIONAL:
|
|
pk_message (lcn, xcp, "restart: network operational");
|
|
break;
|
|
|
|
default:
|
|
pk_message (lcn, xcp, "restart: unknown cause");
|
|
}
|
|
}
|
|
|
|
#define MAXRESETCAUSE 7
|
|
|
|
int Reset_cause[] = {
|
|
EXRESET, EXROUT, 0, EXRRPE, 0, EXRLPE, 0, EXRNCG
|
|
};
|
|
|
|
/*
|
|
* A reset packet has arrived. Return the cause to the user.
|
|
*/
|
|
|
|
pk_resetcause (pkp, xp)
|
|
struct pkcb *pkp;
|
|
register struct x25_packet *xp;
|
|
{
|
|
register struct pklcd *lcp =
|
|
pkp -> pk_chan[LCN(xp)];
|
|
register int code = xp -> packet_data;
|
|
|
|
if (code > MAXRESETCAUSE)
|
|
code = 7; /* EXRNCG */
|
|
|
|
pk_message (LCN(xp), lcp -> lcd_pkp, "reset code 0x%x, diagnostic 0x%x",
|
|
xp -> packet_data, 4[(u_char *)xp]);
|
|
|
|
if (lcp -> lcd_so)
|
|
lcp -> lcd_so -> so_error = Reset_cause[code];
|
|
}
|
|
|
|
#define MAXCLEARCAUSE 25
|
|
|
|
int Clear_cause[] = {
|
|
EXCLEAR, EXCBUSY, 0, EXCINV, 0, EXCNCG, 0,
|
|
0, 0, EXCOUT, 0, EXCAB, 0, EXCNOB, 0, 0, 0, EXCRPE,
|
|
0, EXCLPE, 0, 0, 0, 0, 0, EXCRRC
|
|
};
|
|
|
|
/*
|
|
* A clear packet has arrived. Return the cause to the user.
|
|
*/
|
|
|
|
pk_clearcause (pkp, xp)
|
|
struct pkcb *pkp;
|
|
register struct x25_packet *xp;
|
|
{
|
|
register struct pklcd *lcp =
|
|
pkp -> pk_chan[LCN(xp)];
|
|
register int code = xp -> packet_data;
|
|
|
|
if (code > MAXCLEARCAUSE)
|
|
code = 5; /* EXRNCG */
|
|
if (lcp -> lcd_so)
|
|
lcp -> lcd_so -> so_error = Clear_cause[code];
|
|
}
|
|
|
|
char *
|
|
format_ntn (xcp)
|
|
register struct x25config *xcp;
|
|
{
|
|
|
|
return (xcp -> xc_addr.x25_addr);
|
|
}
|
|
|
|
/* VARARGS1 */
|
|
pk_message (lcn, xcp, fmt, a1, a2, a3, a4, a5, a6)
|
|
struct x25config *xcp;
|
|
char *fmt;
|
|
{
|
|
|
|
if (lcn)
|
|
if (!PQEMPTY)
|
|
printf ("X.25(%s): lcn %d: ", format_ntn (xcp), lcn);
|
|
else
|
|
printf ("X.25: lcn %d: ", lcn);
|
|
else
|
|
if (!PQEMPTY)
|
|
printf ("X.25(%s): ", format_ntn (xcp));
|
|
else
|
|
printf ("X.25: ");
|
|
|
|
printf (fmt, a1, a2, a3, a4, a5, a6);
|
|
printf ("\n");
|
|
}
|
|
|
|
pk_fragment (lcp, m0, qbit, mbit, wait)
|
|
struct mbuf *m0;
|
|
register struct pklcd *lcp;
|
|
{
|
|
register struct mbuf *m = m0;
|
|
register struct x25_packet *xp;
|
|
register struct sockbuf *sb;
|
|
struct mbuf *head = 0, *next, **mp = &head, *m_split ();
|
|
int totlen, psize = 1 << (lcp -> lcd_packetsize);
|
|
|
|
if (m == 0)
|
|
return 0;
|
|
if (m -> m_flags & M_PKTHDR == 0)
|
|
panic ("pk_fragment");
|
|
totlen = m -> m_pkthdr.len;
|
|
m -> m_act = 0;
|
|
sb = lcp -> lcd_so ? &lcp -> lcd_so -> so_snd : & lcp -> lcd_sb;
|
|
do {
|
|
if (totlen > psize) {
|
|
if ((next = m_split (m, psize, wait)) == 0)
|
|
goto abort;
|
|
totlen -= psize;
|
|
} else
|
|
next = 0;
|
|
M_PREPEND(m, PKHEADERLN, wait);
|
|
if (m == 0)
|
|
goto abort;
|
|
*mp = m;
|
|
mp = & m -> m_act;
|
|
*mp = 0;
|
|
xp = mtod (m, struct x25_packet *);
|
|
0[(char *)xp] = 0;
|
|
if (qbit)
|
|
X25SBITS(xp -> bits, q_bit, 1);
|
|
if (lcp -> lcd_flags & X25_DBIT)
|
|
X25SBITS(xp -> bits, d_bit, 1);
|
|
X25SBITS(xp -> bits, fmt_identifier, 1);
|
|
xp -> packet_type = X25_DATA;
|
|
SET_LCN(xp, lcp -> lcd_lcn);
|
|
if (next || (mbit && (totlen == psize ||
|
|
(lcp -> lcd_flags & X25_DBIT))))
|
|
SMBIT(xp, 1);
|
|
} while (m = next);
|
|
for (m = head; m; m = next) {
|
|
next = m -> m_act;
|
|
m -> m_act = 0;
|
|
sbappendrecord (sb, m);
|
|
}
|
|
return 0;
|
|
abort:
|
|
if (wait)
|
|
panic ("pk_fragment null mbuf after wait");
|
|
if (next)
|
|
m_freem (next);
|
|
for (m = head; m; m = next) {
|
|
next = m -> m_act;
|
|
m_freem (m);
|
|
}
|
|
return ENOBUFS;
|
|
}
|