mirror of
https://git.hardenedbsd.org/hardenedbsd/HardenedBSD.git
synced 2024-11-26 02:20:51 +01:00
1794 lines
41 KiB
C
1794 lines
41 KiB
C
/* number.c: Implements arbitrary precision numbers. */
|
|
/*
|
|
Copyright (C) 1991, 1992, 1993, 1994, 1997, 2000 Free Software Foundation, Inc.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License , or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; see the file COPYING. If not, write to:
|
|
|
|
The Free Software Foundation, Inc.
|
|
59 Temple Place, Suite 330
|
|
Boston, MA 02111-1307 USA.
|
|
|
|
|
|
You may contact the author by:
|
|
e-mail: philnelson@acm.org
|
|
us-mail: Philip A. Nelson
|
|
Computer Science Department, 9062
|
|
Western Washington University
|
|
Bellingham, WA 98226-9062
|
|
|
|
*************************************************************************/
|
|
|
|
#include <stdio.h>
|
|
#include <config.h>
|
|
#include <number.h>
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
#include <ctype.h>/* Prototypes needed for external utility routines. */
|
|
|
|
#define bc_rt_warn rt_warn
|
|
#define bc_rt_error rt_error
|
|
#define bc_out_of_memory out_of_memory
|
|
|
|
_PROTOTYPE(void rt_warn, (char *mesg ,...));
|
|
_PROTOTYPE(void rt_error, (char *mesg ,...));
|
|
_PROTOTYPE(void out_of_memory, (void));
|
|
|
|
/* Storage used for special numbers. */
|
|
bc_num _zero_;
|
|
bc_num _one_;
|
|
bc_num _two_;
|
|
|
|
static bc_num _bc_Free_list = NULL;
|
|
|
|
/* new_num allocates a number and sets fields to known values. */
|
|
|
|
bc_num
|
|
bc_new_num (length, scale)
|
|
int length, scale;
|
|
{
|
|
bc_num temp;
|
|
|
|
if (_bc_Free_list != NULL) {
|
|
temp = _bc_Free_list;
|
|
_bc_Free_list = temp->n_next;
|
|
} else {
|
|
temp = (bc_num) malloc (sizeof(bc_struct));
|
|
if (temp == NULL) bc_out_of_memory ();
|
|
}
|
|
temp->n_sign = PLUS;
|
|
temp->n_len = length;
|
|
temp->n_scale = scale;
|
|
temp->n_refs = 1;
|
|
temp->n_ptr = (char *) malloc (length+scale);
|
|
if (temp->n_ptr == NULL) bc_out_of_memory();
|
|
temp->n_value = temp->n_ptr;
|
|
memset (temp->n_ptr, 0, length+scale);
|
|
return temp;
|
|
}
|
|
|
|
/* "Frees" a bc_num NUM. Actually decreases reference count and only
|
|
frees the storage if reference count is zero. */
|
|
|
|
void
|
|
bc_free_num (num)
|
|
bc_num *num;
|
|
{
|
|
if (*num == NULL) return;
|
|
(*num)->n_refs--;
|
|
if ((*num)->n_refs == 0) {
|
|
if ((*num)->n_ptr)
|
|
free ((*num)->n_ptr);
|
|
(*num)->n_next = _bc_Free_list;
|
|
_bc_Free_list = *num;
|
|
}
|
|
*num = NULL;
|
|
}
|
|
|
|
|
|
/* Intitialize the number package! */
|
|
|
|
void
|
|
bc_init_numbers ()
|
|
{
|
|
_zero_ = bc_new_num (1,0);
|
|
_one_ = bc_new_num (1,0);
|
|
_one_->n_value[0] = 1;
|
|
_two_ = bc_new_num (1,0);
|
|
_two_->n_value[0] = 2;
|
|
}
|
|
|
|
|
|
/* Make a copy of a number! Just increments the reference count! */
|
|
|
|
bc_num
|
|
bc_copy_num (num)
|
|
bc_num num;
|
|
{
|
|
num->n_refs++;
|
|
return num;
|
|
}
|
|
|
|
|
|
/* Initialize a number NUM by making it a copy of zero. */
|
|
|
|
void
|
|
bc_init_num (num)
|
|
bc_num *num;
|
|
{
|
|
*num = bc_copy_num (_zero_);
|
|
}
|
|
|
|
/* For many things, we may have leading zeros in a number NUM.
|
|
_bc_rm_leading_zeros just moves the data "value" pointer to the
|
|
correct place and adjusts the length. */
|
|
|
|
static void
|
|
_bc_rm_leading_zeros (num)
|
|
bc_num num;
|
|
{
|
|
/* We can move n_value to point to the first non zero digit! */
|
|
while (*num->n_value == 0 && num->n_len > 1) {
|
|
num->n_value++;
|
|
num->n_len--;
|
|
}
|
|
}
|
|
|
|
|
|
/* Compare two bc numbers. Return value is 0 if equal, -1 if N1 is less
|
|
than N2 and +1 if N1 is greater than N2. If USE_SIGN is false, just
|
|
compare the magnitudes. */
|
|
|
|
static int
|
|
_bc_do_compare (n1, n2, use_sign, ignore_last)
|
|
bc_num n1, n2;
|
|
int use_sign;
|
|
int ignore_last;
|
|
{
|
|
char *n1ptr, *n2ptr;
|
|
int count;
|
|
|
|
/* First, compare signs. */
|
|
if (use_sign && n1->n_sign != n2->n_sign)
|
|
{
|
|
if (n1->n_sign == PLUS)
|
|
return (1); /* Positive N1 > Negative N2 */
|
|
else
|
|
return (-1); /* Negative N1 < Positive N1 */
|
|
}
|
|
|
|
/* Now compare the magnitude. */
|
|
if (n1->n_len != n2->n_len)
|
|
{
|
|
if (n1->n_len > n2->n_len)
|
|
{
|
|
/* Magnitude of n1 > n2. */
|
|
if (!use_sign || n1->n_sign == PLUS)
|
|
return (1);
|
|
else
|
|
return (-1);
|
|
}
|
|
else
|
|
{
|
|
/* Magnitude of n1 < n2. */
|
|
if (!use_sign || n1->n_sign == PLUS)
|
|
return (-1);
|
|
else
|
|
return (1);
|
|
}
|
|
}
|
|
|
|
/* If we get here, they have the same number of integer digits.
|
|
check the integer part and the equal length part of the fraction. */
|
|
count = n1->n_len + MIN (n1->n_scale, n2->n_scale);
|
|
n1ptr = n1->n_value;
|
|
n2ptr = n2->n_value;
|
|
|
|
while ((count > 0) && (*n1ptr == *n2ptr))
|
|
{
|
|
n1ptr++;
|
|
n2ptr++;
|
|
count--;
|
|
}
|
|
if (ignore_last && count == 1 && n1->n_scale == n2->n_scale)
|
|
return (0);
|
|
if (count != 0)
|
|
{
|
|
if (*n1ptr > *n2ptr)
|
|
{
|
|
/* Magnitude of n1 > n2. */
|
|
if (!use_sign || n1->n_sign == PLUS)
|
|
return (1);
|
|
else
|
|
return (-1);
|
|
}
|
|
else
|
|
{
|
|
/* Magnitude of n1 < n2. */
|
|
if (!use_sign || n1->n_sign == PLUS)
|
|
return (-1);
|
|
else
|
|
return (1);
|
|
}
|
|
}
|
|
|
|
/* They are equal up to the last part of the equal part of the fraction. */
|
|
if (n1->n_scale != n2->n_scale)
|
|
{
|
|
if (n1->n_scale > n2->n_scale)
|
|
{
|
|
for (count = n1->n_scale-n2->n_scale; count>0; count--)
|
|
if (*n1ptr++ != 0)
|
|
{
|
|
/* Magnitude of n1 > n2. */
|
|
if (!use_sign || n1->n_sign == PLUS)
|
|
return (1);
|
|
else
|
|
return (-1);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (count = n2->n_scale-n1->n_scale; count>0; count--)
|
|
if (*n2ptr++ != 0)
|
|
{
|
|
/* Magnitude of n1 < n2. */
|
|
if (!use_sign || n1->n_sign == PLUS)
|
|
return (-1);
|
|
else
|
|
return (1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* They must be equal! */
|
|
return (0);
|
|
}
|
|
|
|
|
|
/* This is the "user callable" routine to compare numbers N1 and N2. */
|
|
|
|
int
|
|
bc_compare (n1, n2)
|
|
bc_num n1, n2;
|
|
{
|
|
return _bc_do_compare (n1, n2, TRUE, FALSE);
|
|
}
|
|
|
|
/* In some places we need to check if the number is negative. */
|
|
|
|
char
|
|
bc_is_neg (num)
|
|
bc_num num;
|
|
{
|
|
return num->n_sign == MINUS;
|
|
}
|
|
|
|
/* In some places we need to check if the number NUM is zero. */
|
|
|
|
char
|
|
bc_is_zero (num)
|
|
bc_num num;
|
|
{
|
|
int count;
|
|
char *nptr;
|
|
|
|
/* Quick check. */
|
|
if (num == _zero_) return TRUE;
|
|
|
|
/* Initialize */
|
|
count = num->n_len + num->n_scale;
|
|
nptr = num->n_value;
|
|
|
|
/* The check */
|
|
while ((count > 0) && (*nptr++ == 0)) count--;
|
|
|
|
if (count != 0)
|
|
return FALSE;
|
|
else
|
|
return TRUE;
|
|
}
|
|
|
|
/* In some places we need to check if the number NUM is almost zero.
|
|
Specifically, all but the last digit is 0 and the last digit is 1.
|
|
Last digit is defined by scale. */
|
|
|
|
char
|
|
bc_is_near_zero (num, scale)
|
|
bc_num num;
|
|
int scale;
|
|
{
|
|
int count;
|
|
char *nptr;
|
|
|
|
/* Error checking */
|
|
if (scale > num->n_scale)
|
|
scale = num->n_scale;
|
|
|
|
/* Initialize */
|
|
count = num->n_len + scale;
|
|
nptr = num->n_value;
|
|
|
|
/* The check */
|
|
while ((count > 0) && (*nptr++ == 0)) count--;
|
|
|
|
if (count != 0 && (count != 1 || *--nptr != 1))
|
|
return FALSE;
|
|
else
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/* Perform addition: N1 is added to N2 and the value is
|
|
returned. The signs of N1 and N2 are ignored.
|
|
SCALE_MIN is to set the minimum scale of the result. */
|
|
|
|
static bc_num
|
|
_bc_do_add (n1, n2, scale_min)
|
|
bc_num n1, n2;
|
|
int scale_min;
|
|
{
|
|
bc_num sum;
|
|
int sum_scale, sum_digits;
|
|
char *n1ptr, *n2ptr, *sumptr;
|
|
int carry, n1bytes, n2bytes;
|
|
int count;
|
|
|
|
/* Prepare sum. */
|
|
sum_scale = MAX (n1->n_scale, n2->n_scale);
|
|
sum_digits = MAX (n1->n_len, n2->n_len) + 1;
|
|
sum = bc_new_num (sum_digits, MAX(sum_scale, scale_min));
|
|
|
|
/* Zero extra digits made by scale_min. */
|
|
if (scale_min > sum_scale)
|
|
{
|
|
sumptr = (char *) (sum->n_value + sum_scale + sum_digits);
|
|
for (count = scale_min - sum_scale; count > 0; count--)
|
|
*sumptr++ = 0;
|
|
}
|
|
|
|
/* Start with the fraction part. Initialize the pointers. */
|
|
n1bytes = n1->n_scale;
|
|
n2bytes = n2->n_scale;
|
|
n1ptr = (char *) (n1->n_value + n1->n_len + n1bytes - 1);
|
|
n2ptr = (char *) (n2->n_value + n2->n_len + n2bytes - 1);
|
|
sumptr = (char *) (sum->n_value + sum_scale + sum_digits - 1);
|
|
|
|
/* Add the fraction part. First copy the longer fraction.*/
|
|
if (n1bytes != n2bytes)
|
|
{
|
|
if (n1bytes > n2bytes)
|
|
while (n1bytes>n2bytes)
|
|
{ *sumptr-- = *n1ptr--; n1bytes--;}
|
|
else
|
|
while (n2bytes>n1bytes)
|
|
{ *sumptr-- = *n2ptr--; n2bytes--;}
|
|
}
|
|
|
|
/* Now add the remaining fraction part and equal size integer parts. */
|
|
n1bytes += n1->n_len;
|
|
n2bytes += n2->n_len;
|
|
carry = 0;
|
|
while ((n1bytes > 0) && (n2bytes > 0))
|
|
{
|
|
*sumptr = *n1ptr-- + *n2ptr-- + carry;
|
|
if (*sumptr > (BASE-1))
|
|
{
|
|
carry = 1;
|
|
*sumptr -= BASE;
|
|
}
|
|
else
|
|
carry = 0;
|
|
sumptr--;
|
|
n1bytes--;
|
|
n2bytes--;
|
|
}
|
|
|
|
/* Now add carry the longer integer part. */
|
|
if (n1bytes == 0)
|
|
{ n1bytes = n2bytes; n1ptr = n2ptr; }
|
|
while (n1bytes-- > 0)
|
|
{
|
|
*sumptr = *n1ptr-- + carry;
|
|
if (*sumptr > (BASE-1))
|
|
{
|
|
carry = 1;
|
|
*sumptr -= BASE;
|
|
}
|
|
else
|
|
carry = 0;
|
|
sumptr--;
|
|
}
|
|
|
|
/* Set final carry. */
|
|
if (carry == 1)
|
|
*sumptr += 1;
|
|
|
|
/* Adjust sum and return. */
|
|
_bc_rm_leading_zeros (sum);
|
|
return sum;
|
|
}
|
|
|
|
|
|
/* Perform subtraction: N2 is subtracted from N1 and the value is
|
|
returned. The signs of N1 and N2 are ignored. Also, N1 is
|
|
assumed to be larger than N2. SCALE_MIN is the minimum scale
|
|
of the result. */
|
|
|
|
static bc_num
|
|
_bc_do_sub (n1, n2, scale_min)
|
|
bc_num n1, n2;
|
|
int scale_min;
|
|
{
|
|
bc_num diff;
|
|
int diff_scale, diff_len;
|
|
int min_scale, min_len;
|
|
char *n1ptr, *n2ptr, *diffptr;
|
|
int borrow, count, val;
|
|
|
|
/* Allocate temporary storage. */
|
|
diff_len = MAX (n1->n_len, n2->n_len);
|
|
diff_scale = MAX (n1->n_scale, n2->n_scale);
|
|
min_len = MIN (n1->n_len, n2->n_len);
|
|
min_scale = MIN (n1->n_scale, n2->n_scale);
|
|
diff = bc_new_num (diff_len, MAX(diff_scale, scale_min));
|
|
|
|
/* Zero extra digits made by scale_min. */
|
|
if (scale_min > diff_scale)
|
|
{
|
|
diffptr = (char *) (diff->n_value + diff_len + diff_scale);
|
|
for (count = scale_min - diff_scale; count > 0; count--)
|
|
*diffptr++ = 0;
|
|
}
|
|
|
|
/* Initialize the subtract. */
|
|
n1ptr = (char *) (n1->n_value + n1->n_len + n1->n_scale -1);
|
|
n2ptr = (char *) (n2->n_value + n2->n_len + n2->n_scale -1);
|
|
diffptr = (char *) (diff->n_value + diff_len + diff_scale -1);
|
|
|
|
/* Subtract the numbers. */
|
|
borrow = 0;
|
|
|
|
/* Take care of the longer scaled number. */
|
|
if (n1->n_scale != min_scale)
|
|
{
|
|
/* n1 has the longer scale */
|
|
for (count = n1->n_scale - min_scale; count > 0; count--)
|
|
*diffptr-- = *n1ptr--;
|
|
}
|
|
else
|
|
{
|
|
/* n2 has the longer scale */
|
|
for (count = n2->n_scale - min_scale; count > 0; count--)
|
|
{
|
|
val = - *n2ptr-- - borrow;
|
|
if (val < 0)
|
|
{
|
|
val += BASE;
|
|
borrow = 1;
|
|
}
|
|
else
|
|
borrow = 0;
|
|
*diffptr-- = val;
|
|
}
|
|
}
|
|
|
|
/* Now do the equal length scale and integer parts. */
|
|
|
|
for (count = 0; count < min_len + min_scale; count++)
|
|
{
|
|
val = *n1ptr-- - *n2ptr-- - borrow;
|
|
if (val < 0)
|
|
{
|
|
val += BASE;
|
|
borrow = 1;
|
|
}
|
|
else
|
|
borrow = 0;
|
|
*diffptr-- = val;
|
|
}
|
|
|
|
/* If n1 has more digits then n2, we now do that subtract. */
|
|
if (diff_len != min_len)
|
|
{
|
|
for (count = diff_len - min_len; count > 0; count--)
|
|
{
|
|
val = *n1ptr-- - borrow;
|
|
if (val < 0)
|
|
{
|
|
val += BASE;
|
|
borrow = 1;
|
|
}
|
|
else
|
|
borrow = 0;
|
|
*diffptr-- = val;
|
|
}
|
|
}
|
|
|
|
/* Clean up and return. */
|
|
_bc_rm_leading_zeros (diff);
|
|
return diff;
|
|
}
|
|
|
|
|
|
/* Here is the full subtract routine that takes care of negative numbers.
|
|
N2 is subtracted from N1 and the result placed in RESULT. SCALE_MIN
|
|
is the minimum scale for the result. */
|
|
|
|
void
|
|
bc_sub (n1, n2, result, scale_min)
|
|
bc_num n1, n2, *result;
|
|
int scale_min;
|
|
{
|
|
bc_num diff = NULL;
|
|
int cmp_res;
|
|
int res_scale;
|
|
|
|
if (n1->n_sign != n2->n_sign)
|
|
{
|
|
diff = _bc_do_add (n1, n2, scale_min);
|
|
diff->n_sign = n1->n_sign;
|
|
}
|
|
else
|
|
{
|
|
/* subtraction must be done. */
|
|
/* Compare magnitudes. */
|
|
cmp_res = _bc_do_compare (n1, n2, FALSE, FALSE);
|
|
switch (cmp_res)
|
|
{
|
|
case -1:
|
|
/* n1 is less than n2, subtract n1 from n2. */
|
|
diff = _bc_do_sub (n2, n1, scale_min);
|
|
diff->n_sign = (n2->n_sign == PLUS ? MINUS : PLUS);
|
|
break;
|
|
case 0:
|
|
/* They are equal! return zero! */
|
|
res_scale = MAX (scale_min, MAX(n1->n_scale, n2->n_scale));
|
|
diff = bc_new_num (1, res_scale);
|
|
memset (diff->n_value, 0, res_scale+1);
|
|
break;
|
|
case 1:
|
|
/* n2 is less than n1, subtract n2 from n1. */
|
|
diff = _bc_do_sub (n1, n2, scale_min);
|
|
diff->n_sign = n1->n_sign;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Clean up and return. */
|
|
bc_free_num (result);
|
|
*result = diff;
|
|
}
|
|
|
|
|
|
/* Here is the full add routine that takes care of negative numbers.
|
|
N1 is added to N2 and the result placed into RESULT. SCALE_MIN
|
|
is the minimum scale for the result. */
|
|
|
|
void
|
|
bc_add (n1, n2, result, scale_min)
|
|
bc_num n1, n2, *result;
|
|
int scale_min;
|
|
{
|
|
bc_num sum = NULL;
|
|
int cmp_res;
|
|
int res_scale;
|
|
|
|
if (n1->n_sign == n2->n_sign)
|
|
{
|
|
sum = _bc_do_add (n1, n2, scale_min);
|
|
sum->n_sign = n1->n_sign;
|
|
}
|
|
else
|
|
{
|
|
/* subtraction must be done. */
|
|
cmp_res = _bc_do_compare (n1, n2, FALSE, FALSE); /* Compare magnitudes. */
|
|
switch (cmp_res)
|
|
{
|
|
case -1:
|
|
/* n1 is less than n2, subtract n1 from n2. */
|
|
sum = _bc_do_sub (n2, n1, scale_min);
|
|
sum->n_sign = n2->n_sign;
|
|
break;
|
|
case 0:
|
|
/* They are equal! return zero with the correct scale! */
|
|
res_scale = MAX (scale_min, MAX(n1->n_scale, n2->n_scale));
|
|
sum = bc_new_num (1, res_scale);
|
|
memset (sum->n_value, 0, res_scale+1);
|
|
break;
|
|
case 1:
|
|
/* n2 is less than n1, subtract n2 from n1. */
|
|
sum = _bc_do_sub (n1, n2, scale_min);
|
|
sum->n_sign = n1->n_sign;
|
|
}
|
|
}
|
|
|
|
/* Clean up and return. */
|
|
bc_free_num (result);
|
|
*result = sum;
|
|
}
|
|
|
|
/* Recursive vs non-recursive multiply crossover ranges. */
|
|
#if defined(MULDIGITS)
|
|
#include "muldigits.h"
|
|
#else
|
|
#define MUL_BASE_DIGITS 80
|
|
#endif
|
|
|
|
int mul_base_digits = MUL_BASE_DIGITS;
|
|
#define MUL_SMALL_DIGITS mul_base_digits/4
|
|
|
|
/* Multiply utility routines */
|
|
|
|
static bc_num
|
|
new_sub_num (length, scale, value)
|
|
int length, scale;
|
|
char *value;
|
|
{
|
|
bc_num temp;
|
|
|
|
if (_bc_Free_list != NULL) {
|
|
temp = _bc_Free_list;
|
|
_bc_Free_list = temp->n_next;
|
|
} else {
|
|
temp = (bc_num) malloc (sizeof(bc_struct));
|
|
if (temp == NULL) bc_out_of_memory ();
|
|
}
|
|
temp->n_sign = PLUS;
|
|
temp->n_len = length;
|
|
temp->n_scale = scale;
|
|
temp->n_refs = 1;
|
|
temp->n_ptr = NULL;
|
|
temp->n_value = value;
|
|
return temp;
|
|
}
|
|
|
|
static void
|
|
_bc_simp_mul (bc_num n1, int n1len, bc_num n2, int n2len, bc_num *prod,
|
|
int full_scale)
|
|
{
|
|
char *n1ptr, *n2ptr, *pvptr;
|
|
char *n1end, *n2end; /* To the end of n1 and n2. */
|
|
int indx, sum, prodlen;
|
|
|
|
prodlen = n1len+n2len+1;
|
|
|
|
*prod = bc_new_num (prodlen, 0);
|
|
|
|
n1end = (char *) (n1->n_value + n1len - 1);
|
|
n2end = (char *) (n2->n_value + n2len - 1);
|
|
pvptr = (char *) ((*prod)->n_value + prodlen - 1);
|
|
sum = 0;
|
|
|
|
/* Here is the loop... */
|
|
for (indx = 0; indx < prodlen-1; indx++)
|
|
{
|
|
n1ptr = (char *) (n1end - MAX(0, indx-n2len+1));
|
|
n2ptr = (char *) (n2end - MIN(indx, n2len-1));
|
|
while ((n1ptr >= n1->n_value) && (n2ptr <= n2end))
|
|
sum += *n1ptr-- * *n2ptr++;
|
|
*pvptr-- = sum % BASE;
|
|
sum = sum / BASE;
|
|
}
|
|
*pvptr = sum;
|
|
}
|
|
|
|
|
|
/* A special adder/subtractor for the recursive divide and conquer
|
|
multiply algorithm. Note: if sub is called, accum must
|
|
be larger that what is being subtracted. Also, accum and val
|
|
must have n_scale = 0. (e.g. they must look like integers. *) */
|
|
static void
|
|
_bc_shift_addsub (bc_num accum, bc_num val, int shift, int sub)
|
|
{
|
|
signed char *accp, *valp;
|
|
int count, carry;
|
|
|
|
count = val->n_len;
|
|
if (val->n_value[0] == 0)
|
|
count--;
|
|
assert (accum->n_len+accum->n_scale >= shift+count);
|
|
|
|
/* Set up pointers and others */
|
|
accp = (signed char *)(accum->n_value +
|
|
accum->n_len + accum->n_scale - shift - 1);
|
|
valp = (signed char *)(val->n_value + val->n_len - 1);
|
|
carry = 0;
|
|
|
|
if (sub) {
|
|
/* Subtraction, carry is really borrow. */
|
|
while (count--) {
|
|
*accp -= *valp-- + carry;
|
|
if (*accp < 0) {
|
|
carry = 1;
|
|
*accp-- += BASE;
|
|
} else {
|
|
carry = 0;
|
|
accp--;
|
|
}
|
|
}
|
|
while (carry) {
|
|
*accp -= carry;
|
|
if (*accp < 0)
|
|
*accp-- += BASE;
|
|
else
|
|
carry = 0;
|
|
}
|
|
} else {
|
|
/* Addition */
|
|
while (count--) {
|
|
*accp += *valp-- + carry;
|
|
if (*accp > (BASE-1)) {
|
|
carry = 1;
|
|
*accp-- -= BASE;
|
|
} else {
|
|
carry = 0;
|
|
accp--;
|
|
}
|
|
}
|
|
while (carry) {
|
|
*accp += carry;
|
|
if (*accp > (BASE-1))
|
|
*accp-- -= BASE;
|
|
else
|
|
carry = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Recursive divide and conquer multiply algorithm.
|
|
Based on
|
|
Let u = u0 + u1*(b^n)
|
|
Let v = v0 + v1*(b^n)
|
|
Then uv = (B^2n+B^n)*u1*v1 + B^n*(u1-u0)*(v0-v1) + (B^n+1)*u0*v0
|
|
|
|
B is the base of storage, number of digits in u1,u0 close to equal.
|
|
*/
|
|
static void
|
|
_bc_rec_mul (bc_num u, int ulen, bc_num v, int vlen, bc_num *prod,
|
|
int full_scale)
|
|
{
|
|
bc_num u0, u1, v0, v1;
|
|
int u0len, v0len;
|
|
bc_num m1, m2, m3, d1, d2;
|
|
int n, prodlen, m1zero;
|
|
int d1len, d2len;
|
|
|
|
/* Base case? */
|
|
if ((ulen+vlen) < mul_base_digits
|
|
|| ulen < MUL_SMALL_DIGITS
|
|
|| vlen < MUL_SMALL_DIGITS ) {
|
|
_bc_simp_mul (u, ulen, v, vlen, prod, full_scale);
|
|
return;
|
|
}
|
|
|
|
/* Calculate n -- the u and v split point in digits. */
|
|
n = (MAX(ulen, vlen)+1) / 2;
|
|
|
|
/* Split u and v. */
|
|
if (ulen < n) {
|
|
u1 = bc_copy_num (_zero_);
|
|
u0 = new_sub_num (ulen,0, u->n_value);
|
|
} else {
|
|
u1 = new_sub_num (ulen-n, 0, u->n_value);
|
|
u0 = new_sub_num (n, 0, u->n_value+ulen-n);
|
|
}
|
|
if (vlen < n) {
|
|
v1 = bc_copy_num (_zero_);
|
|
v0 = new_sub_num (vlen,0, v->n_value);
|
|
} else {
|
|
v1 = new_sub_num (vlen-n, 0, v->n_value);
|
|
v0 = new_sub_num (n, 0, v->n_value+vlen-n);
|
|
}
|
|
_bc_rm_leading_zeros (u1);
|
|
_bc_rm_leading_zeros (u0);
|
|
u0len = u0->n_len;
|
|
_bc_rm_leading_zeros (v1);
|
|
_bc_rm_leading_zeros (v0);
|
|
v0len = v0->n_len;
|
|
|
|
m1zero = bc_is_zero(u1) || bc_is_zero(v1);
|
|
|
|
/* Calculate sub results ... */
|
|
|
|
bc_init_num(&d1);
|
|
bc_init_num(&d2);
|
|
bc_sub (u1, u0, &d1, 0);
|
|
d1len = d1->n_len;
|
|
bc_sub (v0, v1, &d2, 0);
|
|
d2len = d2->n_len;
|
|
|
|
|
|
/* Do recursive multiplies and shifted adds. */
|
|
if (m1zero)
|
|
m1 = bc_copy_num (_zero_);
|
|
else
|
|
_bc_rec_mul (u1, u1->n_len, v1, v1->n_len, &m1, 0);
|
|
|
|
if (bc_is_zero(d1) || bc_is_zero(d2))
|
|
m2 = bc_copy_num (_zero_);
|
|
else
|
|
_bc_rec_mul (d1, d1len, d2, d2len, &m2, 0);
|
|
|
|
if (bc_is_zero(u0) || bc_is_zero(v0))
|
|
m3 = bc_copy_num (_zero_);
|
|
else
|
|
_bc_rec_mul (u0, u0->n_len, v0, v0->n_len, &m3, 0);
|
|
|
|
/* Initialize product */
|
|
prodlen = ulen+vlen+1;
|
|
*prod = bc_new_num(prodlen, 0);
|
|
|
|
if (!m1zero) {
|
|
_bc_shift_addsub (*prod, m1, 2*n, 0);
|
|
_bc_shift_addsub (*prod, m1, n, 0);
|
|
}
|
|
_bc_shift_addsub (*prod, m3, n, 0);
|
|
_bc_shift_addsub (*prod, m3, 0, 0);
|
|
_bc_shift_addsub (*prod, m2, n, d1->n_sign != d2->n_sign);
|
|
|
|
/* Now clean up! */
|
|
bc_free_num (&u1);
|
|
bc_free_num (&u0);
|
|
bc_free_num (&v1);
|
|
bc_free_num (&m1);
|
|
bc_free_num (&v0);
|
|
bc_free_num (&m2);
|
|
bc_free_num (&m3);
|
|
bc_free_num (&d1);
|
|
bc_free_num (&d2);
|
|
}
|
|
|
|
/* The multiply routine. N2 times N1 is put int PROD with the scale of
|
|
the result being MIN(N2 scale+N1 scale, MAX (SCALE, N2 scale, N1 scale)).
|
|
*/
|
|
|
|
void
|
|
bc_multiply (n1, n2, prod, scale)
|
|
bc_num n1, n2, *prod;
|
|
int scale;
|
|
{
|
|
bc_num pval;
|
|
int len1, len2;
|
|
int full_scale, prod_scale;
|
|
|
|
/* Initialize things. */
|
|
len1 = n1->n_len + n1->n_scale;
|
|
len2 = n2->n_len + n2->n_scale;
|
|
full_scale = n1->n_scale + n2->n_scale;
|
|
prod_scale = MIN(full_scale,MAX(scale,MAX(n1->n_scale,n2->n_scale)));
|
|
|
|
/* Do the multiply */
|
|
_bc_rec_mul (n1, len1, n2, len2, &pval, full_scale);
|
|
|
|
/* Assign to prod and clean up the number. */
|
|
pval->n_sign = ( n1->n_sign == n2->n_sign ? PLUS : MINUS );
|
|
pval->n_value = pval->n_ptr;
|
|
pval->n_len = len2 + len1 + 1 - full_scale;
|
|
pval->n_scale = prod_scale;
|
|
_bc_rm_leading_zeros (pval);
|
|
if (bc_is_zero (pval))
|
|
pval->n_sign = PLUS;
|
|
bc_free_num (prod);
|
|
*prod = pval;
|
|
}
|
|
|
|
/* Some utility routines for the divide: First a one digit multiply.
|
|
NUM (with SIZE digits) is multiplied by DIGIT and the result is
|
|
placed into RESULT. It is written so that NUM and RESULT can be
|
|
the same pointers. */
|
|
|
|
static void
|
|
_one_mult (num, size, digit, result)
|
|
unsigned char *num;
|
|
int size, digit;
|
|
unsigned char *result;
|
|
{
|
|
int carry, value;
|
|
unsigned char *nptr, *rptr;
|
|
|
|
if (digit == 0)
|
|
memset (result, 0, size);
|
|
else
|
|
{
|
|
if (digit == 1)
|
|
memcpy (result, num, size);
|
|
else
|
|
{
|
|
/* Initialize */
|
|
nptr = (unsigned char *) (num+size-1);
|
|
rptr = (unsigned char *) (result+size-1);
|
|
carry = 0;
|
|
|
|
while (size-- > 0)
|
|
{
|
|
value = *nptr-- * digit + carry;
|
|
*rptr-- = value % BASE;
|
|
carry = value / BASE;
|
|
}
|
|
|
|
if (carry != 0) *rptr = carry;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* The full division routine. This computes N1 / N2. It returns
|
|
0 if the division is ok and the result is in QUOT. The number of
|
|
digits after the decimal point is SCALE. It returns -1 if division
|
|
by zero is tried. The algorithm is found in Knuth Vol 2. p237. */
|
|
|
|
int
|
|
bc_divide (n1, n2, quot, scale)
|
|
bc_num n1, n2, *quot;
|
|
int scale;
|
|
{
|
|
bc_num qval;
|
|
unsigned char *num1, *num2;
|
|
unsigned char *ptr1, *ptr2, *n2ptr, *qptr;
|
|
int scale1, val;
|
|
unsigned int len1, len2, scale2, qdigits, extra, count;
|
|
unsigned int qdig, qguess, borrow, carry;
|
|
unsigned char *mval;
|
|
char zero;
|
|
unsigned int norm;
|
|
|
|
/* Test for divide by zero. */
|
|
if (bc_is_zero (n2)) return -1;
|
|
|
|
/* Test for divide by 1. If it is we must truncate. */
|
|
if (n2->n_scale == 0)
|
|
{
|
|
if (n2->n_len == 1 && *n2->n_value == 1)
|
|
{
|
|
qval = bc_new_num (n1->n_len, scale);
|
|
qval->n_sign = (n1->n_sign == n2->n_sign ? PLUS : MINUS);
|
|
memset (&qval->n_value[n1->n_len],0,scale);
|
|
memcpy (qval->n_value, n1->n_value,
|
|
n1->n_len + MIN(n1->n_scale,scale));
|
|
bc_free_num (quot);
|
|
*quot = qval;
|
|
}
|
|
}
|
|
|
|
/* Set up the divide. Move the decimal point on n1 by n2's scale.
|
|
Remember, zeros on the end of num2 are wasted effort for dividing. */
|
|
scale2 = n2->n_scale;
|
|
n2ptr = (unsigned char *) n2->n_value+n2->n_len+scale2-1;
|
|
while ((scale2 > 0) && (*n2ptr-- == 0)) scale2--;
|
|
|
|
len1 = n1->n_len + scale2;
|
|
scale1 = n1->n_scale - scale2;
|
|
if (scale1 < scale)
|
|
extra = scale - scale1;
|
|
else
|
|
extra = 0;
|
|
num1 = (unsigned char *) malloc (n1->n_len+n1->n_scale+extra+2);
|
|
if (num1 == NULL) bc_out_of_memory();
|
|
memset (num1, 0, n1->n_len+n1->n_scale+extra+2);
|
|
memcpy (num1+1, n1->n_value, n1->n_len+n1->n_scale);
|
|
|
|
len2 = n2->n_len + scale2;
|
|
num2 = (unsigned char *) malloc (len2+1);
|
|
if (num2 == NULL) bc_out_of_memory();
|
|
memcpy (num2, n2->n_value, len2);
|
|
*(num2+len2) = 0;
|
|
n2ptr = num2;
|
|
while (*n2ptr == 0)
|
|
{
|
|
n2ptr++;
|
|
len2--;
|
|
}
|
|
|
|
/* Calculate the number of quotient digits. */
|
|
if (len2 > len1+scale)
|
|
{
|
|
qdigits = scale+1;
|
|
zero = TRUE;
|
|
}
|
|
else
|
|
{
|
|
zero = FALSE;
|
|
if (len2>len1)
|
|
qdigits = scale+1; /* One for the zero integer part. */
|
|
else
|
|
qdigits = len1-len2+scale+1;
|
|
}
|
|
|
|
/* Allocate and zero the storage for the quotient. */
|
|
qval = bc_new_num (qdigits-scale,scale);
|
|
memset (qval->n_value, 0, qdigits);
|
|
|
|
/* Allocate storage for the temporary storage mval. */
|
|
mval = (unsigned char *) malloc (len2+1);
|
|
if (mval == NULL) bc_out_of_memory ();
|
|
|
|
/* Now for the full divide algorithm. */
|
|
if (!zero)
|
|
{
|
|
/* Normalize */
|
|
norm = 10 / ((int)*n2ptr + 1);
|
|
if (norm != 1)
|
|
{
|
|
_one_mult (num1, len1+scale1+extra+1, norm, num1);
|
|
_one_mult (n2ptr, len2, norm, n2ptr);
|
|
}
|
|
|
|
/* Initialize divide loop. */
|
|
qdig = 0;
|
|
if (len2 > len1)
|
|
qptr = (unsigned char *) qval->n_value+len2-len1;
|
|
else
|
|
qptr = (unsigned char *) qval->n_value;
|
|
|
|
/* Loop */
|
|
while (qdig <= len1+scale-len2)
|
|
{
|
|
/* Calculate the quotient digit guess. */
|
|
if (*n2ptr == num1[qdig])
|
|
qguess = 9;
|
|
else
|
|
qguess = (num1[qdig]*10 + num1[qdig+1]) / *n2ptr;
|
|
|
|
/* Test qguess. */
|
|
if (n2ptr[1]*qguess >
|
|
(num1[qdig]*10 + num1[qdig+1] - *n2ptr*qguess)*10
|
|
+ num1[qdig+2])
|
|
{
|
|
qguess--;
|
|
/* And again. */
|
|
if (n2ptr[1]*qguess >
|
|
(num1[qdig]*10 + num1[qdig+1] - *n2ptr*qguess)*10
|
|
+ num1[qdig+2])
|
|
qguess--;
|
|
}
|
|
|
|
/* Multiply and subtract. */
|
|
borrow = 0;
|
|
if (qguess != 0)
|
|
{
|
|
*mval = 0;
|
|
_one_mult (n2ptr, len2, qguess, mval+1);
|
|
ptr1 = (unsigned char *) num1+qdig+len2;
|
|
ptr2 = (unsigned char *) mval+len2;
|
|
for (count = 0; count < len2+1; count++)
|
|
{
|
|
val = (int) *ptr1 - (int) *ptr2-- - borrow;
|
|
if (val < 0)
|
|
{
|
|
val += 10;
|
|
borrow = 1;
|
|
}
|
|
else
|
|
borrow = 0;
|
|
*ptr1-- = val;
|
|
}
|
|
}
|
|
|
|
/* Test for negative result. */
|
|
if (borrow == 1)
|
|
{
|
|
qguess--;
|
|
ptr1 = (unsigned char *) num1+qdig+len2;
|
|
ptr2 = (unsigned char *) n2ptr+len2-1;
|
|
carry = 0;
|
|
for (count = 0; count < len2; count++)
|
|
{
|
|
val = (int) *ptr1 + (int) *ptr2-- + carry;
|
|
if (val > 9)
|
|
{
|
|
val -= 10;
|
|
carry = 1;
|
|
}
|
|
else
|
|
carry = 0;
|
|
*ptr1-- = val;
|
|
}
|
|
if (carry == 1) *ptr1 = (*ptr1 + 1) % 10;
|
|
}
|
|
|
|
/* We now know the quotient digit. */
|
|
*qptr++ = qguess;
|
|
qdig++;
|
|
}
|
|
}
|
|
|
|
/* Clean up and return the number. */
|
|
qval->n_sign = ( n1->n_sign == n2->n_sign ? PLUS : MINUS );
|
|
if (bc_is_zero (qval)) qval->n_sign = PLUS;
|
|
_bc_rm_leading_zeros (qval);
|
|
bc_free_num (quot);
|
|
*quot = qval;
|
|
|
|
/* Clean up temporary storage. */
|
|
free (mval);
|
|
free (num1);
|
|
free (num2);
|
|
|
|
return 0; /* Everything is OK. */
|
|
}
|
|
|
|
|
|
/* Division *and* modulo for numbers. This computes both NUM1 / NUM2 and
|
|
NUM1 % NUM2 and puts the results in QUOT and REM, except that if QUOT
|
|
is NULL then that store will be omitted.
|
|
*/
|
|
|
|
int
|
|
bc_divmod (num1, num2, quot, rem, scale)
|
|
bc_num num1, num2, *quot, *rem;
|
|
int scale;
|
|
{
|
|
bc_num quotient = NULL;
|
|
bc_num temp;
|
|
int rscale;
|
|
|
|
/* Check for correct numbers. */
|
|
if (bc_is_zero (num2)) return -1;
|
|
|
|
/* Calculate final scale. */
|
|
rscale = MAX (num1->n_scale, num2->n_scale+scale);
|
|
bc_init_num(&temp);
|
|
|
|
/* Calculate it. */
|
|
bc_divide (num1, num2, &temp, scale);
|
|
if (quot)
|
|
quotient = bc_copy_num (temp);
|
|
bc_multiply (temp, num2, &temp, rscale);
|
|
bc_sub (num1, temp, rem, rscale);
|
|
bc_free_num (&temp);
|
|
|
|
if (quot)
|
|
{
|
|
bc_free_num (quot);
|
|
*quot = quotient;
|
|
}
|
|
|
|
return 0; /* Everything is OK. */
|
|
}
|
|
|
|
|
|
/* Modulo for numbers. This computes NUM1 % NUM2 and puts the
|
|
result in RESULT. */
|
|
|
|
int
|
|
bc_modulo (num1, num2, result, scale)
|
|
bc_num num1, num2, *result;
|
|
int scale;
|
|
{
|
|
return bc_divmod (num1, num2, NULL, result, scale);
|
|
}
|
|
|
|
/* Raise BASE to the EXPO power, reduced modulo MOD. The result is
|
|
placed in RESULT. If a EXPO is not an integer,
|
|
only the integer part is used. */
|
|
|
|
int
|
|
bc_raisemod (base, expo, mod, result, scale)
|
|
bc_num base, expo, mod, *result;
|
|
int scale;
|
|
{
|
|
bc_num power, exponent, parity, temp;
|
|
int rscale;
|
|
|
|
/* Check for correct numbers. */
|
|
if (bc_is_zero(mod)) return -1;
|
|
if (bc_is_neg(expo)) return -1;
|
|
|
|
/* Set initial values. */
|
|
power = bc_copy_num (base);
|
|
exponent = bc_copy_num (expo);
|
|
temp = bc_copy_num (_one_);
|
|
bc_init_num(&parity);
|
|
|
|
/* Check the base for scale digits. */
|
|
if (base->n_scale != 0)
|
|
bc_rt_warn ("non-zero scale in base");
|
|
|
|
/* Check the exponent for scale digits. */
|
|
if (exponent->n_scale != 0)
|
|
{
|
|
bc_rt_warn ("non-zero scale in exponent");
|
|
bc_divide (exponent, _one_, &exponent, 0); /*truncate */
|
|
}
|
|
|
|
/* Check the modulus for scale digits. */
|
|
if (mod->n_scale != 0)
|
|
bc_rt_warn ("non-zero scale in modulus");
|
|
|
|
/* Do the calculation. */
|
|
rscale = MAX(scale, base->n_scale);
|
|
while ( !bc_is_zero(exponent) )
|
|
{
|
|
(void) bc_divmod (exponent, _two_, &exponent, &parity, 0);
|
|
if ( !bc_is_zero(parity) )
|
|
{
|
|
bc_multiply (temp, power, &temp, rscale);
|
|
(void) bc_modulo (temp, mod, &temp, scale);
|
|
}
|
|
|
|
bc_multiply (power, power, &power, rscale);
|
|
(void) bc_modulo (power, mod, &power, scale);
|
|
}
|
|
|
|
/* Assign the value. */
|
|
bc_free_num (&power);
|
|
bc_free_num (&exponent);
|
|
bc_free_num (result);
|
|
*result = temp;
|
|
return 0; /* Everything is OK. */
|
|
}
|
|
|
|
/* Raise NUM1 to the NUM2 power. The result is placed in RESULT.
|
|
Maximum exponent is LONG_MAX. If a NUM2 is not an integer,
|
|
only the integer part is used. */
|
|
|
|
void
|
|
bc_raise (num1, num2, result, scale)
|
|
bc_num num1, num2, *result;
|
|
int scale;
|
|
{
|
|
bc_num temp, power;
|
|
long exponent;
|
|
int rscale;
|
|
int pwrscale;
|
|
int calcscale;
|
|
char neg;
|
|
|
|
/* Check the exponent for scale digits and convert to a long. */
|
|
if (num2->n_scale != 0)
|
|
bc_rt_warn ("non-zero scale in exponent");
|
|
exponent = bc_num2long (num2);
|
|
if (exponent == 0 && (num2->n_len > 1 || num2->n_value[0] != 0))
|
|
bc_rt_error ("exponent too large in raise");
|
|
|
|
/* Special case if exponent is a zero. */
|
|
if (exponent == 0)
|
|
{
|
|
bc_free_num (result);
|
|
*result = bc_copy_num (_one_);
|
|
return;
|
|
}
|
|
|
|
/* Other initializations. */
|
|
if (exponent < 0)
|
|
{
|
|
neg = TRUE;
|
|
exponent = -exponent;
|
|
rscale = scale;
|
|
}
|
|
else
|
|
{
|
|
neg = FALSE;
|
|
rscale = MIN (num1->n_scale*exponent, MAX(scale, num1->n_scale));
|
|
}
|
|
|
|
/* Set initial value of temp. */
|
|
power = bc_copy_num (num1);
|
|
pwrscale = num1->n_scale;
|
|
while ((exponent & 1) == 0)
|
|
{
|
|
pwrscale = 2*pwrscale;
|
|
bc_multiply (power, power, &power, pwrscale);
|
|
exponent = exponent >> 1;
|
|
}
|
|
temp = bc_copy_num (power);
|
|
calcscale = pwrscale;
|
|
exponent = exponent >> 1;
|
|
|
|
/* Do the calculation. */
|
|
while (exponent > 0)
|
|
{
|
|
pwrscale = 2*pwrscale;
|
|
bc_multiply (power, power, &power, pwrscale);
|
|
if ((exponent & 1) == 1) {
|
|
calcscale = pwrscale + calcscale;
|
|
bc_multiply (temp, power, &temp, calcscale);
|
|
}
|
|
exponent = exponent >> 1;
|
|
}
|
|
|
|
/* Assign the value. */
|
|
if (neg)
|
|
{
|
|
bc_divide (_one_, temp, result, rscale);
|
|
bc_free_num (&temp);
|
|
}
|
|
else
|
|
{
|
|
bc_free_num (result);
|
|
*result = temp;
|
|
if ((*result)->n_scale > rscale)
|
|
(*result)->n_scale = rscale;
|
|
}
|
|
bc_free_num (&power);
|
|
}
|
|
|
|
/* Take the square root NUM and return it in NUM with SCALE digits
|
|
after the decimal place. */
|
|
|
|
int
|
|
bc_sqrt (num, scale)
|
|
bc_num *num;
|
|
int scale;
|
|
{
|
|
int rscale, cmp_res, done;
|
|
int cscale;
|
|
bc_num guess, guess1, point5, diff;
|
|
|
|
/* Initial checks. */
|
|
cmp_res = bc_compare (*num, _zero_);
|
|
if (cmp_res < 0)
|
|
return 0; /* error */
|
|
else
|
|
{
|
|
if (cmp_res == 0)
|
|
{
|
|
bc_free_num (num);
|
|
*num = bc_copy_num (_zero_);
|
|
return 1;
|
|
}
|
|
}
|
|
cmp_res = bc_compare (*num, _one_);
|
|
if (cmp_res == 0)
|
|
{
|
|
bc_free_num (num);
|
|
*num = bc_copy_num (_one_);
|
|
return 1;
|
|
}
|
|
|
|
/* Initialize the variables. */
|
|
rscale = MAX (scale, (*num)->n_scale);
|
|
bc_init_num(&guess);
|
|
bc_init_num(&guess1);
|
|
bc_init_num(&diff);
|
|
point5 = bc_new_num (1,1);
|
|
point5->n_value[1] = 5;
|
|
|
|
|
|
/* Calculate the initial guess. */
|
|
if (cmp_res < 0)
|
|
{
|
|
/* The number is between 0 and 1. Guess should start at 1. */
|
|
guess = bc_copy_num (_one_);
|
|
cscale = (*num)->n_scale;
|
|
}
|
|
else
|
|
{
|
|
/* The number is greater than 1. Guess should start at 10^(exp/2). */
|
|
bc_int2num (&guess,10);
|
|
|
|
bc_int2num (&guess1,(*num)->n_len);
|
|
bc_multiply (guess1, point5, &guess1, 0);
|
|
guess1->n_scale = 0;
|
|
bc_raise (guess, guess1, &guess, 0);
|
|
bc_free_num (&guess1);
|
|
cscale = 3;
|
|
}
|
|
|
|
/* Find the square root using Newton's algorithm. */
|
|
done = FALSE;
|
|
while (!done)
|
|
{
|
|
bc_free_num (&guess1);
|
|
guess1 = bc_copy_num (guess);
|
|
bc_divide (*num, guess, &guess, cscale);
|
|
bc_add (guess, guess1, &guess, 0);
|
|
bc_multiply (guess, point5, &guess, cscale);
|
|
bc_sub (guess, guess1, &diff, cscale+1);
|
|
if (bc_is_near_zero (diff, cscale))
|
|
{
|
|
if (cscale < rscale+1)
|
|
cscale = MIN (cscale*3, rscale+1);
|
|
else
|
|
done = TRUE;
|
|
}
|
|
}
|
|
|
|
/* Assign the number and clean up. */
|
|
bc_free_num (num);
|
|
bc_divide (guess,_one_,num,rscale);
|
|
bc_free_num (&guess);
|
|
bc_free_num (&guess1);
|
|
bc_free_num (&point5);
|
|
bc_free_num (&diff);
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* The following routines provide output for bcd numbers package
|
|
using the rules of POSIX bc for output. */
|
|
|
|
/* This structure is used for saving digits in the conversion process. */
|
|
typedef struct stk_rec {
|
|
long digit;
|
|
struct stk_rec *next;
|
|
} stk_rec;
|
|
|
|
/* The reference string for digits. */
|
|
static char ref_str[] = "0123456789ABCDEF";
|
|
|
|
|
|
/* A special output routine for "multi-character digits." Exactly
|
|
SIZE characters must be output for the value VAL. If SPACE is
|
|
non-zero, we must output one space before the number. OUT_CHAR
|
|
is the actual routine for writing the characters. */
|
|
|
|
void
|
|
bc_out_long (val, size, space, out_char)
|
|
long val;
|
|
int size, space;
|
|
#ifdef __STDC__
|
|
void (*out_char)(int);
|
|
#else
|
|
void (*out_char)();
|
|
#endif
|
|
{
|
|
char digits[40];
|
|
int len, ix;
|
|
|
|
if (space) (*out_char) (' ');
|
|
sprintf (digits, "%ld", val);
|
|
len = strlen (digits);
|
|
while (size > len)
|
|
{
|
|
(*out_char) ('0');
|
|
size--;
|
|
}
|
|
for (ix=0; ix < len; ix++)
|
|
(*out_char) (digits[ix]);
|
|
}
|
|
|
|
/* Output of a bcd number. NUM is written in base O_BASE using OUT_CHAR
|
|
as the routine to do the actual output of the characters. */
|
|
|
|
void
|
|
bc_out_num (num, o_base, out_char, leading_zero)
|
|
bc_num num;
|
|
int o_base;
|
|
#ifdef __STDC__
|
|
void (*out_char)(int);
|
|
#else
|
|
void (*out_char)();
|
|
#endif
|
|
int leading_zero;
|
|
{
|
|
char *nptr;
|
|
int index, fdigit, pre_space;
|
|
stk_rec *digits, *temp;
|
|
bc_num int_part, frac_part, base, cur_dig, t_num, max_o_digit;
|
|
|
|
/* The negative sign if needed. */
|
|
if (num->n_sign == MINUS) (*out_char) ('-');
|
|
|
|
/* Output the number. */
|
|
if (bc_is_zero (num))
|
|
(*out_char) ('0');
|
|
else
|
|
if (o_base == 10)
|
|
{
|
|
/* The number is in base 10, do it the fast way. */
|
|
nptr = num->n_value;
|
|
if (num->n_len > 1 || *nptr != 0)
|
|
for (index=num->n_len; index>0; index--)
|
|
(*out_char) (BCD_CHAR(*nptr++));
|
|
else
|
|
nptr++;
|
|
|
|
if (leading_zero && bc_is_zero (num))
|
|
(*out_char) ('0');
|
|
|
|
/* Now the fraction. */
|
|
if (num->n_scale > 0)
|
|
{
|
|
(*out_char) ('.');
|
|
for (index=0; index<num->n_scale; index++)
|
|
(*out_char) (BCD_CHAR(*nptr++));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* special case ... */
|
|
if (leading_zero && bc_is_zero (num))
|
|
(*out_char) ('0');
|
|
|
|
/* The number is some other base. */
|
|
digits = NULL;
|
|
bc_init_num (&int_part);
|
|
bc_divide (num, _one_, &int_part, 0);
|
|
bc_init_num (&frac_part);
|
|
bc_init_num (&cur_dig);
|
|
bc_init_num (&base);
|
|
bc_sub (num, int_part, &frac_part, 0);
|
|
/* Make the INT_PART and FRAC_PART positive. */
|
|
int_part->n_sign = PLUS;
|
|
frac_part->n_sign = PLUS;
|
|
bc_int2num (&base, o_base);
|
|
bc_init_num (&max_o_digit);
|
|
bc_int2num (&max_o_digit, o_base-1);
|
|
|
|
|
|
/* Get the digits of the integer part and push them on a stack. */
|
|
while (!bc_is_zero (int_part))
|
|
{
|
|
bc_modulo (int_part, base, &cur_dig, 0);
|
|
temp = (stk_rec *) malloc (sizeof(stk_rec));
|
|
if (temp == NULL) bc_out_of_memory();
|
|
temp->digit = bc_num2long (cur_dig);
|
|
temp->next = digits;
|
|
digits = temp;
|
|
bc_divide (int_part, base, &int_part, 0);
|
|
}
|
|
|
|
/* Print the digits on the stack. */
|
|
if (digits != NULL)
|
|
{
|
|
/* Output the digits. */
|
|
while (digits != NULL)
|
|
{
|
|
temp = digits;
|
|
digits = digits->next;
|
|
if (o_base <= 16)
|
|
(*out_char) (ref_str[ (int) temp->digit]);
|
|
else
|
|
bc_out_long (temp->digit, max_o_digit->n_len, 1, out_char);
|
|
free (temp);
|
|
}
|
|
}
|
|
|
|
/* Get and print the digits of the fraction part. */
|
|
if (num->n_scale > 0)
|
|
{
|
|
(*out_char) ('.');
|
|
pre_space = 0;
|
|
t_num = bc_copy_num (_one_);
|
|
while (t_num->n_len <= num->n_scale) {
|
|
bc_multiply (frac_part, base, &frac_part, num->n_scale);
|
|
fdigit = bc_num2long (frac_part);
|
|
bc_int2num (&int_part, fdigit);
|
|
bc_sub (frac_part, int_part, &frac_part, 0);
|
|
if (o_base <= 16)
|
|
(*out_char) (ref_str[fdigit]);
|
|
else {
|
|
bc_out_long (fdigit, max_o_digit->n_len, pre_space, out_char);
|
|
pre_space = 1;
|
|
}
|
|
bc_multiply (t_num, base, &t_num, 0);
|
|
}
|
|
bc_free_num (&t_num);
|
|
}
|
|
|
|
/* Clean up. */
|
|
bc_free_num (&int_part);
|
|
bc_free_num (&frac_part);
|
|
bc_free_num (&base);
|
|
bc_free_num (&cur_dig);
|
|
bc_free_num (&max_o_digit);
|
|
}
|
|
}
|
|
/* Convert a number NUM to a long. The function returns only the integer
|
|
part of the number. For numbers that are too large to represent as
|
|
a long, this function returns a zero. This can be detected by checking
|
|
the NUM for zero after having a zero returned. */
|
|
|
|
long
|
|
bc_num2long (num)
|
|
bc_num num;
|
|
{
|
|
long val;
|
|
char *nptr;
|
|
int index;
|
|
|
|
/* Extract the int value, ignore the fraction. */
|
|
val = 0;
|
|
nptr = num->n_value;
|
|
for (index=num->n_len; (index>0) && (val<=(LONG_MAX/BASE)); index--)
|
|
val = val*BASE + *nptr++;
|
|
|
|
/* Check for overflow. If overflow, return zero. */
|
|
if (index>0) val = 0;
|
|
if (val < 0) val = 0;
|
|
|
|
/* Return the value. */
|
|
if (num->n_sign == PLUS)
|
|
return (val);
|
|
else
|
|
return (-val);
|
|
}
|
|
|
|
|
|
/* Convert an integer VAL to a bc number NUM. */
|
|
|
|
void
|
|
bc_int2num (num, val)
|
|
bc_num *num;
|
|
int val;
|
|
{
|
|
char buffer[30];
|
|
char *bptr, *vptr;
|
|
int ix = 1;
|
|
char neg = 0;
|
|
|
|
/* Sign. */
|
|
if (val < 0)
|
|
{
|
|
neg = 1;
|
|
val = -val;
|
|
}
|
|
|
|
/* Get things going. */
|
|
bptr = buffer;
|
|
*bptr++ = val % BASE;
|
|
val = val / BASE;
|
|
|
|
/* Extract remaining digits. */
|
|
while (val != 0)
|
|
{
|
|
*bptr++ = val % BASE;
|
|
val = val / BASE;
|
|
ix++; /* Count the digits. */
|
|
}
|
|
|
|
/* Make the number. */
|
|
bc_free_num (num);
|
|
*num = bc_new_num (ix, 0);
|
|
if (neg) (*num)->n_sign = MINUS;
|
|
|
|
/* Assign the digits. */
|
|
vptr = (*num)->n_value;
|
|
while (ix-- > 0)
|
|
*vptr++ = *--bptr;
|
|
}
|
|
|
|
/* Convert a numbers to a string. Base 10 only.*/
|
|
|
|
char
|
|
*num2str (num)
|
|
bc_num num;
|
|
{
|
|
char *str, *sptr;
|
|
char *nptr;
|
|
int index, signch;
|
|
|
|
/* Allocate the string memory. */
|
|
signch = ( num->n_sign == PLUS ? 0 : 1 ); /* Number of sign chars. */
|
|
if (num->n_scale > 0)
|
|
str = (char *) malloc (num->n_len + num->n_scale + 2 + signch);
|
|
else
|
|
str = (char *) malloc (num->n_len + 1 + signch);
|
|
if (str == NULL) bc_out_of_memory();
|
|
|
|
/* The negative sign if needed. */
|
|
sptr = str;
|
|
if (signch) *sptr++ = '-';
|
|
|
|
/* Load the whole number. */
|
|
nptr = num->n_value;
|
|
for (index=num->n_len; index>0; index--)
|
|
*sptr++ = BCD_CHAR(*nptr++);
|
|
|
|
/* Now the fraction. */
|
|
if (num->n_scale > 0)
|
|
{
|
|
*sptr++ = '.';
|
|
for (index=0; index<num->n_scale; index++)
|
|
*sptr++ = BCD_CHAR(*nptr++);
|
|
}
|
|
|
|
/* Terminate the string and return it! */
|
|
*sptr = '\0';
|
|
return (str);
|
|
}
|
|
/* Convert strings to bc numbers. Base 10 only.*/
|
|
|
|
void
|
|
bc_str2num (num, str, scale)
|
|
bc_num *num;
|
|
char *str;
|
|
int scale;
|
|
{
|
|
int digits, strscale;
|
|
char *ptr, *nptr;
|
|
char zero_int;
|
|
|
|
/* Prepare num. */
|
|
bc_free_num (num);
|
|
|
|
/* Check for valid number and count digits. */
|
|
ptr = str;
|
|
digits = 0;
|
|
strscale = 0;
|
|
zero_int = FALSE;
|
|
if ( (*ptr == '+') || (*ptr == '-')) ptr++; /* Sign */
|
|
while (*ptr == '0') ptr++; /* Skip leading zeros. */
|
|
while (isdigit((int)*ptr)) ptr++, digits++; /* digits */
|
|
if (*ptr == '.') ptr++; /* decimal point */
|
|
while (isdigit((int)*ptr)) ptr++, strscale++; /* digits */
|
|
if ((*ptr != '\0') || (digits+strscale == 0))
|
|
{
|
|
*num = bc_copy_num (_zero_);
|
|
return;
|
|
}
|
|
|
|
/* Adjust numbers and allocate storage and initialize fields. */
|
|
strscale = MIN(strscale, scale);
|
|
if (digits == 0)
|
|
{
|
|
zero_int = TRUE;
|
|
digits = 1;
|
|
}
|
|
*num = bc_new_num (digits, strscale);
|
|
|
|
/* Build the whole number. */
|
|
ptr = str;
|
|
if (*ptr == '-')
|
|
{
|
|
(*num)->n_sign = MINUS;
|
|
ptr++;
|
|
}
|
|
else
|
|
{
|
|
(*num)->n_sign = PLUS;
|
|
if (*ptr == '+') ptr++;
|
|
}
|
|
while (*ptr == '0') ptr++; /* Skip leading zeros. */
|
|
nptr = (*num)->n_value;
|
|
if (zero_int)
|
|
{
|
|
*nptr++ = 0;
|
|
digits = 0;
|
|
}
|
|
for (;digits > 0; digits--)
|
|
*nptr++ = CH_VAL(*ptr++);
|
|
|
|
|
|
/* Build the fractional part. */
|
|
if (strscale > 0)
|
|
{
|
|
ptr++; /* skip the decimal point! */
|
|
for (;strscale > 0; strscale--)
|
|
*nptr++ = CH_VAL(*ptr++);
|
|
}
|
|
}
|
|
|
|
/* pn prints the number NUM in base 10. */
|
|
|
|
static void
|
|
out_char (int c)
|
|
{
|
|
putchar(c);
|
|
}
|
|
|
|
|
|
void
|
|
pn (num)
|
|
bc_num num;
|
|
{
|
|
bc_out_num (num, 10, out_char, 0);
|
|
out_char ('\n');
|
|
}
|
|
|
|
|
|
/* pv prints a character array as if it was a string of bcd digits. */
|
|
void
|
|
pv (name, num, len)
|
|
char *name;
|
|
unsigned char *num;
|
|
int len;
|
|
{
|
|
int i;
|
|
printf ("%s=", name);
|
|
for (i=0; i<len; i++) printf ("%c",BCD_CHAR(num[i]));
|
|
printf ("\n");
|
|
}
|