mirror of
https://git.hardenedbsd.org/hardenedbsd/HardenedBSD.git
synced 2024-11-14 22:32:30 +01:00
c48820a448
checkstyle9 doesn't check for this construct...
Fixes: 6d849754b9
3096 lines
70 KiB
C
3096 lines
70 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (c) 2002 Doug Rabson
|
|
* Copyright (c) 1994-1995 Søren Schmidt
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer
|
|
* in this position and unchanged.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/jail.h>
|
|
#include <sys/imgact.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/msgbuf.h>
|
|
#include <sys/mqueue.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/poll.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/procctl.h>
|
|
#include <sys/reboot.h>
|
|
#include <sys/random.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/rtprio.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/syscallsubr.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/sysent.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/time.h>
|
|
#include <sys/vmmeter.h>
|
|
#include <sys/vnode.h>
|
|
|
|
#include <security/audit/audit.h>
|
|
#include <security/mac/mac_framework.h>
|
|
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/swap_pager.h>
|
|
|
|
#ifdef COMPAT_LINUX32
|
|
#include <machine/../linux32/linux.h>
|
|
#include <machine/../linux32/linux32_proto.h>
|
|
#else
|
|
#include <machine/../linux/linux.h>
|
|
#include <machine/../linux/linux_proto.h>
|
|
#endif
|
|
|
|
#include <compat/linux/linux_common.h>
|
|
#include <compat/linux/linux_dtrace.h>
|
|
#include <compat/linux/linux_file.h>
|
|
#include <compat/linux/linux_mib.h>
|
|
#include <compat/linux/linux_mmap.h>
|
|
#include <compat/linux/linux_signal.h>
|
|
#include <compat/linux/linux_time.h>
|
|
#include <compat/linux/linux_util.h>
|
|
#include <compat/linux/linux_emul.h>
|
|
#include <compat/linux/linux_misc.h>
|
|
|
|
int stclohz; /* Statistics clock frequency */
|
|
|
|
static unsigned int linux_to_bsd_resource[LINUX_RLIM_NLIMITS] = {
|
|
RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA, RLIMIT_STACK,
|
|
RLIMIT_CORE, RLIMIT_RSS, RLIMIT_NPROC, RLIMIT_NOFILE,
|
|
RLIMIT_MEMLOCK, RLIMIT_AS
|
|
};
|
|
|
|
struct l_sysinfo {
|
|
l_long uptime; /* Seconds since boot */
|
|
l_ulong loads[3]; /* 1, 5, and 15 minute load averages */
|
|
#define LINUX_SYSINFO_LOADS_SCALE 65536
|
|
l_ulong totalram; /* Total usable main memory size */
|
|
l_ulong freeram; /* Available memory size */
|
|
l_ulong sharedram; /* Amount of shared memory */
|
|
l_ulong bufferram; /* Memory used by buffers */
|
|
l_ulong totalswap; /* Total swap space size */
|
|
l_ulong freeswap; /* swap space still available */
|
|
l_ushort procs; /* Number of current processes */
|
|
l_ushort pads;
|
|
l_ulong totalhigh;
|
|
l_ulong freehigh;
|
|
l_uint mem_unit;
|
|
char _f[20-2*sizeof(l_long)-sizeof(l_int)]; /* padding */
|
|
};
|
|
|
|
struct l_pselect6arg {
|
|
l_uintptr_t ss;
|
|
l_size_t ss_len;
|
|
};
|
|
|
|
static int linux_utimensat_lts_to_ts(struct l_timespec *,
|
|
struct timespec *);
|
|
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
|
|
static int linux_utimensat_lts64_to_ts(struct l_timespec64 *,
|
|
struct timespec *);
|
|
#endif
|
|
static int linux_common_utimensat(struct thread *, int,
|
|
const char *, struct timespec *, int);
|
|
static int linux_common_pselect6(struct thread *, l_int,
|
|
l_fd_set *, l_fd_set *, l_fd_set *,
|
|
struct timespec *, l_uintptr_t *);
|
|
static int linux_common_ppoll(struct thread *, struct pollfd *,
|
|
uint32_t, struct timespec *, l_sigset_t *,
|
|
l_size_t);
|
|
static int linux_pollin(struct thread *, struct pollfd *,
|
|
struct pollfd *, u_int);
|
|
static int linux_pollout(struct thread *, struct pollfd *,
|
|
struct pollfd *, u_int);
|
|
|
|
int
|
|
linux_sysinfo(struct thread *td, struct linux_sysinfo_args *args)
|
|
{
|
|
struct l_sysinfo sysinfo;
|
|
int i, j;
|
|
struct timespec ts;
|
|
|
|
bzero(&sysinfo, sizeof(sysinfo));
|
|
getnanouptime(&ts);
|
|
if (ts.tv_nsec != 0)
|
|
ts.tv_sec++;
|
|
sysinfo.uptime = ts.tv_sec;
|
|
|
|
/* Use the information from the mib to get our load averages */
|
|
for (i = 0; i < 3; i++)
|
|
sysinfo.loads[i] = averunnable.ldavg[i] *
|
|
LINUX_SYSINFO_LOADS_SCALE / averunnable.fscale;
|
|
|
|
sysinfo.totalram = physmem * PAGE_SIZE;
|
|
sysinfo.freeram = (u_long)vm_free_count() * PAGE_SIZE;
|
|
|
|
/*
|
|
* sharedram counts pages allocated to named, swap-backed objects such
|
|
* as shared memory segments and tmpfs files. There is no cheap way to
|
|
* compute this, so just leave the field unpopulated. Linux itself only
|
|
* started setting this field in the 3.x timeframe.
|
|
*/
|
|
sysinfo.sharedram = 0;
|
|
sysinfo.bufferram = 0;
|
|
|
|
swap_pager_status(&i, &j);
|
|
sysinfo.totalswap = i * PAGE_SIZE;
|
|
sysinfo.freeswap = (i - j) * PAGE_SIZE;
|
|
|
|
sysinfo.procs = nprocs;
|
|
|
|
/*
|
|
* Platforms supported by the emulation layer do not have a notion of
|
|
* high memory.
|
|
*/
|
|
sysinfo.totalhigh = 0;
|
|
sysinfo.freehigh = 0;
|
|
|
|
sysinfo.mem_unit = 1;
|
|
|
|
return (copyout(&sysinfo, args->info, sizeof(sysinfo)));
|
|
}
|
|
|
|
#ifdef LINUX_LEGACY_SYSCALLS
|
|
int
|
|
linux_alarm(struct thread *td, struct linux_alarm_args *args)
|
|
{
|
|
struct itimerval it, old_it;
|
|
u_int secs;
|
|
int error __diagused;
|
|
|
|
secs = args->secs;
|
|
/*
|
|
* Linux alarm() is always successful. Limit secs to INT32_MAX / 2
|
|
* to match kern_setitimer()'s limit to avoid error from it.
|
|
*
|
|
* XXX. Linux limit secs to INT_MAX on 32 and does not limit on 64-bit
|
|
* platforms.
|
|
*/
|
|
if (secs > INT32_MAX / 2)
|
|
secs = INT32_MAX / 2;
|
|
|
|
it.it_value.tv_sec = secs;
|
|
it.it_value.tv_usec = 0;
|
|
timevalclear(&it.it_interval);
|
|
error = kern_setitimer(td, ITIMER_REAL, &it, &old_it);
|
|
KASSERT(error == 0, ("kern_setitimer returns %d", error));
|
|
|
|
if ((old_it.it_value.tv_sec == 0 && old_it.it_value.tv_usec > 0) ||
|
|
old_it.it_value.tv_usec >= 500000)
|
|
old_it.it_value.tv_sec++;
|
|
td->td_retval[0] = old_it.it_value.tv_sec;
|
|
return (0);
|
|
}
|
|
#endif
|
|
|
|
int
|
|
linux_brk(struct thread *td, struct linux_brk_args *args)
|
|
{
|
|
struct vmspace *vm = td->td_proc->p_vmspace;
|
|
uintptr_t new, old;
|
|
|
|
old = (uintptr_t)vm->vm_daddr + ctob(vm->vm_dsize);
|
|
new = (uintptr_t)args->dsend;
|
|
if ((caddr_t)new > vm->vm_daddr && !kern_break(td, &new))
|
|
td->td_retval[0] = (register_t)new;
|
|
else
|
|
td->td_retval[0] = (register_t)old;
|
|
|
|
return (0);
|
|
}
|
|
|
|
#ifdef LINUX_LEGACY_SYSCALLS
|
|
int
|
|
linux_select(struct thread *td, struct linux_select_args *args)
|
|
{
|
|
l_timeval ltv;
|
|
struct timeval tv0, tv1, utv, *tvp;
|
|
int error;
|
|
|
|
/*
|
|
* Store current time for computation of the amount of
|
|
* time left.
|
|
*/
|
|
if (args->timeout) {
|
|
if ((error = copyin(args->timeout, <v, sizeof(ltv))))
|
|
goto select_out;
|
|
utv.tv_sec = ltv.tv_sec;
|
|
utv.tv_usec = ltv.tv_usec;
|
|
|
|
if (itimerfix(&utv)) {
|
|
/*
|
|
* The timeval was invalid. Convert it to something
|
|
* valid that will act as it does under Linux.
|
|
*/
|
|
utv.tv_sec += utv.tv_usec / 1000000;
|
|
utv.tv_usec %= 1000000;
|
|
if (utv.tv_usec < 0) {
|
|
utv.tv_sec -= 1;
|
|
utv.tv_usec += 1000000;
|
|
}
|
|
if (utv.tv_sec < 0)
|
|
timevalclear(&utv);
|
|
}
|
|
microtime(&tv0);
|
|
tvp = &utv;
|
|
} else
|
|
tvp = NULL;
|
|
|
|
error = kern_select(td, args->nfds, args->readfds, args->writefds,
|
|
args->exceptfds, tvp, LINUX_NFDBITS);
|
|
if (error)
|
|
goto select_out;
|
|
|
|
if (args->timeout) {
|
|
if (td->td_retval[0]) {
|
|
/*
|
|
* Compute how much time was left of the timeout,
|
|
* by subtracting the current time and the time
|
|
* before we started the call, and subtracting
|
|
* that result from the user-supplied value.
|
|
*/
|
|
microtime(&tv1);
|
|
timevalsub(&tv1, &tv0);
|
|
timevalsub(&utv, &tv1);
|
|
if (utv.tv_sec < 0)
|
|
timevalclear(&utv);
|
|
} else
|
|
timevalclear(&utv);
|
|
ltv.tv_sec = utv.tv_sec;
|
|
ltv.tv_usec = utv.tv_usec;
|
|
if ((error = copyout(<v, args->timeout, sizeof(ltv))))
|
|
goto select_out;
|
|
}
|
|
|
|
select_out:
|
|
return (error);
|
|
}
|
|
#endif
|
|
|
|
int
|
|
linux_mremap(struct thread *td, struct linux_mremap_args *args)
|
|
{
|
|
uintptr_t addr;
|
|
size_t len;
|
|
int error = 0;
|
|
|
|
if (args->flags & ~(LINUX_MREMAP_FIXED | LINUX_MREMAP_MAYMOVE)) {
|
|
td->td_retval[0] = 0;
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* Check for the page alignment.
|
|
* Linux defines PAGE_MASK to be FreeBSD ~PAGE_MASK.
|
|
*/
|
|
if (args->addr & PAGE_MASK) {
|
|
td->td_retval[0] = 0;
|
|
return (EINVAL);
|
|
}
|
|
|
|
args->new_len = round_page(args->new_len);
|
|
args->old_len = round_page(args->old_len);
|
|
|
|
if (args->new_len > args->old_len) {
|
|
td->td_retval[0] = 0;
|
|
return (ENOMEM);
|
|
}
|
|
|
|
if (args->new_len < args->old_len) {
|
|
addr = args->addr + args->new_len;
|
|
len = args->old_len - args->new_len;
|
|
error = kern_munmap(td, addr, len);
|
|
}
|
|
|
|
td->td_retval[0] = error ? 0 : (uintptr_t)args->addr;
|
|
return (error);
|
|
}
|
|
|
|
#define LINUX_MS_ASYNC 0x0001
|
|
#define LINUX_MS_INVALIDATE 0x0002
|
|
#define LINUX_MS_SYNC 0x0004
|
|
|
|
int
|
|
linux_msync(struct thread *td, struct linux_msync_args *args)
|
|
{
|
|
|
|
return (kern_msync(td, args->addr, args->len,
|
|
args->fl & ~LINUX_MS_SYNC));
|
|
}
|
|
|
|
int
|
|
linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
|
|
{
|
|
|
|
return (linux_mprotect_common(td, PTROUT(uap->addr), uap->len,
|
|
uap->prot));
|
|
}
|
|
|
|
int
|
|
linux_madvise(struct thread *td, struct linux_madvise_args *uap)
|
|
{
|
|
|
|
return (linux_madvise_common(td, PTROUT(uap->addr), uap->len,
|
|
uap->behav));
|
|
}
|
|
|
|
int
|
|
linux_mmap2(struct thread *td, struct linux_mmap2_args *uap)
|
|
{
|
|
#if defined(LINUX_ARCHWANT_MMAP2PGOFF)
|
|
/*
|
|
* For architectures with sizeof (off_t) < sizeof (loff_t) mmap is
|
|
* implemented with mmap2 syscall and the offset is represented in
|
|
* multiples of page size.
|
|
*/
|
|
return (linux_mmap_common(td, PTROUT(uap->addr), uap->len, uap->prot,
|
|
uap->flags, uap->fd, (uint64_t)(uint32_t)uap->pgoff * PAGE_SIZE));
|
|
#else
|
|
return (linux_mmap_common(td, PTROUT(uap->addr), uap->len, uap->prot,
|
|
uap->flags, uap->fd, uap->pgoff));
|
|
#endif
|
|
}
|
|
|
|
#ifdef LINUX_LEGACY_SYSCALLS
|
|
int
|
|
linux_time(struct thread *td, struct linux_time_args *args)
|
|
{
|
|
struct timeval tv;
|
|
l_time_t tm;
|
|
int error;
|
|
|
|
microtime(&tv);
|
|
tm = tv.tv_sec;
|
|
if (args->tm && (error = copyout(&tm, args->tm, sizeof(tm))))
|
|
return (error);
|
|
td->td_retval[0] = tm;
|
|
return (0);
|
|
}
|
|
#endif
|
|
|
|
struct l_times_argv {
|
|
l_clock_t tms_utime;
|
|
l_clock_t tms_stime;
|
|
l_clock_t tms_cutime;
|
|
l_clock_t tms_cstime;
|
|
};
|
|
|
|
/*
|
|
* Glibc versions prior to 2.2.1 always use hard-coded CLK_TCK value.
|
|
* Since 2.2.1 Glibc uses value exported from kernel via AT_CLKTCK
|
|
* auxiliary vector entry.
|
|
*/
|
|
#define CLK_TCK 100
|
|
|
|
#define CONVOTCK(r) (r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK))
|
|
#define CONVNTCK(r) (r.tv_sec * stclohz + r.tv_usec / (1000000 / stclohz))
|
|
|
|
#define CONVTCK(r) (linux_kernver(td) >= LINUX_KERNVER(2,4,0) ? \
|
|
CONVNTCK(r) : CONVOTCK(r))
|
|
|
|
int
|
|
linux_times(struct thread *td, struct linux_times_args *args)
|
|
{
|
|
struct timeval tv, utime, stime, cutime, cstime;
|
|
struct l_times_argv tms;
|
|
struct proc *p;
|
|
int error;
|
|
|
|
if (args->buf != NULL) {
|
|
p = td->td_proc;
|
|
PROC_LOCK(p);
|
|
PROC_STATLOCK(p);
|
|
calcru(p, &utime, &stime);
|
|
PROC_STATUNLOCK(p);
|
|
calccru(p, &cutime, &cstime);
|
|
PROC_UNLOCK(p);
|
|
|
|
tms.tms_utime = CONVTCK(utime);
|
|
tms.tms_stime = CONVTCK(stime);
|
|
|
|
tms.tms_cutime = CONVTCK(cutime);
|
|
tms.tms_cstime = CONVTCK(cstime);
|
|
|
|
if ((error = copyout(&tms, args->buf, sizeof(tms))))
|
|
return (error);
|
|
}
|
|
|
|
microuptime(&tv);
|
|
td->td_retval[0] = (int)CONVTCK(tv);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
linux_newuname(struct thread *td, struct linux_newuname_args *args)
|
|
{
|
|
struct l_new_utsname utsname;
|
|
char osname[LINUX_MAX_UTSNAME];
|
|
char osrelease[LINUX_MAX_UTSNAME];
|
|
char *p;
|
|
|
|
linux_get_osname(td, osname);
|
|
linux_get_osrelease(td, osrelease);
|
|
|
|
bzero(&utsname, sizeof(utsname));
|
|
strlcpy(utsname.sysname, osname, LINUX_MAX_UTSNAME);
|
|
getcredhostname(td->td_ucred, utsname.nodename, LINUX_MAX_UTSNAME);
|
|
getcreddomainname(td->td_ucred, utsname.domainname, LINUX_MAX_UTSNAME);
|
|
strlcpy(utsname.release, osrelease, LINUX_MAX_UTSNAME);
|
|
strlcpy(utsname.version, version, LINUX_MAX_UTSNAME);
|
|
for (p = utsname.version; *p != '\0'; ++p)
|
|
if (*p == '\n') {
|
|
*p = '\0';
|
|
break;
|
|
}
|
|
#if defined(__amd64__)
|
|
/*
|
|
* On amd64, Linux uname(2) needs to return "x86_64"
|
|
* for both 64-bit and 32-bit applications. On 32-bit,
|
|
* the string returned by getauxval(AT_PLATFORM) needs
|
|
* to remain "i686", though.
|
|
*/
|
|
#if defined(COMPAT_LINUX32)
|
|
if (linux32_emulate_i386)
|
|
strlcpy(utsname.machine, "i686", LINUX_MAX_UTSNAME);
|
|
else
|
|
#endif
|
|
strlcpy(utsname.machine, "x86_64", LINUX_MAX_UTSNAME);
|
|
#elif defined(__aarch64__)
|
|
strlcpy(utsname.machine, "aarch64", LINUX_MAX_UTSNAME);
|
|
#elif defined(__i386__)
|
|
strlcpy(utsname.machine, "i686", LINUX_MAX_UTSNAME);
|
|
#endif
|
|
|
|
return (copyout(&utsname, args->buf, sizeof(utsname)));
|
|
}
|
|
|
|
struct l_utimbuf {
|
|
l_time_t l_actime;
|
|
l_time_t l_modtime;
|
|
};
|
|
|
|
#ifdef LINUX_LEGACY_SYSCALLS
|
|
int
|
|
linux_utime(struct thread *td, struct linux_utime_args *args)
|
|
{
|
|
struct timeval tv[2], *tvp;
|
|
struct l_utimbuf lut;
|
|
int error;
|
|
|
|
if (args->times) {
|
|
if ((error = copyin(args->times, &lut, sizeof lut)) != 0)
|
|
return (error);
|
|
tv[0].tv_sec = lut.l_actime;
|
|
tv[0].tv_usec = 0;
|
|
tv[1].tv_sec = lut.l_modtime;
|
|
tv[1].tv_usec = 0;
|
|
tvp = tv;
|
|
} else
|
|
tvp = NULL;
|
|
|
|
return (kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE,
|
|
tvp, UIO_SYSSPACE));
|
|
}
|
|
#endif
|
|
|
|
#ifdef LINUX_LEGACY_SYSCALLS
|
|
int
|
|
linux_utimes(struct thread *td, struct linux_utimes_args *args)
|
|
{
|
|
l_timeval ltv[2];
|
|
struct timeval tv[2], *tvp = NULL;
|
|
int error;
|
|
|
|
if (args->tptr != NULL) {
|
|
if ((error = copyin(args->tptr, ltv, sizeof ltv)) != 0)
|
|
return (error);
|
|
tv[0].tv_sec = ltv[0].tv_sec;
|
|
tv[0].tv_usec = ltv[0].tv_usec;
|
|
tv[1].tv_sec = ltv[1].tv_sec;
|
|
tv[1].tv_usec = ltv[1].tv_usec;
|
|
tvp = tv;
|
|
}
|
|
|
|
return (kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE,
|
|
tvp, UIO_SYSSPACE));
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
linux_utimensat_lts_to_ts(struct l_timespec *l_times, struct timespec *times)
|
|
{
|
|
|
|
if (l_times->tv_nsec != LINUX_UTIME_OMIT &&
|
|
l_times->tv_nsec != LINUX_UTIME_NOW &&
|
|
(l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999))
|
|
return (EINVAL);
|
|
|
|
times->tv_sec = l_times->tv_sec;
|
|
switch (l_times->tv_nsec)
|
|
{
|
|
case LINUX_UTIME_OMIT:
|
|
times->tv_nsec = UTIME_OMIT;
|
|
break;
|
|
case LINUX_UTIME_NOW:
|
|
times->tv_nsec = UTIME_NOW;
|
|
break;
|
|
default:
|
|
times->tv_nsec = l_times->tv_nsec;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
linux_common_utimensat(struct thread *td, int ldfd, const char *pathname,
|
|
struct timespec *timesp, int lflags)
|
|
{
|
|
int dfd, flags = 0;
|
|
|
|
dfd = (ldfd == LINUX_AT_FDCWD) ? AT_FDCWD : ldfd;
|
|
|
|
if (lflags & ~(LINUX_AT_SYMLINK_NOFOLLOW | LINUX_AT_EMPTY_PATH))
|
|
return (EINVAL);
|
|
|
|
if (timesp != NULL) {
|
|
/* This breaks POSIX, but is what the Linux kernel does
|
|
* _on purpose_ (documented in the man page for utimensat(2)),
|
|
* so we must follow that behaviour. */
|
|
if (timesp[0].tv_nsec == UTIME_OMIT &&
|
|
timesp[1].tv_nsec == UTIME_OMIT)
|
|
return (0);
|
|
}
|
|
|
|
if (lflags & LINUX_AT_SYMLINK_NOFOLLOW)
|
|
flags |= AT_SYMLINK_NOFOLLOW;
|
|
if (lflags & LINUX_AT_EMPTY_PATH)
|
|
flags |= AT_EMPTY_PATH;
|
|
|
|
if (pathname != NULL)
|
|
return (kern_utimensat(td, dfd, pathname,
|
|
UIO_USERSPACE, timesp, UIO_SYSSPACE, flags));
|
|
|
|
if (lflags != 0)
|
|
return (EINVAL);
|
|
|
|
return (kern_futimens(td, dfd, timesp, UIO_SYSSPACE));
|
|
}
|
|
|
|
int
|
|
linux_utimensat(struct thread *td, struct linux_utimensat_args *args)
|
|
{
|
|
struct l_timespec l_times[2];
|
|
struct timespec times[2], *timesp;
|
|
int error;
|
|
|
|
if (args->times != NULL) {
|
|
error = copyin(args->times, l_times, sizeof(l_times));
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
error = linux_utimensat_lts_to_ts(&l_times[0], ×[0]);
|
|
if (error != 0)
|
|
return (error);
|
|
error = linux_utimensat_lts_to_ts(&l_times[1], ×[1]);
|
|
if (error != 0)
|
|
return (error);
|
|
timesp = times;
|
|
} else
|
|
timesp = NULL;
|
|
|
|
return (linux_common_utimensat(td, args->dfd, args->pathname,
|
|
timesp, args->flags));
|
|
}
|
|
|
|
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
|
|
static int
|
|
linux_utimensat_lts64_to_ts(struct l_timespec64 *l_times, struct timespec *times)
|
|
{
|
|
|
|
/* Zero out the padding in compat mode. */
|
|
l_times->tv_nsec &= 0xFFFFFFFFUL;
|
|
|
|
if (l_times->tv_nsec != LINUX_UTIME_OMIT &&
|
|
l_times->tv_nsec != LINUX_UTIME_NOW &&
|
|
(l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999))
|
|
return (EINVAL);
|
|
|
|
times->tv_sec = l_times->tv_sec;
|
|
switch (l_times->tv_nsec)
|
|
{
|
|
case LINUX_UTIME_OMIT:
|
|
times->tv_nsec = UTIME_OMIT;
|
|
break;
|
|
case LINUX_UTIME_NOW:
|
|
times->tv_nsec = UTIME_NOW;
|
|
break;
|
|
default:
|
|
times->tv_nsec = l_times->tv_nsec;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
linux_utimensat_time64(struct thread *td, struct linux_utimensat_time64_args *args)
|
|
{
|
|
struct l_timespec64 l_times[2];
|
|
struct timespec times[2], *timesp;
|
|
int error;
|
|
|
|
if (args->times64 != NULL) {
|
|
error = copyin(args->times64, l_times, sizeof(l_times));
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
error = linux_utimensat_lts64_to_ts(&l_times[0], ×[0]);
|
|
if (error != 0)
|
|
return (error);
|
|
error = linux_utimensat_lts64_to_ts(&l_times[1], ×[1]);
|
|
if (error != 0)
|
|
return (error);
|
|
timesp = times;
|
|
} else
|
|
timesp = NULL;
|
|
|
|
return (linux_common_utimensat(td, args->dfd, args->pathname,
|
|
timesp, args->flags));
|
|
}
|
|
#endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
|
|
|
|
#ifdef LINUX_LEGACY_SYSCALLS
|
|
int
|
|
linux_futimesat(struct thread *td, struct linux_futimesat_args *args)
|
|
{
|
|
l_timeval ltv[2];
|
|
struct timeval tv[2], *tvp = NULL;
|
|
int error, dfd;
|
|
|
|
dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
|
|
|
|
if (args->utimes != NULL) {
|
|
if ((error = copyin(args->utimes, ltv, sizeof ltv)) != 0)
|
|
return (error);
|
|
tv[0].tv_sec = ltv[0].tv_sec;
|
|
tv[0].tv_usec = ltv[0].tv_usec;
|
|
tv[1].tv_sec = ltv[1].tv_sec;
|
|
tv[1].tv_usec = ltv[1].tv_usec;
|
|
tvp = tv;
|
|
}
|
|
|
|
return (kern_utimesat(td, dfd, args->filename, UIO_USERSPACE,
|
|
tvp, UIO_SYSSPACE));
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
linux_common_wait(struct thread *td, idtype_t idtype, int id, int *statusp,
|
|
int options, void *rup, l_siginfo_t *infop)
|
|
{
|
|
l_siginfo_t lsi;
|
|
siginfo_t siginfo;
|
|
struct __wrusage wru;
|
|
int error, status, tmpstat, sig;
|
|
|
|
error = kern_wait6(td, idtype, id, &status, options,
|
|
rup != NULL ? &wru : NULL, &siginfo);
|
|
|
|
if (error == 0 && statusp) {
|
|
tmpstat = status & 0xffff;
|
|
if (WIFSIGNALED(tmpstat)) {
|
|
tmpstat = (tmpstat & 0xffffff80) |
|
|
bsd_to_linux_signal(WTERMSIG(tmpstat));
|
|
} else if (WIFSTOPPED(tmpstat)) {
|
|
tmpstat = (tmpstat & 0xffff00ff) |
|
|
(bsd_to_linux_signal(WSTOPSIG(tmpstat)) << 8);
|
|
#if defined(__aarch64__) || (defined(__amd64__) && !defined(COMPAT_LINUX32))
|
|
if (WSTOPSIG(status) == SIGTRAP) {
|
|
tmpstat = linux_ptrace_status(td,
|
|
siginfo.si_pid, tmpstat);
|
|
}
|
|
#endif
|
|
} else if (WIFCONTINUED(tmpstat)) {
|
|
tmpstat = 0xffff;
|
|
}
|
|
error = copyout(&tmpstat, statusp, sizeof(int));
|
|
}
|
|
if (error == 0 && rup != NULL)
|
|
error = linux_copyout_rusage(&wru.wru_self, rup);
|
|
if (error == 0 && infop != NULL && td->td_retval[0] != 0) {
|
|
sig = bsd_to_linux_signal(siginfo.si_signo);
|
|
siginfo_to_lsiginfo(&siginfo, &lsi, sig);
|
|
error = copyout(&lsi, infop, sizeof(lsi));
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
|
|
int
|
|
linux_waitpid(struct thread *td, struct linux_waitpid_args *args)
|
|
{
|
|
struct linux_wait4_args wait4_args = {
|
|
.pid = args->pid,
|
|
.status = args->status,
|
|
.options = args->options,
|
|
.rusage = NULL,
|
|
};
|
|
|
|
return (linux_wait4(td, &wait4_args));
|
|
}
|
|
#endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
|
|
|
|
int
|
|
linux_wait4(struct thread *td, struct linux_wait4_args *args)
|
|
{
|
|
struct proc *p;
|
|
int options, id, idtype;
|
|
|
|
if (args->options & ~(LINUX_WUNTRACED | LINUX_WNOHANG |
|
|
LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL))
|
|
return (EINVAL);
|
|
|
|
/* -INT_MIN is not defined. */
|
|
if (args->pid == INT_MIN)
|
|
return (ESRCH);
|
|
|
|
options = 0;
|
|
linux_to_bsd_waitopts(args->options, &options);
|
|
|
|
/*
|
|
* For backward compatibility we implicitly add flags WEXITED
|
|
* and WTRAPPED here.
|
|
*/
|
|
options |= WEXITED | WTRAPPED;
|
|
|
|
if (args->pid == WAIT_ANY) {
|
|
idtype = P_ALL;
|
|
id = 0;
|
|
} else if (args->pid < 0) {
|
|
idtype = P_PGID;
|
|
id = (id_t)-args->pid;
|
|
} else if (args->pid == 0) {
|
|
idtype = P_PGID;
|
|
p = td->td_proc;
|
|
PROC_LOCK(p);
|
|
id = p->p_pgid;
|
|
PROC_UNLOCK(p);
|
|
} else {
|
|
idtype = P_PID;
|
|
id = (id_t)args->pid;
|
|
}
|
|
|
|
return (linux_common_wait(td, idtype, id, args->status, options,
|
|
args->rusage, NULL));
|
|
}
|
|
|
|
int
|
|
linux_waitid(struct thread *td, struct linux_waitid_args *args)
|
|
{
|
|
idtype_t idtype;
|
|
int error, options;
|
|
struct proc *p;
|
|
pid_t id;
|
|
|
|
if (args->options & ~(LINUX_WNOHANG | LINUX_WNOWAIT | LINUX_WEXITED |
|
|
LINUX_WSTOPPED | LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL))
|
|
return (EINVAL);
|
|
|
|
options = 0;
|
|
linux_to_bsd_waitopts(args->options, &options);
|
|
|
|
id = args->id;
|
|
switch (args->idtype) {
|
|
case LINUX_P_ALL:
|
|
idtype = P_ALL;
|
|
break;
|
|
case LINUX_P_PID:
|
|
if (args->id <= 0)
|
|
return (EINVAL);
|
|
idtype = P_PID;
|
|
break;
|
|
case LINUX_P_PGID:
|
|
if (linux_kernver(td) >= LINUX_KERNVER(5,4,0) && args->id == 0) {
|
|
p = td->td_proc;
|
|
PROC_LOCK(p);
|
|
id = p->p_pgid;
|
|
PROC_UNLOCK(p);
|
|
} else if (args->id <= 0)
|
|
return (EINVAL);
|
|
idtype = P_PGID;
|
|
break;
|
|
case LINUX_P_PIDFD:
|
|
LINUX_RATELIMIT_MSG("unsupported waitid P_PIDFD idtype");
|
|
return (ENOSYS);
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
error = linux_common_wait(td, idtype, id, NULL, options,
|
|
args->rusage, args->info);
|
|
td->td_retval[0] = 0;
|
|
|
|
return (error);
|
|
}
|
|
|
|
#ifdef LINUX_LEGACY_SYSCALLS
|
|
int
|
|
linux_mknod(struct thread *td, struct linux_mknod_args *args)
|
|
{
|
|
int error;
|
|
|
|
switch (args->mode & S_IFMT) {
|
|
case S_IFIFO:
|
|
case S_IFSOCK:
|
|
error = kern_mkfifoat(td, AT_FDCWD, args->path, UIO_USERSPACE,
|
|
args->mode);
|
|
break;
|
|
|
|
case S_IFCHR:
|
|
case S_IFBLK:
|
|
error = kern_mknodat(td, AT_FDCWD, args->path, UIO_USERSPACE,
|
|
args->mode, linux_decode_dev(args->dev));
|
|
break;
|
|
|
|
case S_IFDIR:
|
|
error = EPERM;
|
|
break;
|
|
|
|
case 0:
|
|
args->mode |= S_IFREG;
|
|
/* FALLTHROUGH */
|
|
case S_IFREG:
|
|
error = kern_openat(td, AT_FDCWD, args->path, UIO_USERSPACE,
|
|
O_WRONLY | O_CREAT | O_TRUNC, args->mode);
|
|
if (error == 0)
|
|
kern_close(td, td->td_retval[0]);
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|
|
#endif
|
|
|
|
int
|
|
linux_mknodat(struct thread *td, struct linux_mknodat_args *args)
|
|
{
|
|
int error, dfd;
|
|
|
|
dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
|
|
|
|
switch (args->mode & S_IFMT) {
|
|
case S_IFIFO:
|
|
case S_IFSOCK:
|
|
error = kern_mkfifoat(td, dfd, args->filename, UIO_USERSPACE,
|
|
args->mode);
|
|
break;
|
|
|
|
case S_IFCHR:
|
|
case S_IFBLK:
|
|
error = kern_mknodat(td, dfd, args->filename, UIO_USERSPACE,
|
|
args->mode, linux_decode_dev(args->dev));
|
|
break;
|
|
|
|
case S_IFDIR:
|
|
error = EPERM;
|
|
break;
|
|
|
|
case 0:
|
|
args->mode |= S_IFREG;
|
|
/* FALLTHROUGH */
|
|
case S_IFREG:
|
|
error = kern_openat(td, dfd, args->filename, UIO_USERSPACE,
|
|
O_WRONLY | O_CREAT | O_TRUNC, args->mode);
|
|
if (error == 0)
|
|
kern_close(td, td->td_retval[0]);
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* UGH! This is just about the dumbest idea I've ever heard!!
|
|
*/
|
|
int
|
|
linux_personality(struct thread *td, struct linux_personality_args *args)
|
|
{
|
|
struct linux_pemuldata *pem;
|
|
struct proc *p = td->td_proc;
|
|
uint32_t old;
|
|
|
|
PROC_LOCK(p);
|
|
pem = pem_find(p);
|
|
old = pem->persona;
|
|
if (args->per != 0xffffffff)
|
|
pem->persona = args->per;
|
|
PROC_UNLOCK(p);
|
|
|
|
td->td_retval[0] = old;
|
|
return (0);
|
|
}
|
|
|
|
struct l_itimerval {
|
|
l_timeval it_interval;
|
|
l_timeval it_value;
|
|
};
|
|
|
|
#define B2L_ITIMERVAL(bip, lip) \
|
|
(bip)->it_interval.tv_sec = (lip)->it_interval.tv_sec; \
|
|
(bip)->it_interval.tv_usec = (lip)->it_interval.tv_usec; \
|
|
(bip)->it_value.tv_sec = (lip)->it_value.tv_sec; \
|
|
(bip)->it_value.tv_usec = (lip)->it_value.tv_usec;
|
|
|
|
int
|
|
linux_setitimer(struct thread *td, struct linux_setitimer_args *uap)
|
|
{
|
|
int error;
|
|
struct l_itimerval ls;
|
|
struct itimerval aitv, oitv;
|
|
|
|
if (uap->itv == NULL) {
|
|
uap->itv = uap->oitv;
|
|
return (linux_getitimer(td, (struct linux_getitimer_args *)uap));
|
|
}
|
|
|
|
error = copyin(uap->itv, &ls, sizeof(ls));
|
|
if (error != 0)
|
|
return (error);
|
|
B2L_ITIMERVAL(&aitv, &ls);
|
|
error = kern_setitimer(td, uap->which, &aitv, &oitv);
|
|
if (error != 0 || uap->oitv == NULL)
|
|
return (error);
|
|
B2L_ITIMERVAL(&ls, &oitv);
|
|
|
|
return (copyout(&ls, uap->oitv, sizeof(ls)));
|
|
}
|
|
|
|
int
|
|
linux_getitimer(struct thread *td, struct linux_getitimer_args *uap)
|
|
{
|
|
int error;
|
|
struct l_itimerval ls;
|
|
struct itimerval aitv;
|
|
|
|
error = kern_getitimer(td, uap->which, &aitv);
|
|
if (error != 0)
|
|
return (error);
|
|
B2L_ITIMERVAL(&ls, &aitv);
|
|
return (copyout(&ls, uap->itv, sizeof(ls)));
|
|
}
|
|
|
|
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
|
|
int
|
|
linux_nice(struct thread *td, struct linux_nice_args *args)
|
|
{
|
|
|
|
return (kern_setpriority(td, PRIO_PROCESS, 0, args->inc));
|
|
}
|
|
#endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
|
|
|
|
int
|
|
linux_setgroups(struct thread *td, struct linux_setgroups_args *args)
|
|
{
|
|
struct ucred *newcred, *oldcred;
|
|
l_gid_t *linux_gidset;
|
|
gid_t *bsd_gidset;
|
|
int ngrp, error;
|
|
struct proc *p;
|
|
|
|
ngrp = args->gidsetsize;
|
|
if (ngrp < 0 || ngrp >= ngroups_max + 1)
|
|
return (EINVAL);
|
|
linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_LINUX, M_WAITOK);
|
|
error = copyin(args->grouplist, linux_gidset, ngrp * sizeof(l_gid_t));
|
|
if (error)
|
|
goto out;
|
|
newcred = crget();
|
|
crextend(newcred, ngrp + 1);
|
|
p = td->td_proc;
|
|
PROC_LOCK(p);
|
|
oldcred = p->p_ucred;
|
|
crcopy(newcred, oldcred);
|
|
|
|
/*
|
|
* cr_groups[0] holds egid. Setting the whole set from
|
|
* the supplied set will cause egid to be changed too.
|
|
* Keep cr_groups[0] unchanged to prevent that.
|
|
*/
|
|
|
|
if ((error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS)) != 0) {
|
|
PROC_UNLOCK(p);
|
|
crfree(newcred);
|
|
goto out;
|
|
}
|
|
|
|
if (ngrp > 0) {
|
|
newcred->cr_ngroups = ngrp + 1;
|
|
|
|
bsd_gidset = newcred->cr_groups;
|
|
ngrp--;
|
|
while (ngrp >= 0) {
|
|
bsd_gidset[ngrp + 1] = linux_gidset[ngrp];
|
|
ngrp--;
|
|
}
|
|
} else
|
|
newcred->cr_ngroups = 1;
|
|
|
|
setsugid(p);
|
|
proc_set_cred(p, newcred);
|
|
PROC_UNLOCK(p);
|
|
crfree(oldcred);
|
|
error = 0;
|
|
out:
|
|
free(linux_gidset, M_LINUX);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
linux_getgroups(struct thread *td, struct linux_getgroups_args *args)
|
|
{
|
|
struct ucred *cred;
|
|
l_gid_t *linux_gidset;
|
|
gid_t *bsd_gidset;
|
|
int bsd_gidsetsz, ngrp, error;
|
|
|
|
cred = td->td_ucred;
|
|
bsd_gidset = cred->cr_groups;
|
|
bsd_gidsetsz = cred->cr_ngroups - 1;
|
|
|
|
/*
|
|
* cr_groups[0] holds egid. Returning the whole set
|
|
* here will cause a duplicate. Exclude cr_groups[0]
|
|
* to prevent that.
|
|
*/
|
|
|
|
if ((ngrp = args->gidsetsize) == 0) {
|
|
td->td_retval[0] = bsd_gidsetsz;
|
|
return (0);
|
|
}
|
|
|
|
if (ngrp < bsd_gidsetsz)
|
|
return (EINVAL);
|
|
|
|
ngrp = 0;
|
|
linux_gidset = malloc(bsd_gidsetsz * sizeof(*linux_gidset),
|
|
M_LINUX, M_WAITOK);
|
|
while (ngrp < bsd_gidsetsz) {
|
|
linux_gidset[ngrp] = bsd_gidset[ngrp + 1];
|
|
ngrp++;
|
|
}
|
|
|
|
error = copyout(linux_gidset, args->grouplist, ngrp * sizeof(l_gid_t));
|
|
free(linux_gidset, M_LINUX);
|
|
if (error)
|
|
return (error);
|
|
|
|
td->td_retval[0] = ngrp;
|
|
return (0);
|
|
}
|
|
|
|
static bool
|
|
linux_get_dummy_limit(struct thread *td, l_uint resource, struct rlimit *rlim)
|
|
{
|
|
ssize_t size;
|
|
int res, error;
|
|
|
|
if (linux_dummy_rlimits == 0)
|
|
return (false);
|
|
|
|
switch (resource) {
|
|
case LINUX_RLIMIT_LOCKS:
|
|
case LINUX_RLIMIT_RTTIME:
|
|
rlim->rlim_cur = LINUX_RLIM_INFINITY;
|
|
rlim->rlim_max = LINUX_RLIM_INFINITY;
|
|
return (true);
|
|
case LINUX_RLIMIT_NICE:
|
|
case LINUX_RLIMIT_RTPRIO:
|
|
rlim->rlim_cur = 0;
|
|
rlim->rlim_max = 0;
|
|
return (true);
|
|
case LINUX_RLIMIT_SIGPENDING:
|
|
error = kernel_sysctlbyname(td,
|
|
"kern.sigqueue.max_pending_per_proc",
|
|
&res, &size, 0, 0, 0, 0);
|
|
if (error != 0)
|
|
return (false);
|
|
rlim->rlim_cur = res;
|
|
rlim->rlim_max = res;
|
|
return (true);
|
|
case LINUX_RLIMIT_MSGQUEUE:
|
|
error = kernel_sysctlbyname(td,
|
|
"kern.ipc.msgmnb", &res, &size, 0, 0, 0, 0);
|
|
if (error != 0)
|
|
return (false);
|
|
rlim->rlim_cur = res;
|
|
rlim->rlim_max = res;
|
|
return (true);
|
|
default:
|
|
return (false);
|
|
}
|
|
}
|
|
|
|
int
|
|
linux_setrlimit(struct thread *td, struct linux_setrlimit_args *args)
|
|
{
|
|
struct rlimit bsd_rlim;
|
|
struct l_rlimit rlim;
|
|
u_int which;
|
|
int error;
|
|
|
|
if (args->resource >= LINUX_RLIM_NLIMITS)
|
|
return (EINVAL);
|
|
|
|
which = linux_to_bsd_resource[args->resource];
|
|
if (which == -1)
|
|
return (EINVAL);
|
|
|
|
error = copyin(args->rlim, &rlim, sizeof(rlim));
|
|
if (error)
|
|
return (error);
|
|
|
|
bsd_rlim.rlim_cur = (rlim_t)rlim.rlim_cur;
|
|
bsd_rlim.rlim_max = (rlim_t)rlim.rlim_max;
|
|
return (kern_setrlimit(td, which, &bsd_rlim));
|
|
}
|
|
|
|
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
|
|
int
|
|
linux_old_getrlimit(struct thread *td, struct linux_old_getrlimit_args *args)
|
|
{
|
|
struct l_rlimit rlim;
|
|
struct rlimit bsd_rlim;
|
|
u_int which;
|
|
|
|
if (linux_get_dummy_limit(td, args->resource, &bsd_rlim)) {
|
|
rlim.rlim_cur = bsd_rlim.rlim_cur;
|
|
rlim.rlim_max = bsd_rlim.rlim_max;
|
|
return (copyout(&rlim, args->rlim, sizeof(rlim)));
|
|
}
|
|
|
|
if (args->resource >= LINUX_RLIM_NLIMITS)
|
|
return (EINVAL);
|
|
|
|
which = linux_to_bsd_resource[args->resource];
|
|
if (which == -1)
|
|
return (EINVAL);
|
|
|
|
lim_rlimit(td, which, &bsd_rlim);
|
|
|
|
#ifdef COMPAT_LINUX32
|
|
rlim.rlim_cur = (unsigned int)bsd_rlim.rlim_cur;
|
|
if (rlim.rlim_cur == UINT_MAX)
|
|
rlim.rlim_cur = INT_MAX;
|
|
rlim.rlim_max = (unsigned int)bsd_rlim.rlim_max;
|
|
if (rlim.rlim_max == UINT_MAX)
|
|
rlim.rlim_max = INT_MAX;
|
|
#else
|
|
rlim.rlim_cur = (unsigned long)bsd_rlim.rlim_cur;
|
|
if (rlim.rlim_cur == ULONG_MAX)
|
|
rlim.rlim_cur = LONG_MAX;
|
|
rlim.rlim_max = (unsigned long)bsd_rlim.rlim_max;
|
|
if (rlim.rlim_max == ULONG_MAX)
|
|
rlim.rlim_max = LONG_MAX;
|
|
#endif
|
|
return (copyout(&rlim, args->rlim, sizeof(rlim)));
|
|
}
|
|
#endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
|
|
|
|
int
|
|
linux_getrlimit(struct thread *td, struct linux_getrlimit_args *args)
|
|
{
|
|
struct l_rlimit rlim;
|
|
struct rlimit bsd_rlim;
|
|
u_int which;
|
|
|
|
if (linux_get_dummy_limit(td, args->resource, &bsd_rlim)) {
|
|
rlim.rlim_cur = bsd_rlim.rlim_cur;
|
|
rlim.rlim_max = bsd_rlim.rlim_max;
|
|
return (copyout(&rlim, args->rlim, sizeof(rlim)));
|
|
}
|
|
|
|
if (args->resource >= LINUX_RLIM_NLIMITS)
|
|
return (EINVAL);
|
|
|
|
which = linux_to_bsd_resource[args->resource];
|
|
if (which == -1)
|
|
return (EINVAL);
|
|
|
|
lim_rlimit(td, which, &bsd_rlim);
|
|
|
|
rlim.rlim_cur = (l_ulong)bsd_rlim.rlim_cur;
|
|
rlim.rlim_max = (l_ulong)bsd_rlim.rlim_max;
|
|
return (copyout(&rlim, args->rlim, sizeof(rlim)));
|
|
}
|
|
|
|
int
|
|
linux_sched_setscheduler(struct thread *td,
|
|
struct linux_sched_setscheduler_args *args)
|
|
{
|
|
struct sched_param sched_param;
|
|
struct thread *tdt;
|
|
int error, policy;
|
|
|
|
switch (args->policy) {
|
|
case LINUX_SCHED_OTHER:
|
|
policy = SCHED_OTHER;
|
|
break;
|
|
case LINUX_SCHED_FIFO:
|
|
policy = SCHED_FIFO;
|
|
break;
|
|
case LINUX_SCHED_RR:
|
|
policy = SCHED_RR;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
error = copyin(args->param, &sched_param, sizeof(sched_param));
|
|
if (error)
|
|
return (error);
|
|
|
|
if (linux_map_sched_prio) {
|
|
switch (policy) {
|
|
case SCHED_OTHER:
|
|
if (sched_param.sched_priority != 0)
|
|
return (EINVAL);
|
|
|
|
sched_param.sched_priority =
|
|
PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE;
|
|
break;
|
|
case SCHED_FIFO:
|
|
case SCHED_RR:
|
|
if (sched_param.sched_priority < 1 ||
|
|
sched_param.sched_priority >= LINUX_MAX_RT_PRIO)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* Map [1, LINUX_MAX_RT_PRIO - 1] to
|
|
* [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down).
|
|
*/
|
|
sched_param.sched_priority =
|
|
(sched_param.sched_priority - 1) *
|
|
(RTP_PRIO_MAX - RTP_PRIO_MIN + 1) /
|
|
(LINUX_MAX_RT_PRIO - 1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
tdt = linux_tdfind(td, args->pid, -1);
|
|
if (tdt == NULL)
|
|
return (ESRCH);
|
|
|
|
error = kern_sched_setscheduler(td, tdt, policy, &sched_param);
|
|
PROC_UNLOCK(tdt->td_proc);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
linux_sched_getscheduler(struct thread *td,
|
|
struct linux_sched_getscheduler_args *args)
|
|
{
|
|
struct thread *tdt;
|
|
int error, policy;
|
|
|
|
tdt = linux_tdfind(td, args->pid, -1);
|
|
if (tdt == NULL)
|
|
return (ESRCH);
|
|
|
|
error = kern_sched_getscheduler(td, tdt, &policy);
|
|
PROC_UNLOCK(tdt->td_proc);
|
|
|
|
switch (policy) {
|
|
case SCHED_OTHER:
|
|
td->td_retval[0] = LINUX_SCHED_OTHER;
|
|
break;
|
|
case SCHED_FIFO:
|
|
td->td_retval[0] = LINUX_SCHED_FIFO;
|
|
break;
|
|
case SCHED_RR:
|
|
td->td_retval[0] = LINUX_SCHED_RR;
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
linux_sched_get_priority_max(struct thread *td,
|
|
struct linux_sched_get_priority_max_args *args)
|
|
{
|
|
struct sched_get_priority_max_args bsd;
|
|
|
|
if (linux_map_sched_prio) {
|
|
switch (args->policy) {
|
|
case LINUX_SCHED_OTHER:
|
|
td->td_retval[0] = 0;
|
|
return (0);
|
|
case LINUX_SCHED_FIFO:
|
|
case LINUX_SCHED_RR:
|
|
td->td_retval[0] = LINUX_MAX_RT_PRIO - 1;
|
|
return (0);
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
}
|
|
|
|
switch (args->policy) {
|
|
case LINUX_SCHED_OTHER:
|
|
bsd.policy = SCHED_OTHER;
|
|
break;
|
|
case LINUX_SCHED_FIFO:
|
|
bsd.policy = SCHED_FIFO;
|
|
break;
|
|
case LINUX_SCHED_RR:
|
|
bsd.policy = SCHED_RR;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
return (sys_sched_get_priority_max(td, &bsd));
|
|
}
|
|
|
|
int
|
|
linux_sched_get_priority_min(struct thread *td,
|
|
struct linux_sched_get_priority_min_args *args)
|
|
{
|
|
struct sched_get_priority_min_args bsd;
|
|
|
|
if (linux_map_sched_prio) {
|
|
switch (args->policy) {
|
|
case LINUX_SCHED_OTHER:
|
|
td->td_retval[0] = 0;
|
|
return (0);
|
|
case LINUX_SCHED_FIFO:
|
|
case LINUX_SCHED_RR:
|
|
td->td_retval[0] = 1;
|
|
return (0);
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
}
|
|
|
|
switch (args->policy) {
|
|
case LINUX_SCHED_OTHER:
|
|
bsd.policy = SCHED_OTHER;
|
|
break;
|
|
case LINUX_SCHED_FIFO:
|
|
bsd.policy = SCHED_FIFO;
|
|
break;
|
|
case LINUX_SCHED_RR:
|
|
bsd.policy = SCHED_RR;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
return (sys_sched_get_priority_min(td, &bsd));
|
|
}
|
|
|
|
#define REBOOT_CAD_ON 0x89abcdef
|
|
#define REBOOT_CAD_OFF 0
|
|
#define REBOOT_HALT 0xcdef0123
|
|
#define REBOOT_RESTART 0x01234567
|
|
#define REBOOT_RESTART2 0xA1B2C3D4
|
|
#define REBOOT_POWEROFF 0x4321FEDC
|
|
#define REBOOT_MAGIC1 0xfee1dead
|
|
#define REBOOT_MAGIC2 0x28121969
|
|
#define REBOOT_MAGIC2A 0x05121996
|
|
#define REBOOT_MAGIC2B 0x16041998
|
|
|
|
int
|
|
linux_reboot(struct thread *td, struct linux_reboot_args *args)
|
|
{
|
|
struct reboot_args bsd_args;
|
|
|
|
if (args->magic1 != REBOOT_MAGIC1)
|
|
return (EINVAL);
|
|
|
|
switch (args->magic2) {
|
|
case REBOOT_MAGIC2:
|
|
case REBOOT_MAGIC2A:
|
|
case REBOOT_MAGIC2B:
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
switch (args->cmd) {
|
|
case REBOOT_CAD_ON:
|
|
case REBOOT_CAD_OFF:
|
|
return (priv_check(td, PRIV_REBOOT));
|
|
case REBOOT_HALT:
|
|
bsd_args.opt = RB_HALT;
|
|
break;
|
|
case REBOOT_RESTART:
|
|
case REBOOT_RESTART2:
|
|
bsd_args.opt = 0;
|
|
break;
|
|
case REBOOT_POWEROFF:
|
|
bsd_args.opt = RB_POWEROFF;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
return (sys_reboot(td, &bsd_args));
|
|
}
|
|
|
|
int
|
|
linux_getpid(struct thread *td, struct linux_getpid_args *args)
|
|
{
|
|
|
|
td->td_retval[0] = td->td_proc->p_pid;
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
linux_gettid(struct thread *td, struct linux_gettid_args *args)
|
|
{
|
|
struct linux_emuldata *em;
|
|
|
|
em = em_find(td);
|
|
KASSERT(em != NULL, ("gettid: emuldata not found.\n"));
|
|
|
|
td->td_retval[0] = em->em_tid;
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
linux_getppid(struct thread *td, struct linux_getppid_args *args)
|
|
{
|
|
|
|
td->td_retval[0] = kern_getppid(td);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
linux_getgid(struct thread *td, struct linux_getgid_args *args)
|
|
{
|
|
|
|
td->td_retval[0] = td->td_ucred->cr_rgid;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
linux_getuid(struct thread *td, struct linux_getuid_args *args)
|
|
{
|
|
|
|
td->td_retval[0] = td->td_ucred->cr_ruid;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
linux_getsid(struct thread *td, struct linux_getsid_args *args)
|
|
{
|
|
|
|
return (kern_getsid(td, args->pid));
|
|
}
|
|
|
|
int
|
|
linux_getpriority(struct thread *td, struct linux_getpriority_args *args)
|
|
{
|
|
int error;
|
|
|
|
error = kern_getpriority(td, args->which, args->who);
|
|
td->td_retval[0] = 20 - td->td_retval[0];
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
linux_sethostname(struct thread *td, struct linux_sethostname_args *args)
|
|
{
|
|
int name[2];
|
|
|
|
name[0] = CTL_KERN;
|
|
name[1] = KERN_HOSTNAME;
|
|
return (userland_sysctl(td, name, 2, 0, 0, 0, args->hostname,
|
|
args->len, 0, 0));
|
|
}
|
|
|
|
int
|
|
linux_setdomainname(struct thread *td, struct linux_setdomainname_args *args)
|
|
{
|
|
int name[2];
|
|
|
|
name[0] = CTL_KERN;
|
|
name[1] = KERN_NISDOMAINNAME;
|
|
return (userland_sysctl(td, name, 2, 0, 0, 0, args->name,
|
|
args->len, 0, 0));
|
|
}
|
|
|
|
int
|
|
linux_exit_group(struct thread *td, struct linux_exit_group_args *args)
|
|
{
|
|
|
|
LINUX_CTR2(exit_group, "thread(%d) (%d)", td->td_tid,
|
|
args->error_code);
|
|
|
|
/*
|
|
* XXX: we should send a signal to the parent if
|
|
* SIGNAL_EXIT_GROUP is set. We ignore that (temporarily?)
|
|
* as it doesnt occur often.
|
|
*/
|
|
exit1(td, args->error_code, 0);
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
#define _LINUX_CAPABILITY_VERSION_1 0x19980330
|
|
#define _LINUX_CAPABILITY_VERSION_2 0x20071026
|
|
#define _LINUX_CAPABILITY_VERSION_3 0x20080522
|
|
|
|
struct l_user_cap_header {
|
|
l_int version;
|
|
l_int pid;
|
|
};
|
|
|
|
struct l_user_cap_data {
|
|
l_int effective;
|
|
l_int permitted;
|
|
l_int inheritable;
|
|
};
|
|
|
|
int
|
|
linux_capget(struct thread *td, struct linux_capget_args *uap)
|
|
{
|
|
struct l_user_cap_header luch;
|
|
struct l_user_cap_data lucd[2];
|
|
int error, u32s;
|
|
|
|
if (uap->hdrp == NULL)
|
|
return (EFAULT);
|
|
|
|
error = copyin(uap->hdrp, &luch, sizeof(luch));
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
switch (luch.version) {
|
|
case _LINUX_CAPABILITY_VERSION_1:
|
|
u32s = 1;
|
|
break;
|
|
case _LINUX_CAPABILITY_VERSION_2:
|
|
case _LINUX_CAPABILITY_VERSION_3:
|
|
u32s = 2;
|
|
break;
|
|
default:
|
|
luch.version = _LINUX_CAPABILITY_VERSION_1;
|
|
error = copyout(&luch, uap->hdrp, sizeof(luch));
|
|
if (error)
|
|
return (error);
|
|
return (EINVAL);
|
|
}
|
|
|
|
if (luch.pid)
|
|
return (EPERM);
|
|
|
|
if (uap->datap) {
|
|
/*
|
|
* The current implementation doesn't support setting
|
|
* a capability (it's essentially a stub) so indicate
|
|
* that no capabilities are currently set or available
|
|
* to request.
|
|
*/
|
|
memset(&lucd, 0, u32s * sizeof(lucd[0]));
|
|
error = copyout(&lucd, uap->datap, u32s * sizeof(lucd[0]));
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
linux_capset(struct thread *td, struct linux_capset_args *uap)
|
|
{
|
|
struct l_user_cap_header luch;
|
|
struct l_user_cap_data lucd[2];
|
|
int error, i, u32s;
|
|
|
|
if (uap->hdrp == NULL || uap->datap == NULL)
|
|
return (EFAULT);
|
|
|
|
error = copyin(uap->hdrp, &luch, sizeof(luch));
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
switch (luch.version) {
|
|
case _LINUX_CAPABILITY_VERSION_1:
|
|
u32s = 1;
|
|
break;
|
|
case _LINUX_CAPABILITY_VERSION_2:
|
|
case _LINUX_CAPABILITY_VERSION_3:
|
|
u32s = 2;
|
|
break;
|
|
default:
|
|
luch.version = _LINUX_CAPABILITY_VERSION_1;
|
|
error = copyout(&luch, uap->hdrp, sizeof(luch));
|
|
if (error)
|
|
return (error);
|
|
return (EINVAL);
|
|
}
|
|
|
|
if (luch.pid)
|
|
return (EPERM);
|
|
|
|
error = copyin(uap->datap, &lucd, u32s * sizeof(lucd[0]));
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/* We currently don't support setting any capabilities. */
|
|
for (i = 0; i < u32s; i++) {
|
|
if (lucd[i].effective || lucd[i].permitted ||
|
|
lucd[i].inheritable) {
|
|
linux_msg(td,
|
|
"capset[%d] effective=0x%x, permitted=0x%x, "
|
|
"inheritable=0x%x is not implemented", i,
|
|
(int)lucd[i].effective, (int)lucd[i].permitted,
|
|
(int)lucd[i].inheritable);
|
|
return (EPERM);
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
linux_prctl(struct thread *td, struct linux_prctl_args *args)
|
|
{
|
|
int error = 0, max_size, arg;
|
|
struct proc *p = td->td_proc;
|
|
char comm[LINUX_MAX_COMM_LEN];
|
|
int pdeath_signal, trace_state;
|
|
|
|
switch (args->option) {
|
|
case LINUX_PR_SET_PDEATHSIG:
|
|
if (!LINUX_SIG_VALID(args->arg2))
|
|
return (EINVAL);
|
|
pdeath_signal = linux_to_bsd_signal(args->arg2);
|
|
return (kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_CTL,
|
|
&pdeath_signal));
|
|
case LINUX_PR_GET_PDEATHSIG:
|
|
error = kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_STATUS,
|
|
&pdeath_signal);
|
|
if (error != 0)
|
|
return (error);
|
|
pdeath_signal = bsd_to_linux_signal(pdeath_signal);
|
|
return (copyout(&pdeath_signal,
|
|
(void *)(register_t)args->arg2,
|
|
sizeof(pdeath_signal)));
|
|
/*
|
|
* In Linux, this flag controls if set[gu]id processes can coredump.
|
|
* There are additional semantics imposed on processes that cannot
|
|
* coredump:
|
|
* - Such processes can not be ptraced.
|
|
* - There are some semantics around ownership of process-related files
|
|
* in the /proc namespace.
|
|
*
|
|
* In FreeBSD, we can (and by default, do) disable setuid coredump
|
|
* system-wide with 'sugid_coredump.' We control tracability on a
|
|
* per-process basis with the procctl PROC_TRACE (=> P2_NOTRACE flag).
|
|
* By happy coincidence, P2_NOTRACE also prevents coredumping. So the
|
|
* procctl is roughly analogous to Linux's DUMPABLE.
|
|
*
|
|
* So, proxy these knobs to the corresponding PROC_TRACE setting.
|
|
*/
|
|
case LINUX_PR_GET_DUMPABLE:
|
|
error = kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_STATUS,
|
|
&trace_state);
|
|
if (error != 0)
|
|
return (error);
|
|
td->td_retval[0] = (trace_state != -1);
|
|
return (0);
|
|
case LINUX_PR_SET_DUMPABLE:
|
|
/*
|
|
* It is only valid for userspace to set one of these two
|
|
* flags, and only one at a time.
|
|
*/
|
|
switch (args->arg2) {
|
|
case LINUX_SUID_DUMP_DISABLE:
|
|
trace_state = PROC_TRACE_CTL_DISABLE_EXEC;
|
|
break;
|
|
case LINUX_SUID_DUMP_USER:
|
|
trace_state = PROC_TRACE_CTL_ENABLE;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
return (kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_CTL,
|
|
&trace_state));
|
|
case LINUX_PR_GET_KEEPCAPS:
|
|
/*
|
|
* Indicate that we always clear the effective and
|
|
* permitted capability sets when the user id becomes
|
|
* non-zero (actually the capability sets are simply
|
|
* always zero in the current implementation).
|
|
*/
|
|
td->td_retval[0] = 0;
|
|
break;
|
|
case LINUX_PR_SET_KEEPCAPS:
|
|
/*
|
|
* Ignore requests to keep the effective and permitted
|
|
* capability sets when the user id becomes non-zero.
|
|
*/
|
|
break;
|
|
case LINUX_PR_SET_NAME:
|
|
/*
|
|
* To be on the safe side we need to make sure to not
|
|
* overflow the size a Linux program expects. We already
|
|
* do this here in the copyin, so that we don't need to
|
|
* check on copyout.
|
|
*/
|
|
max_size = MIN(sizeof(comm), sizeof(p->p_comm));
|
|
error = copyinstr((void *)(register_t)args->arg2, comm,
|
|
max_size, NULL);
|
|
|
|
/* Linux silently truncates the name if it is too long. */
|
|
if (error == ENAMETOOLONG) {
|
|
/*
|
|
* XXX: copyinstr() isn't documented to populate the
|
|
* array completely, so do a copyin() to be on the
|
|
* safe side. This should be changed in case
|
|
* copyinstr() is changed to guarantee this.
|
|
*/
|
|
error = copyin((void *)(register_t)args->arg2, comm,
|
|
max_size - 1);
|
|
comm[max_size - 1] = '\0';
|
|
}
|
|
if (error)
|
|
return (error);
|
|
|
|
PROC_LOCK(p);
|
|
strlcpy(p->p_comm, comm, sizeof(p->p_comm));
|
|
PROC_UNLOCK(p);
|
|
break;
|
|
case LINUX_PR_GET_NAME:
|
|
PROC_LOCK(p);
|
|
strlcpy(comm, p->p_comm, sizeof(comm));
|
|
PROC_UNLOCK(p);
|
|
error = copyout(comm, (void *)(register_t)args->arg2,
|
|
strlen(comm) + 1);
|
|
break;
|
|
case LINUX_PR_GET_SECCOMP:
|
|
case LINUX_PR_SET_SECCOMP:
|
|
/*
|
|
* Same as returned by Linux without CONFIG_SECCOMP enabled.
|
|
*/
|
|
error = EINVAL;
|
|
break;
|
|
case LINUX_PR_CAPBSET_READ:
|
|
#if 0
|
|
/*
|
|
* This makes too much noise with Ubuntu Focal.
|
|
*/
|
|
linux_msg(td, "unsupported prctl PR_CAPBSET_READ %d",
|
|
(int)args->arg2);
|
|
#endif
|
|
error = EINVAL;
|
|
break;
|
|
case LINUX_PR_SET_CHILD_SUBREAPER:
|
|
if (args->arg2 == 0) {
|
|
return (kern_procctl(td, P_PID, 0, PROC_REAP_RELEASE,
|
|
NULL));
|
|
}
|
|
|
|
return (kern_procctl(td, P_PID, 0, PROC_REAP_ACQUIRE,
|
|
NULL));
|
|
case LINUX_PR_SET_NO_NEW_PRIVS:
|
|
arg = args->arg2 == 1 ?
|
|
PROC_NO_NEW_PRIVS_ENABLE : PROC_NO_NEW_PRIVS_DISABLE;
|
|
error = kern_procctl(td, P_PID, p->p_pid,
|
|
PROC_NO_NEW_PRIVS_CTL, &arg);
|
|
break;
|
|
case LINUX_PR_SET_PTRACER:
|
|
linux_msg(td, "unsupported prctl PR_SET_PTRACER");
|
|
error = EINVAL;
|
|
break;
|
|
default:
|
|
linux_msg(td, "unsupported prctl option %d", args->option);
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
linux_sched_setparam(struct thread *td,
|
|
struct linux_sched_setparam_args *uap)
|
|
{
|
|
struct sched_param sched_param;
|
|
struct thread *tdt;
|
|
int error, policy;
|
|
|
|
error = copyin(uap->param, &sched_param, sizeof(sched_param));
|
|
if (error)
|
|
return (error);
|
|
|
|
tdt = linux_tdfind(td, uap->pid, -1);
|
|
if (tdt == NULL)
|
|
return (ESRCH);
|
|
|
|
if (linux_map_sched_prio) {
|
|
error = kern_sched_getscheduler(td, tdt, &policy);
|
|
if (error)
|
|
goto out;
|
|
|
|
switch (policy) {
|
|
case SCHED_OTHER:
|
|
if (sched_param.sched_priority != 0) {
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
sched_param.sched_priority =
|
|
PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE;
|
|
break;
|
|
case SCHED_FIFO:
|
|
case SCHED_RR:
|
|
if (sched_param.sched_priority < 1 ||
|
|
sched_param.sched_priority >= LINUX_MAX_RT_PRIO) {
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
/*
|
|
* Map [1, LINUX_MAX_RT_PRIO - 1] to
|
|
* [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down).
|
|
*/
|
|
sched_param.sched_priority =
|
|
(sched_param.sched_priority - 1) *
|
|
(RTP_PRIO_MAX - RTP_PRIO_MIN + 1) /
|
|
(LINUX_MAX_RT_PRIO - 1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
error = kern_sched_setparam(td, tdt, &sched_param);
|
|
out: PROC_UNLOCK(tdt->td_proc);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
linux_sched_getparam(struct thread *td,
|
|
struct linux_sched_getparam_args *uap)
|
|
{
|
|
struct sched_param sched_param;
|
|
struct thread *tdt;
|
|
int error, policy;
|
|
|
|
tdt = linux_tdfind(td, uap->pid, -1);
|
|
if (tdt == NULL)
|
|
return (ESRCH);
|
|
|
|
error = kern_sched_getparam(td, tdt, &sched_param);
|
|
if (error) {
|
|
PROC_UNLOCK(tdt->td_proc);
|
|
return (error);
|
|
}
|
|
|
|
if (linux_map_sched_prio) {
|
|
error = kern_sched_getscheduler(td, tdt, &policy);
|
|
PROC_UNLOCK(tdt->td_proc);
|
|
if (error)
|
|
return (error);
|
|
|
|
switch (policy) {
|
|
case SCHED_OTHER:
|
|
sched_param.sched_priority = 0;
|
|
break;
|
|
case SCHED_FIFO:
|
|
case SCHED_RR:
|
|
/*
|
|
* Map [0, RTP_PRIO_MAX - RTP_PRIO_MIN] to
|
|
* [1, LINUX_MAX_RT_PRIO - 1] (rounding up).
|
|
*/
|
|
sched_param.sched_priority =
|
|
(sched_param.sched_priority *
|
|
(LINUX_MAX_RT_PRIO - 1) +
|
|
(RTP_PRIO_MAX - RTP_PRIO_MIN - 1)) /
|
|
(RTP_PRIO_MAX - RTP_PRIO_MIN) + 1;
|
|
break;
|
|
}
|
|
} else
|
|
PROC_UNLOCK(tdt->td_proc);
|
|
|
|
error = copyout(&sched_param, uap->param, sizeof(sched_param));
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Get affinity of a process.
|
|
*/
|
|
int
|
|
linux_sched_getaffinity(struct thread *td,
|
|
struct linux_sched_getaffinity_args *args)
|
|
{
|
|
struct thread *tdt;
|
|
cpuset_t *mask;
|
|
size_t size;
|
|
int error;
|
|
id_t tid;
|
|
|
|
tdt = linux_tdfind(td, args->pid, -1);
|
|
if (tdt == NULL)
|
|
return (ESRCH);
|
|
tid = tdt->td_tid;
|
|
PROC_UNLOCK(tdt->td_proc);
|
|
|
|
mask = malloc(sizeof(cpuset_t), M_LINUX, M_WAITOK | M_ZERO);
|
|
size = min(args->len, sizeof(cpuset_t));
|
|
error = kern_cpuset_getaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID,
|
|
tid, size, mask);
|
|
if (error == ERANGE)
|
|
error = EINVAL;
|
|
if (error == 0)
|
|
error = copyout(mask, args->user_mask_ptr, size);
|
|
if (error == 0)
|
|
td->td_retval[0] = size;
|
|
free(mask, M_LINUX);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Set affinity of a process.
|
|
*/
|
|
int
|
|
linux_sched_setaffinity(struct thread *td,
|
|
struct linux_sched_setaffinity_args *args)
|
|
{
|
|
struct thread *tdt;
|
|
cpuset_t *mask;
|
|
int cpu, error;
|
|
size_t len;
|
|
id_t tid;
|
|
|
|
tdt = linux_tdfind(td, args->pid, -1);
|
|
if (tdt == NULL)
|
|
return (ESRCH);
|
|
tid = tdt->td_tid;
|
|
PROC_UNLOCK(tdt->td_proc);
|
|
|
|
len = min(args->len, sizeof(cpuset_t));
|
|
mask = malloc(sizeof(cpuset_t), M_TEMP, M_WAITOK | M_ZERO);
|
|
error = copyin(args->user_mask_ptr, mask, len);
|
|
if (error != 0)
|
|
goto out;
|
|
/* Linux ignore high bits */
|
|
CPU_FOREACH_ISSET(cpu, mask)
|
|
if (cpu > mp_maxid)
|
|
CPU_CLR(cpu, mask);
|
|
|
|
error = kern_cpuset_setaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID,
|
|
tid, mask);
|
|
if (error == EDEADLK)
|
|
error = EINVAL;
|
|
out:
|
|
free(mask, M_TEMP);
|
|
return (error);
|
|
}
|
|
|
|
struct linux_rlimit64 {
|
|
uint64_t rlim_cur;
|
|
uint64_t rlim_max;
|
|
};
|
|
|
|
int
|
|
linux_prlimit64(struct thread *td, struct linux_prlimit64_args *args)
|
|
{
|
|
struct rlimit rlim, nrlim;
|
|
struct linux_rlimit64 lrlim;
|
|
struct proc *p;
|
|
u_int which;
|
|
int flags;
|
|
int error;
|
|
|
|
if (args->new == NULL && args->old != NULL) {
|
|
if (linux_get_dummy_limit(td, args->resource, &rlim)) {
|
|
lrlim.rlim_cur = rlim.rlim_cur;
|
|
lrlim.rlim_max = rlim.rlim_max;
|
|
return (copyout(&lrlim, args->old, sizeof(lrlim)));
|
|
}
|
|
}
|
|
|
|
if (args->resource >= LINUX_RLIM_NLIMITS)
|
|
return (EINVAL);
|
|
|
|
which = linux_to_bsd_resource[args->resource];
|
|
if (which == -1)
|
|
return (EINVAL);
|
|
|
|
if (args->new != NULL) {
|
|
/*
|
|
* Note. Unlike FreeBSD where rlim is signed 64-bit Linux
|
|
* rlim is unsigned 64-bit. FreeBSD treats negative limits
|
|
* as INFINITY so we do not need a conversion even.
|
|
*/
|
|
error = copyin(args->new, &nrlim, sizeof(nrlim));
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
|
|
flags = PGET_HOLD | PGET_NOTWEXIT;
|
|
if (args->new != NULL)
|
|
flags |= PGET_CANDEBUG;
|
|
else
|
|
flags |= PGET_CANSEE;
|
|
if (args->pid == 0) {
|
|
p = td->td_proc;
|
|
PHOLD(p);
|
|
} else {
|
|
error = pget(args->pid, flags, &p);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
if (args->old != NULL) {
|
|
PROC_LOCK(p);
|
|
lim_rlimit_proc(p, which, &rlim);
|
|
PROC_UNLOCK(p);
|
|
if (rlim.rlim_cur == RLIM_INFINITY)
|
|
lrlim.rlim_cur = LINUX_RLIM_INFINITY;
|
|
else
|
|
lrlim.rlim_cur = rlim.rlim_cur;
|
|
if (rlim.rlim_max == RLIM_INFINITY)
|
|
lrlim.rlim_max = LINUX_RLIM_INFINITY;
|
|
else
|
|
lrlim.rlim_max = rlim.rlim_max;
|
|
error = copyout(&lrlim, args->old, sizeof(lrlim));
|
|
if (error != 0)
|
|
goto out;
|
|
}
|
|
|
|
if (args->new != NULL)
|
|
error = kern_proc_setrlimit(td, p, which, &nrlim);
|
|
|
|
out:
|
|
PRELE(p);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
linux_pselect6(struct thread *td, struct linux_pselect6_args *args)
|
|
{
|
|
struct timespec ts, *tsp;
|
|
int error;
|
|
|
|
if (args->tsp != NULL) {
|
|
error = linux_get_timespec(&ts, args->tsp);
|
|
if (error != 0)
|
|
return (error);
|
|
tsp = &ts;
|
|
} else
|
|
tsp = NULL;
|
|
|
|
error = linux_common_pselect6(td, args->nfds, args->readfds,
|
|
args->writefds, args->exceptfds, tsp, args->sig);
|
|
|
|
if (args->tsp != NULL)
|
|
linux_put_timespec(&ts, args->tsp);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
linux_common_pselect6(struct thread *td, l_int nfds, l_fd_set *readfds,
|
|
l_fd_set *writefds, l_fd_set *exceptfds, struct timespec *tsp,
|
|
l_uintptr_t *sig)
|
|
{
|
|
struct timeval utv, tv0, tv1, *tvp;
|
|
struct l_pselect6arg lpse6;
|
|
sigset_t *ssp;
|
|
sigset_t ss;
|
|
int error;
|
|
|
|
ssp = NULL;
|
|
if (sig != NULL) {
|
|
error = copyin(sig, &lpse6, sizeof(lpse6));
|
|
if (error != 0)
|
|
return (error);
|
|
error = linux_copyin_sigset(td, PTRIN(lpse6.ss),
|
|
lpse6.ss_len, &ss, &ssp);
|
|
if (error != 0)
|
|
return (error);
|
|
} else
|
|
ssp = NULL;
|
|
|
|
/*
|
|
* Currently glibc changes nanosecond number to microsecond.
|
|
* This mean losing precision but for now it is hardly seen.
|
|
*/
|
|
if (tsp != NULL) {
|
|
TIMESPEC_TO_TIMEVAL(&utv, tsp);
|
|
if (itimerfix(&utv))
|
|
return (EINVAL);
|
|
|
|
microtime(&tv0);
|
|
tvp = &utv;
|
|
} else
|
|
tvp = NULL;
|
|
|
|
error = kern_pselect(td, nfds, readfds, writefds,
|
|
exceptfds, tvp, ssp, LINUX_NFDBITS);
|
|
|
|
if (tsp != NULL) {
|
|
/*
|
|
* Compute how much time was left of the timeout,
|
|
* by subtracting the current time and the time
|
|
* before we started the call, and subtracting
|
|
* that result from the user-supplied value.
|
|
*/
|
|
microtime(&tv1);
|
|
timevalsub(&tv1, &tv0);
|
|
timevalsub(&utv, &tv1);
|
|
if (utv.tv_sec < 0)
|
|
timevalclear(&utv);
|
|
TIMEVAL_TO_TIMESPEC(&utv, tsp);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
|
|
int
|
|
linux_pselect6_time64(struct thread *td,
|
|
struct linux_pselect6_time64_args *args)
|
|
{
|
|
struct timespec ts, *tsp;
|
|
int error;
|
|
|
|
if (args->tsp != NULL) {
|
|
error = linux_get_timespec64(&ts, args->tsp);
|
|
if (error != 0)
|
|
return (error);
|
|
tsp = &ts;
|
|
} else
|
|
tsp = NULL;
|
|
|
|
error = linux_common_pselect6(td, args->nfds, args->readfds,
|
|
args->writefds, args->exceptfds, tsp, args->sig);
|
|
|
|
if (args->tsp != NULL)
|
|
linux_put_timespec64(&ts, args->tsp);
|
|
return (error);
|
|
}
|
|
#endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
|
|
|
|
int
|
|
linux_ppoll(struct thread *td, struct linux_ppoll_args *args)
|
|
{
|
|
struct timespec uts, *tsp;
|
|
int error;
|
|
|
|
if (args->tsp != NULL) {
|
|
error = linux_get_timespec(&uts, args->tsp);
|
|
if (error != 0)
|
|
return (error);
|
|
tsp = &uts;
|
|
} else
|
|
tsp = NULL;
|
|
|
|
error = linux_common_ppoll(td, args->fds, args->nfds, tsp,
|
|
args->sset, args->ssize);
|
|
if (error == 0 && args->tsp != NULL)
|
|
error = linux_put_timespec(&uts, args->tsp);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
linux_common_ppoll(struct thread *td, struct pollfd *fds, uint32_t nfds,
|
|
struct timespec *tsp, l_sigset_t *sset, l_size_t ssize)
|
|
{
|
|
struct timespec ts0, ts1;
|
|
struct pollfd stackfds[32];
|
|
struct pollfd *kfds;
|
|
sigset_t *ssp;
|
|
sigset_t ss;
|
|
int error;
|
|
|
|
if (kern_poll_maxfds(nfds))
|
|
return (EINVAL);
|
|
if (sset != NULL) {
|
|
error = linux_copyin_sigset(td, sset, ssize, &ss, &ssp);
|
|
if (error != 0)
|
|
return (error);
|
|
} else
|
|
ssp = NULL;
|
|
if (tsp != NULL)
|
|
nanotime(&ts0);
|
|
|
|
if (nfds > nitems(stackfds))
|
|
kfds = mallocarray(nfds, sizeof(*kfds), M_TEMP, M_WAITOK);
|
|
else
|
|
kfds = stackfds;
|
|
error = linux_pollin(td, kfds, fds, nfds);
|
|
if (error != 0)
|
|
goto out;
|
|
|
|
error = kern_poll_kfds(td, kfds, nfds, tsp, ssp);
|
|
if (error == 0)
|
|
error = linux_pollout(td, kfds, fds, nfds);
|
|
|
|
if (error == 0 && tsp != NULL) {
|
|
if (td->td_retval[0]) {
|
|
nanotime(&ts1);
|
|
timespecsub(&ts1, &ts0, &ts1);
|
|
timespecsub(tsp, &ts1, tsp);
|
|
if (tsp->tv_sec < 0)
|
|
timespecclear(tsp);
|
|
} else
|
|
timespecclear(tsp);
|
|
}
|
|
|
|
out:
|
|
if (nfds > nitems(stackfds))
|
|
free(kfds, M_TEMP);
|
|
return (error);
|
|
}
|
|
|
|
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
|
|
int
|
|
linux_ppoll_time64(struct thread *td, struct linux_ppoll_time64_args *args)
|
|
{
|
|
struct timespec uts, *tsp;
|
|
int error;
|
|
|
|
if (args->tsp != NULL) {
|
|
error = linux_get_timespec64(&uts, args->tsp);
|
|
if (error != 0)
|
|
return (error);
|
|
tsp = &uts;
|
|
} else
|
|
tsp = NULL;
|
|
error = linux_common_ppoll(td, args->fds, args->nfds, tsp,
|
|
args->sset, args->ssize);
|
|
if (error == 0 && args->tsp != NULL)
|
|
error = linux_put_timespec64(&uts, args->tsp);
|
|
return (error);
|
|
}
|
|
#endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
|
|
|
|
static int
|
|
linux_pollin(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd)
|
|
{
|
|
int error;
|
|
u_int i;
|
|
|
|
error = copyin(ufds, fds, nfd * sizeof(*fds));
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
for (i = 0; i < nfd; i++) {
|
|
if (fds->events != 0)
|
|
linux_to_bsd_poll_events(td, fds->fd,
|
|
fds->events, &fds->events);
|
|
fds++;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
linux_pollout(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd)
|
|
{
|
|
int error = 0;
|
|
u_int i, n = 0;
|
|
|
|
for (i = 0; i < nfd; i++) {
|
|
if (fds->revents != 0) {
|
|
bsd_to_linux_poll_events(fds->revents,
|
|
&fds->revents);
|
|
n++;
|
|
}
|
|
error = copyout(&fds->revents, &ufds->revents,
|
|
sizeof(ufds->revents));
|
|
if (error)
|
|
return (error);
|
|
fds++;
|
|
ufds++;
|
|
}
|
|
td->td_retval[0] = n;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
linux_sched_rr_get_interval_common(struct thread *td, pid_t pid,
|
|
struct timespec *ts)
|
|
{
|
|
struct thread *tdt;
|
|
int error;
|
|
|
|
/*
|
|
* According to man in case the invalid pid specified
|
|
* EINVAL should be returned.
|
|
*/
|
|
if (pid < 0)
|
|
return (EINVAL);
|
|
|
|
tdt = linux_tdfind(td, pid, -1);
|
|
if (tdt == NULL)
|
|
return (ESRCH);
|
|
|
|
error = kern_sched_rr_get_interval_td(td, tdt, ts);
|
|
PROC_UNLOCK(tdt->td_proc);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
linux_sched_rr_get_interval(struct thread *td,
|
|
struct linux_sched_rr_get_interval_args *uap)
|
|
{
|
|
struct timespec ts;
|
|
int error;
|
|
|
|
error = linux_sched_rr_get_interval_common(td, uap->pid, &ts);
|
|
if (error != 0)
|
|
return (error);
|
|
return (linux_put_timespec(&ts, uap->interval));
|
|
}
|
|
|
|
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
|
|
int
|
|
linux_sched_rr_get_interval_time64(struct thread *td,
|
|
struct linux_sched_rr_get_interval_time64_args *uap)
|
|
{
|
|
struct timespec ts;
|
|
int error;
|
|
|
|
error = linux_sched_rr_get_interval_common(td, uap->pid, &ts);
|
|
if (error != 0)
|
|
return (error);
|
|
return (linux_put_timespec64(&ts, uap->interval));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* In case when the Linux thread is the initial thread in
|
|
* the thread group thread id is equal to the process id.
|
|
* Glibc depends on this magic (assert in pthread_getattr_np.c).
|
|
*/
|
|
struct thread *
|
|
linux_tdfind(struct thread *td, lwpid_t tid, pid_t pid)
|
|
{
|
|
struct linux_emuldata *em;
|
|
struct thread *tdt;
|
|
struct proc *p;
|
|
|
|
tdt = NULL;
|
|
if (tid == 0 || tid == td->td_tid) {
|
|
if (pid != -1 && td->td_proc->p_pid != pid)
|
|
return (NULL);
|
|
PROC_LOCK(td->td_proc);
|
|
return (td);
|
|
} else if (tid > PID_MAX)
|
|
return (tdfind(tid, pid));
|
|
|
|
/*
|
|
* Initial thread where the tid equal to the pid.
|
|
*/
|
|
p = pfind(tid);
|
|
if (p != NULL) {
|
|
if (SV_PROC_ABI(p) != SV_ABI_LINUX ||
|
|
(pid != -1 && tid != pid)) {
|
|
/*
|
|
* p is not a Linuxulator process.
|
|
*/
|
|
PROC_UNLOCK(p);
|
|
return (NULL);
|
|
}
|
|
FOREACH_THREAD_IN_PROC(p, tdt) {
|
|
em = em_find(tdt);
|
|
if (tid == em->em_tid)
|
|
return (tdt);
|
|
}
|
|
PROC_UNLOCK(p);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
void
|
|
linux_to_bsd_waitopts(int options, int *bsdopts)
|
|
{
|
|
|
|
if (options & LINUX_WNOHANG)
|
|
*bsdopts |= WNOHANG;
|
|
if (options & LINUX_WUNTRACED)
|
|
*bsdopts |= WUNTRACED;
|
|
if (options & LINUX_WEXITED)
|
|
*bsdopts |= WEXITED;
|
|
if (options & LINUX_WCONTINUED)
|
|
*bsdopts |= WCONTINUED;
|
|
if (options & LINUX_WNOWAIT)
|
|
*bsdopts |= WNOWAIT;
|
|
|
|
if (options & __WCLONE)
|
|
*bsdopts |= WLINUXCLONE;
|
|
}
|
|
|
|
int
|
|
linux_getrandom(struct thread *td, struct linux_getrandom_args *args)
|
|
{
|
|
struct uio uio;
|
|
struct iovec iov;
|
|
int error;
|
|
|
|
if (args->flags & ~(LINUX_GRND_NONBLOCK|LINUX_GRND_RANDOM))
|
|
return (EINVAL);
|
|
if (args->count > INT_MAX)
|
|
args->count = INT_MAX;
|
|
|
|
iov.iov_base = args->buf;
|
|
iov.iov_len = args->count;
|
|
|
|
uio.uio_iov = &iov;
|
|
uio.uio_iovcnt = 1;
|
|
uio.uio_resid = iov.iov_len;
|
|
uio.uio_segflg = UIO_USERSPACE;
|
|
uio.uio_rw = UIO_READ;
|
|
uio.uio_td = td;
|
|
|
|
error = read_random_uio(&uio, args->flags & LINUX_GRND_NONBLOCK);
|
|
if (error == 0)
|
|
td->td_retval[0] = args->count - uio.uio_resid;
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
linux_mincore(struct thread *td, struct linux_mincore_args *args)
|
|
{
|
|
|
|
/* Needs to be page-aligned */
|
|
if (args->start & PAGE_MASK)
|
|
return (EINVAL);
|
|
return (kern_mincore(td, args->start, args->len, args->vec));
|
|
}
|
|
|
|
#define SYSLOG_TAG "<6>"
|
|
|
|
int
|
|
linux_syslog(struct thread *td, struct linux_syslog_args *args)
|
|
{
|
|
char buf[128], *src, *dst;
|
|
u_int seq;
|
|
int buflen, error;
|
|
|
|
if (args->type != LINUX_SYSLOG_ACTION_READ_ALL) {
|
|
linux_msg(td, "syslog unsupported type 0x%x", args->type);
|
|
return (EINVAL);
|
|
}
|
|
|
|
if (args->len < 6) {
|
|
td->td_retval[0] = 0;
|
|
return (0);
|
|
}
|
|
|
|
error = priv_check(td, PRIV_MSGBUF);
|
|
if (error)
|
|
return (error);
|
|
|
|
mtx_lock(&msgbuf_lock);
|
|
msgbuf_peekbytes(msgbufp, NULL, 0, &seq);
|
|
mtx_unlock(&msgbuf_lock);
|
|
|
|
dst = args->buf;
|
|
error = copyout(&SYSLOG_TAG, dst, sizeof(SYSLOG_TAG));
|
|
/* The -1 is to skip the trailing '\0'. */
|
|
dst += sizeof(SYSLOG_TAG) - 1;
|
|
|
|
while (error == 0) {
|
|
mtx_lock(&msgbuf_lock);
|
|
buflen = msgbuf_peekbytes(msgbufp, buf, sizeof(buf), &seq);
|
|
mtx_unlock(&msgbuf_lock);
|
|
|
|
if (buflen == 0)
|
|
break;
|
|
|
|
for (src = buf; src < buf + buflen && error == 0; src++) {
|
|
if (*src == '\0')
|
|
continue;
|
|
|
|
if (dst >= args->buf + args->len)
|
|
goto out;
|
|
|
|
error = copyout(src, dst, 1);
|
|
dst++;
|
|
|
|
if (*src == '\n' && *(src + 1) != '<' &&
|
|
dst + sizeof(SYSLOG_TAG) < args->buf + args->len) {
|
|
error = copyout(&SYSLOG_TAG,
|
|
dst, sizeof(SYSLOG_TAG));
|
|
dst += sizeof(SYSLOG_TAG) - 1;
|
|
}
|
|
}
|
|
}
|
|
out:
|
|
td->td_retval[0] = dst - args->buf;
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
linux_getcpu(struct thread *td, struct linux_getcpu_args *args)
|
|
{
|
|
int cpu, error, node;
|
|
|
|
cpu = td->td_oncpu; /* Make sure it doesn't change during copyout(9) */
|
|
error = 0;
|
|
node = cpuid_to_pcpu[cpu]->pc_domain;
|
|
|
|
if (args->cpu != NULL)
|
|
error = copyout(&cpu, args->cpu, sizeof(l_int));
|
|
if (args->node != NULL)
|
|
error = copyout(&node, args->node, sizeof(l_int));
|
|
return (error);
|
|
}
|
|
|
|
#if defined(__i386__) || defined(__amd64__)
|
|
int
|
|
linux_poll(struct thread *td, struct linux_poll_args *args)
|
|
{
|
|
struct timespec ts, *tsp;
|
|
|
|
if (args->timeout != INFTIM) {
|
|
if (args->timeout < 0)
|
|
return (EINVAL);
|
|
ts.tv_sec = args->timeout / 1000;
|
|
ts.tv_nsec = (args->timeout % 1000) * 1000000;
|
|
tsp = &ts;
|
|
} else
|
|
tsp = NULL;
|
|
|
|
return (linux_common_ppoll(td, args->fds, args->nfds,
|
|
tsp, NULL, 0));
|
|
}
|
|
#endif /* __i386__ || __amd64__ */
|
|
|
|
int
|
|
linux_seccomp(struct thread *td, struct linux_seccomp_args *args)
|
|
{
|
|
|
|
switch (args->op) {
|
|
case LINUX_SECCOMP_GET_ACTION_AVAIL:
|
|
return (EOPNOTSUPP);
|
|
default:
|
|
/*
|
|
* Ignore unknown operations, just like Linux kernel built
|
|
* without CONFIG_SECCOMP.
|
|
*/
|
|
return (EINVAL);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Custom version of exec_copyin_args(), to copy out argument and environment
|
|
* strings from the old process address space into the temporary string buffer.
|
|
* Based on freebsd32_exec_copyin_args.
|
|
*/
|
|
static int
|
|
linux_exec_copyin_args(struct image_args *args, const char *fname,
|
|
enum uio_seg segflg, l_uintptr_t *argv, l_uintptr_t *envv)
|
|
{
|
|
char *argp, *envp;
|
|
l_uintptr_t *ptr, arg;
|
|
int error;
|
|
|
|
bzero(args, sizeof(*args));
|
|
if (argv == NULL)
|
|
return (EFAULT);
|
|
|
|
/*
|
|
* Allocate demand-paged memory for the file name, argument, and
|
|
* environment strings.
|
|
*/
|
|
error = exec_alloc_args(args);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/*
|
|
* Copy the file name.
|
|
*/
|
|
error = exec_args_add_fname(args, fname, segflg);
|
|
if (error != 0)
|
|
goto err_exit;
|
|
|
|
/*
|
|
* extract arguments first
|
|
*/
|
|
ptr = argv;
|
|
for (;;) {
|
|
error = copyin(ptr++, &arg, sizeof(arg));
|
|
if (error)
|
|
goto err_exit;
|
|
if (arg == 0)
|
|
break;
|
|
argp = PTRIN(arg);
|
|
error = exec_args_add_arg(args, argp, UIO_USERSPACE);
|
|
if (error != 0)
|
|
goto err_exit;
|
|
}
|
|
|
|
/*
|
|
* This comment is from Linux do_execveat_common:
|
|
* When argv is empty, add an empty string ("") as argv[0] to
|
|
* ensure confused userspace programs that start processing
|
|
* from argv[1] won't end up walking envp.
|
|
*/
|
|
if (args->argc == 0 &&
|
|
(error = exec_args_add_arg(args, "", UIO_SYSSPACE) != 0))
|
|
goto err_exit;
|
|
|
|
/*
|
|
* extract environment strings
|
|
*/
|
|
if (envv) {
|
|
ptr = envv;
|
|
for (;;) {
|
|
error = copyin(ptr++, &arg, sizeof(arg));
|
|
if (error)
|
|
goto err_exit;
|
|
if (arg == 0)
|
|
break;
|
|
envp = PTRIN(arg);
|
|
error = exec_args_add_env(args, envp, UIO_USERSPACE);
|
|
if (error != 0)
|
|
goto err_exit;
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
|
|
err_exit:
|
|
exec_free_args(args);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
linux_execve(struct thread *td, struct linux_execve_args *args)
|
|
{
|
|
struct image_args eargs;
|
|
int error;
|
|
|
|
LINUX_CTR(execve);
|
|
|
|
error = linux_exec_copyin_args(&eargs, args->path, UIO_USERSPACE,
|
|
args->argp, args->envp);
|
|
if (error == 0)
|
|
error = linux_common_execve(td, &eargs);
|
|
AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
linux_up_rtprio_if(struct thread *td1, struct rtprio *rtp)
|
|
{
|
|
struct rtprio rtp2;
|
|
|
|
pri_to_rtp(td1, &rtp2);
|
|
if (rtp2.type < rtp->type ||
|
|
(rtp2.type == rtp->type &&
|
|
rtp2.prio < rtp->prio)) {
|
|
rtp->type = rtp2.type;
|
|
rtp->prio = rtp2.prio;
|
|
}
|
|
}
|
|
|
|
#define LINUX_PRIO_DIVIDER RTP_PRIO_MAX / LINUX_IOPRIO_MAX
|
|
|
|
static int
|
|
linux_rtprio2ioprio(struct rtprio *rtp)
|
|
{
|
|
int ioprio, prio;
|
|
|
|
switch (rtp->type) {
|
|
case RTP_PRIO_IDLE:
|
|
prio = RTP_PRIO_MIN;
|
|
ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_IDLE, prio);
|
|
break;
|
|
case RTP_PRIO_NORMAL:
|
|
prio = rtp->prio / LINUX_PRIO_DIVIDER;
|
|
ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_BE, prio);
|
|
break;
|
|
case RTP_PRIO_REALTIME:
|
|
prio = rtp->prio / LINUX_PRIO_DIVIDER;
|
|
ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_RT, prio);
|
|
break;
|
|
default:
|
|
prio = RTP_PRIO_MIN;
|
|
ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_NONE, prio);
|
|
break;
|
|
}
|
|
return (ioprio);
|
|
}
|
|
|
|
static int
|
|
linux_ioprio2rtprio(int ioprio, struct rtprio *rtp)
|
|
{
|
|
|
|
switch (LINUX_IOPRIO_PRIO_CLASS(ioprio)) {
|
|
case LINUX_IOPRIO_CLASS_IDLE:
|
|
rtp->prio = RTP_PRIO_MIN;
|
|
rtp->type = RTP_PRIO_IDLE;
|
|
break;
|
|
case LINUX_IOPRIO_CLASS_BE:
|
|
rtp->prio = LINUX_IOPRIO_PRIO_DATA(ioprio) * LINUX_PRIO_DIVIDER;
|
|
rtp->type = RTP_PRIO_NORMAL;
|
|
break;
|
|
case LINUX_IOPRIO_CLASS_RT:
|
|
rtp->prio = LINUX_IOPRIO_PRIO_DATA(ioprio) * LINUX_PRIO_DIVIDER;
|
|
rtp->type = RTP_PRIO_REALTIME;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
return (0);
|
|
}
|
|
#undef LINUX_PRIO_DIVIDER
|
|
|
|
int
|
|
linux_ioprio_get(struct thread *td, struct linux_ioprio_get_args *args)
|
|
{
|
|
struct thread *td1;
|
|
struct rtprio rtp;
|
|
struct pgrp *pg;
|
|
struct proc *p;
|
|
int error, found;
|
|
|
|
p = NULL;
|
|
td1 = NULL;
|
|
error = 0;
|
|
found = 0;
|
|
rtp.type = RTP_PRIO_IDLE;
|
|
rtp.prio = RTP_PRIO_MAX;
|
|
switch (args->which) {
|
|
case LINUX_IOPRIO_WHO_PROCESS:
|
|
if (args->who == 0) {
|
|
td1 = td;
|
|
p = td1->td_proc;
|
|
PROC_LOCK(p);
|
|
} else if (args->who > PID_MAX) {
|
|
td1 = linux_tdfind(td, args->who, -1);
|
|
if (td1 != NULL)
|
|
p = td1->td_proc;
|
|
} else
|
|
p = pfind(args->who);
|
|
if (p == NULL)
|
|
return (ESRCH);
|
|
if ((error = p_cansee(td, p))) {
|
|
PROC_UNLOCK(p);
|
|
break;
|
|
}
|
|
if (td1 != NULL) {
|
|
pri_to_rtp(td1, &rtp);
|
|
} else {
|
|
FOREACH_THREAD_IN_PROC(p, td1) {
|
|
linux_up_rtprio_if(td1, &rtp);
|
|
}
|
|
}
|
|
found++;
|
|
PROC_UNLOCK(p);
|
|
break;
|
|
case LINUX_IOPRIO_WHO_PGRP:
|
|
sx_slock(&proctree_lock);
|
|
if (args->who == 0) {
|
|
pg = td->td_proc->p_pgrp;
|
|
PGRP_LOCK(pg);
|
|
} else {
|
|
pg = pgfind(args->who);
|
|
if (pg == NULL) {
|
|
sx_sunlock(&proctree_lock);
|
|
error = ESRCH;
|
|
break;
|
|
}
|
|
}
|
|
sx_sunlock(&proctree_lock);
|
|
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
|
|
PROC_LOCK(p);
|
|
if (p->p_state == PRS_NORMAL &&
|
|
p_cansee(td, p) == 0) {
|
|
FOREACH_THREAD_IN_PROC(p, td1) {
|
|
linux_up_rtprio_if(td1, &rtp);
|
|
found++;
|
|
}
|
|
}
|
|
PROC_UNLOCK(p);
|
|
}
|
|
PGRP_UNLOCK(pg);
|
|
break;
|
|
case LINUX_IOPRIO_WHO_USER:
|
|
if (args->who == 0)
|
|
args->who = td->td_ucred->cr_uid;
|
|
sx_slock(&allproc_lock);
|
|
FOREACH_PROC_IN_SYSTEM(p) {
|
|
PROC_LOCK(p);
|
|
if (p->p_state == PRS_NORMAL &&
|
|
p->p_ucred->cr_uid == args->who &&
|
|
p_cansee(td, p) == 0) {
|
|
FOREACH_THREAD_IN_PROC(p, td1) {
|
|
linux_up_rtprio_if(td1, &rtp);
|
|
found++;
|
|
}
|
|
}
|
|
PROC_UNLOCK(p);
|
|
}
|
|
sx_sunlock(&allproc_lock);
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
if (error == 0) {
|
|
if (found != 0)
|
|
td->td_retval[0] = linux_rtprio2ioprio(&rtp);
|
|
else
|
|
error = ESRCH;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
linux_ioprio_set(struct thread *td, struct linux_ioprio_set_args *args)
|
|
{
|
|
struct thread *td1;
|
|
struct rtprio rtp;
|
|
struct pgrp *pg;
|
|
struct proc *p;
|
|
int error;
|
|
|
|
if ((error = linux_ioprio2rtprio(args->ioprio, &rtp)) != 0)
|
|
return (error);
|
|
/* Attempts to set high priorities (REALTIME) require su privileges. */
|
|
if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME &&
|
|
(error = priv_check(td, PRIV_SCHED_RTPRIO)) != 0)
|
|
return (error);
|
|
|
|
p = NULL;
|
|
td1 = NULL;
|
|
switch (args->which) {
|
|
case LINUX_IOPRIO_WHO_PROCESS:
|
|
if (args->who == 0) {
|
|
td1 = td;
|
|
p = td1->td_proc;
|
|
PROC_LOCK(p);
|
|
} else if (args->who > PID_MAX) {
|
|
td1 = linux_tdfind(td, args->who, -1);
|
|
if (td1 != NULL)
|
|
p = td1->td_proc;
|
|
} else
|
|
p = pfind(args->who);
|
|
if (p == NULL)
|
|
return (ESRCH);
|
|
if ((error = p_cansched(td, p))) {
|
|
PROC_UNLOCK(p);
|
|
break;
|
|
}
|
|
if (td1 != NULL) {
|
|
error = rtp_to_pri(&rtp, td1);
|
|
} else {
|
|
FOREACH_THREAD_IN_PROC(p, td1) {
|
|
if ((error = rtp_to_pri(&rtp, td1)) != 0)
|
|
break;
|
|
}
|
|
}
|
|
PROC_UNLOCK(p);
|
|
break;
|
|
case LINUX_IOPRIO_WHO_PGRP:
|
|
sx_slock(&proctree_lock);
|
|
if (args->who == 0) {
|
|
pg = td->td_proc->p_pgrp;
|
|
PGRP_LOCK(pg);
|
|
} else {
|
|
pg = pgfind(args->who);
|
|
if (pg == NULL) {
|
|
sx_sunlock(&proctree_lock);
|
|
error = ESRCH;
|
|
break;
|
|
}
|
|
}
|
|
sx_sunlock(&proctree_lock);
|
|
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
|
|
PROC_LOCK(p);
|
|
if (p->p_state == PRS_NORMAL &&
|
|
p_cansched(td, p) == 0) {
|
|
FOREACH_THREAD_IN_PROC(p, td1) {
|
|
if ((error = rtp_to_pri(&rtp, td1)) != 0)
|
|
break;
|
|
}
|
|
}
|
|
PROC_UNLOCK(p);
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
PGRP_UNLOCK(pg);
|
|
break;
|
|
case LINUX_IOPRIO_WHO_USER:
|
|
if (args->who == 0)
|
|
args->who = td->td_ucred->cr_uid;
|
|
sx_slock(&allproc_lock);
|
|
FOREACH_PROC_IN_SYSTEM(p) {
|
|
PROC_LOCK(p);
|
|
if (p->p_state == PRS_NORMAL &&
|
|
p->p_ucred->cr_uid == args->who &&
|
|
p_cansched(td, p) == 0) {
|
|
FOREACH_THREAD_IN_PROC(p, td1) {
|
|
if ((error = rtp_to_pri(&rtp, td1)) != 0)
|
|
break;
|
|
}
|
|
}
|
|
PROC_UNLOCK(p);
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
sx_sunlock(&allproc_lock);
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/* The only flag is O_NONBLOCK */
|
|
#define B2L_MQ_FLAGS(bflags) ((bflags) != 0 ? LINUX_O_NONBLOCK : 0)
|
|
#define L2B_MQ_FLAGS(lflags) ((lflags) != 0 ? O_NONBLOCK : 0)
|
|
|
|
int
|
|
linux_mq_open(struct thread *td, struct linux_mq_open_args *args)
|
|
{
|
|
struct mq_attr attr;
|
|
int error, flags;
|
|
|
|
flags = linux_common_openflags(args->oflag);
|
|
if ((flags & O_ACCMODE) == O_ACCMODE || (flags & O_EXEC) != 0)
|
|
return (EINVAL);
|
|
flags = FFLAGS(flags);
|
|
if ((flags & O_CREAT) != 0 && args->attr != NULL) {
|
|
error = copyin(args->attr, &attr, sizeof(attr));
|
|
if (error != 0)
|
|
return (error);
|
|
attr.mq_flags = L2B_MQ_FLAGS(attr.mq_flags);
|
|
}
|
|
|
|
return (kern_kmq_open(td, args->name, flags, args->mode,
|
|
args->attr != NULL ? &attr : NULL));
|
|
}
|
|
|
|
int
|
|
linux_mq_unlink(struct thread *td, struct linux_mq_unlink_args *args)
|
|
{
|
|
struct kmq_unlink_args bsd_args = {
|
|
.path = PTRIN(args->name)
|
|
};
|
|
|
|
return (sys_kmq_unlink(td, &bsd_args));
|
|
}
|
|
|
|
int
|
|
linux_mq_timedsend(struct thread *td, struct linux_mq_timedsend_args *args)
|
|
{
|
|
struct timespec ts, *abs_timeout;
|
|
int error;
|
|
|
|
if (args->abs_timeout == NULL)
|
|
abs_timeout = NULL;
|
|
else {
|
|
error = linux_get_timespec(&ts, args->abs_timeout);
|
|
if (error != 0)
|
|
return (error);
|
|
abs_timeout = &ts;
|
|
}
|
|
|
|
return (kern_kmq_timedsend(td, args->mqd, PTRIN(args->msg_ptr),
|
|
args->msg_len, args->msg_prio, abs_timeout));
|
|
}
|
|
|
|
int
|
|
linux_mq_timedreceive(struct thread *td, struct linux_mq_timedreceive_args *args)
|
|
{
|
|
struct timespec ts, *abs_timeout;
|
|
int error;
|
|
|
|
if (args->abs_timeout == NULL)
|
|
abs_timeout = NULL;
|
|
else {
|
|
error = linux_get_timespec(&ts, args->abs_timeout);
|
|
if (error != 0)
|
|
return (error);
|
|
abs_timeout = &ts;
|
|
}
|
|
|
|
return (kern_kmq_timedreceive(td, args->mqd, PTRIN(args->msg_ptr),
|
|
args->msg_len, args->msg_prio, abs_timeout));
|
|
}
|
|
|
|
int
|
|
linux_mq_notify(struct thread *td, struct linux_mq_notify_args *args)
|
|
{
|
|
struct sigevent ev, *evp;
|
|
struct l_sigevent l_ev;
|
|
int error;
|
|
|
|
if (args->sevp == NULL)
|
|
evp = NULL;
|
|
else {
|
|
error = copyin(args->sevp, &l_ev, sizeof(l_ev));
|
|
if (error != 0)
|
|
return (error);
|
|
error = linux_convert_l_sigevent(&l_ev, &ev);
|
|
if (error != 0)
|
|
return (error);
|
|
evp = &ev;
|
|
}
|
|
|
|
return (kern_kmq_notify(td, args->mqd, evp));
|
|
}
|
|
|
|
int
|
|
linux_mq_getsetattr(struct thread *td, struct linux_mq_getsetattr_args *args)
|
|
{
|
|
struct mq_attr attr, oattr;
|
|
int error;
|
|
|
|
if (args->attr != NULL) {
|
|
error = copyin(args->attr, &attr, sizeof(attr));
|
|
if (error != 0)
|
|
return (error);
|
|
attr.mq_flags = L2B_MQ_FLAGS(attr.mq_flags);
|
|
}
|
|
|
|
error = kern_kmq_setattr(td, args->mqd, args->attr != NULL ? &attr : NULL,
|
|
&oattr);
|
|
if (error == 0 && args->oattr != NULL) {
|
|
oattr.mq_flags = B2L_MQ_FLAGS(oattr.mq_flags);
|
|
bzero(oattr.__reserved, sizeof(oattr.__reserved));
|
|
error = copyout(&oattr, args->oattr, sizeof(oattr));
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
MODULE_DEPEND(linux, mqueuefs, 1, 1, 1);
|