HardenedBSD/sys/netinet/udp_usrreq.c
Michael Tuexen 4d32367a44 Revert "udp: improve handling of cached route"
This reverts commit 7186765300.
Two tests of the test suite are failing. Reverting the change
until it is improved.
2024-07-30 11:46:27 +02:00

1777 lines
45 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
* The Regents of the University of California.
* Copyright (c) 2008 Robert N. M. Watson
* Copyright (c) 2010-2011 Juniper Networks, Inc.
* Copyright (c) 2014 Kevin Lo
* All rights reserved.
*
* Portions of this software were developed by Robert N. M. Watson under
* contract to Juniper Networks, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_ipsec.h"
#include "opt_route.h"
#include "opt_rss.h"
#include <sys/param.h>
#include <sys/domain.h>
#include <sys/eventhandler.h>
#include <sys/jail.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/protosw.h>
#include <sys/sdt.h>
#include <sys/signalvar.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/systm.h>
#include <vm/uma.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/route.h>
#include <net/route/nhop.h>
#include <net/rss_config.h>
#include <netinet/in.h>
#include <netinet/in_kdtrace.h>
#include <netinet/in_fib.h>
#include <netinet/in_pcb.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#ifdef INET6
#include <netinet/ip6.h>
#endif
#include <netinet/ip_icmp.h>
#include <netinet/icmp_var.h>
#include <netinet/ip_var.h>
#include <netinet/ip_options.h>
#ifdef INET6
#include <netinet6/ip6_var.h>
#endif
#include <netinet/udp.h>
#include <netinet/udp_var.h>
#include <netinet/udplite.h>
#include <netinet/in_rss.h>
#include <netipsec/ipsec_support.h>
#include <machine/in_cksum.h>
#include <security/mac/mac_framework.h>
/*
* UDP and UDP-Lite protocols implementation.
* Per RFC 768, August, 1980.
* Per RFC 3828, July, 2004.
*/
/*
* BSD 4.2 defaulted the udp checksum to be off. Turning off udp checksums
* removes the only data integrity mechanism for packets and malformed
* packets that would otherwise be discarded due to bad checksums, and may
* cause problems (especially for NFS data blocks).
*/
VNET_DEFINE(int, udp_cksum) = 1;
SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW,
&VNET_NAME(udp_cksum), 0, "compute udp checksum");
VNET_DEFINE(int, udp_log_in_vain) = 0;
SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW,
&VNET_NAME(udp_log_in_vain), 0, "Log all incoming UDP packets");
VNET_DEFINE(int, udp_blackhole) = 0;
SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
&VNET_NAME(udp_blackhole), 0,
"Do not send port unreachables for refused connects");
VNET_DEFINE(bool, udp_blackhole_local) = false;
SYSCTL_BOOL(_net_inet_udp, OID_AUTO, blackhole_local, CTLFLAG_VNET |
CTLFLAG_RW, &VNET_NAME(udp_blackhole_local), false,
"Enforce net.inet.udp.blackhole for locally originated packets");
u_long udp_sendspace = 9216; /* really max datagram size */
SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
&udp_sendspace, 0, "Maximum outgoing UDP datagram size");
u_long udp_recvspace = 40 * (1024 +
#ifdef INET6
sizeof(struct sockaddr_in6)
#else
sizeof(struct sockaddr_in)
#endif
); /* 40 1K datagrams */
SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
&udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
VNET_DEFINE(struct inpcbinfo, udbinfo);
VNET_DEFINE(struct inpcbinfo, ulitecbinfo);
#ifndef UDBHASHSIZE
#define UDBHASHSIZE 128
#endif
VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat); /* from udp_var.h */
VNET_PCPUSTAT_SYSINIT(udpstat);
SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat,
udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
#ifdef VIMAGE
VNET_PCPUSTAT_SYSUNINIT(udpstat);
#endif /* VIMAGE */
#ifdef INET
static void udp_detach(struct socket *so);
#endif
INPCBSTORAGE_DEFINE(udpcbstor, udpcb, "udpinp", "udp_inpcb", "udp", "udphash");
INPCBSTORAGE_DEFINE(udplitecbstor, udpcb, "udpliteinp", "udplite_inpcb",
"udplite", "udplitehash");
static void
udp_vnet_init(void *arg __unused)
{
/*
* For now default to 2-tuple UDP hashing - until the fragment
* reassembly code can also update the flowid.
*
* Once we can calculate the flowid that way and re-establish
* a 4-tuple, flip this to 4-tuple.
*/
in_pcbinfo_init(&V_udbinfo, &udpcbstor, UDBHASHSIZE, UDBHASHSIZE);
/* Additional pcbinfo for UDP-Lite */
in_pcbinfo_init(&V_ulitecbinfo, &udplitecbstor, UDBHASHSIZE,
UDBHASHSIZE);
}
VNET_SYSINIT(udp_vnet_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH,
udp_vnet_init, NULL);
/*
* Kernel module interface for updating udpstat. The argument is an index
* into udpstat treated as an array of u_long. While this encodes the
* general layout of udpstat into the caller, it doesn't encode its location,
* so that future changes to add, for example, per-CPU stats support won't
* cause binary compatibility problems for kernel modules.
*/
void
kmod_udpstat_inc(int statnum)
{
counter_u64_add(VNET(udpstat)[statnum], 1);
}
#ifdef VIMAGE
static void
udp_destroy(void *unused __unused)
{
in_pcbinfo_destroy(&V_udbinfo);
in_pcbinfo_destroy(&V_ulitecbinfo);
}
VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL);
#endif
#ifdef INET
/*
* Subroutine of udp_input(), which appends the provided mbuf chain to the
* passed pcb/socket. The caller must provide a sockaddr_in via udp_in that
* contains the source address. If the socket ends up being an IPv6 socket,
* udp_append() will convert to a sockaddr_in6 before passing the address
* into the socket code.
*
* In the normal case udp_append() will return 0, indicating that you
* must unlock the inp. However if a tunneling protocol is in place we increment
* the inpcb refcnt and unlock the inp, on return from the tunneling protocol we
* then decrement the reference count. If the inp_rele returns 1, indicating the
* inp is gone, we return that to the caller to tell them *not* to unlock
* the inp. In the case of multi-cast this will cause the distribution
* to stop (though most tunneling protocols known currently do *not* use
* multicast).
*/
static int
udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
struct sockaddr_in *udp_in)
{
struct sockaddr *append_sa;
struct socket *so;
struct mbuf *tmpopts, *opts = NULL;
#ifdef INET6
struct sockaddr_in6 udp_in6;
#endif
struct udpcb *up;
bool filtered;
INP_LOCK_ASSERT(inp);
/*
* Engage the tunneling protocol.
*/
up = intoudpcb(inp);
if (up->u_tun_func != NULL) {
in_pcbref(inp);
INP_RUNLOCK(inp);
filtered = (*up->u_tun_func)(n, off, inp, (struct sockaddr *)&udp_in[0],
up->u_tun_ctx);
INP_RLOCK(inp);
if (filtered)
return (in_pcbrele_rlocked(inp));
}
off += sizeof(struct udphdr);
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
/* Check AH/ESP integrity. */
if (IPSEC_ENABLED(ipv4) &&
IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) {
m_freem(n);
return (0);
}
if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */
if (IPSEC_ENABLED(ipv4) &&
UDPENCAP_INPUT(ipv4, n, off, AF_INET) != 0)
return (0); /* Consumed. */
}
#endif /* IPSEC */
#ifdef MAC
if (mac_inpcb_check_deliver(inp, n) != 0) {
m_freem(n);
return (0);
}
#endif /* MAC */
if (inp->inp_flags & INP_CONTROLOPTS ||
inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
#ifdef INET6
if (inp->inp_vflag & INP_IPV6)
(void)ip6_savecontrol_v4(inp, n, &opts, NULL);
else
#endif /* INET6 */
ip_savecontrol(inp, &opts, ip, n);
}
if ((inp->inp_vflag & INP_IPV4) && (inp->inp_flags2 & INP_ORIGDSTADDR)) {
tmpopts = sbcreatecontrol(&udp_in[1],
sizeof(struct sockaddr_in), IP_ORIGDSTADDR, IPPROTO_IP,
M_NOWAIT);
if (tmpopts) {
if (opts) {
tmpopts->m_next = opts;
opts = tmpopts;
} else
opts = tmpopts;
}
}
#ifdef INET6
if (inp->inp_vflag & INP_IPV6) {
bzero(&udp_in6, sizeof(udp_in6));
udp_in6.sin6_len = sizeof(udp_in6);
udp_in6.sin6_family = AF_INET6;
in6_sin_2_v4mapsin6(&udp_in[0], &udp_in6);
append_sa = (struct sockaddr *)&udp_in6;
} else
#endif /* INET6 */
append_sa = (struct sockaddr *)&udp_in[0];
m_adj(n, off);
so = inp->inp_socket;
SOCKBUF_LOCK(&so->so_rcv);
if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
soroverflow_locked(so);
m_freem(n);
if (opts)
m_freem(opts);
UDPSTAT_INC(udps_fullsock);
} else
sorwakeup_locked(so);
return (0);
}
static bool
udp_multi_match(const struct inpcb *inp, void *v)
{
struct ip *ip = v;
struct udphdr *uh = (struct udphdr *)(ip + 1);
if (inp->inp_lport != uh->uh_dport)
return (false);
#ifdef INET6
if ((inp->inp_vflag & INP_IPV4) == 0)
return (false);
#endif
if (inp->inp_laddr.s_addr != INADDR_ANY &&
inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
return (false);
if (inp->inp_faddr.s_addr != INADDR_ANY &&
inp->inp_faddr.s_addr != ip->ip_src.s_addr)
return (false);
if (inp->inp_fport != 0 &&
inp->inp_fport != uh->uh_sport)
return (false);
return (true);
}
static int
udp_multi_input(struct mbuf *m, int proto, struct sockaddr_in *udp_in)
{
struct ip *ip = mtod(m, struct ip *);
struct inpcb_iterator inpi = INP_ITERATOR(udp_get_inpcbinfo(proto),
INPLOOKUP_RLOCKPCB, udp_multi_match, ip);
#ifdef KDTRACE_HOOKS
struct udphdr *uh = (struct udphdr *)(ip + 1);
#endif
struct inpcb *inp;
struct mbuf *n;
int appends = 0;
MPASS(ip->ip_hl == sizeof(struct ip) >> 2);
while ((inp = inp_next(&inpi)) != NULL) {
/*
* XXXRW: Because we weren't holding either the inpcb
* or the hash lock when we checked for a match
* before, we should probably recheck now that the
* inpcb lock is held.
*/
/*
* Handle socket delivery policy for any-source
* and source-specific multicast. [RFC3678]
*/
if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
struct ip_moptions *imo;
struct sockaddr_in group;
int blocked;
imo = inp->inp_moptions;
if (imo == NULL)
continue;
bzero(&group, sizeof(struct sockaddr_in));
group.sin_len = sizeof(struct sockaddr_in);
group.sin_family = AF_INET;
group.sin_addr = ip->ip_dst;
blocked = imo_multi_filter(imo, m->m_pkthdr.rcvif,
(struct sockaddr *)&group,
(struct sockaddr *)&udp_in[0]);
if (blocked != MCAST_PASS) {
if (blocked == MCAST_NOTGMEMBER)
IPSTAT_INC(ips_notmember);
if (blocked == MCAST_NOTSMEMBER ||
blocked == MCAST_MUTED)
UDPSTAT_INC(udps_filtermcast);
continue;
}
}
if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) != NULL) {
if (proto == IPPROTO_UDPLITE)
UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh);
else
UDP_PROBE(receive, NULL, inp, ip, inp, uh);
if (udp_append(inp, ip, n, sizeof(struct ip), udp_in)) {
break;
} else
appends++;
}
/*
* Don't look for additional matches if this one does
* not have either the SO_REUSEPORT or SO_REUSEADDR
* socket options set. This heuristic avoids
* searching through all pcbs in the common case of a
* non-shared port. It assumes that an application
* will never clear these options after setting them.
*/
if ((inp->inp_socket->so_options &
(SO_REUSEPORT|SO_REUSEPORT_LB|SO_REUSEADDR)) == 0) {
INP_RUNLOCK(inp);
break;
}
}
if (appends == 0) {
/*
* No matching pcb found; discard datagram. (No need
* to send an ICMP Port Unreachable for a broadcast
* or multicast datgram.)
*/
UDPSTAT_INC(udps_noport);
if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)))
UDPSTAT_INC(udps_noportmcast);
else
UDPSTAT_INC(udps_noportbcast);
}
m_freem(m);
return (IPPROTO_DONE);
}
static int
udp_input(struct mbuf **mp, int *offp, int proto)
{
struct ip *ip;
struct udphdr *uh;
struct ifnet *ifp;
struct inpcb *inp;
uint16_t len, ip_len;
struct inpcbinfo *pcbinfo;
struct sockaddr_in udp_in[2];
struct mbuf *m;
struct m_tag *fwd_tag;
int cscov_partial, iphlen;
m = *mp;
iphlen = *offp;
ifp = m->m_pkthdr.rcvif;
*mp = NULL;
UDPSTAT_INC(udps_ipackets);
/*
* Strip IP options, if any; should skip this, make available to
* user, and use on returned packets, but we don't yet have a way to
* check the checksum with options still present.
*/
if (iphlen > sizeof (struct ip)) {
ip_stripoptions(m);
iphlen = sizeof(struct ip);
}
/*
* Get IP and UDP header together in first mbuf.
*/
if (m->m_len < iphlen + sizeof(struct udphdr)) {
if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) {
UDPSTAT_INC(udps_hdrops);
return (IPPROTO_DONE);
}
}
ip = mtod(m, struct ip *);
uh = (struct udphdr *)((caddr_t)ip + iphlen);
cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0;
/*
* Destination port of 0 is illegal, based on RFC768.
*/
if (uh->uh_dport == 0)
goto badunlocked;
/*
* Construct sockaddr format source address. Stuff source address
* and datagram in user buffer.
*/
bzero(&udp_in[0], sizeof(struct sockaddr_in) * 2);
udp_in[0].sin_len = sizeof(struct sockaddr_in);
udp_in[0].sin_family = AF_INET;
udp_in[0].sin_port = uh->uh_sport;
udp_in[0].sin_addr = ip->ip_src;
udp_in[1].sin_len = sizeof(struct sockaddr_in);
udp_in[1].sin_family = AF_INET;
udp_in[1].sin_port = uh->uh_dport;
udp_in[1].sin_addr = ip->ip_dst;
/*
* Make mbuf data length reflect UDP length. If not enough data to
* reflect UDP length, drop.
*/
len = ntohs((u_short)uh->uh_ulen);
ip_len = ntohs(ip->ip_len) - iphlen;
if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) {
/* Zero means checksum over the complete packet. */
if (len == 0)
len = ip_len;
cscov_partial = 0;
}
if (ip_len != len) {
if (len > ip_len || len < sizeof(struct udphdr)) {
UDPSTAT_INC(udps_badlen);
goto badunlocked;
}
if (proto == IPPROTO_UDP)
m_adj(m, len - ip_len);
}
/*
* Checksum extended UDP header and data.
*/
if (uh->uh_sum) {
u_short uh_sum;
if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
!cscov_partial) {
if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
uh_sum = m->m_pkthdr.csum_data;
else
uh_sum = in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr, htonl((u_short)len +
m->m_pkthdr.csum_data + proto));
uh_sum ^= 0xffff;
} else {
char b[offsetof(struct ipovly, ih_src)];
struct ipovly *ipov = (struct ipovly *)ip;
bcopy(ipov, b, sizeof(b));
bzero(ipov, sizeof(ipov->ih_x1));
ipov->ih_len = (proto == IPPROTO_UDP) ?
uh->uh_ulen : htons(ip_len);
uh_sum = in_cksum(m, len + sizeof (struct ip));
bcopy(b, ipov, sizeof(b));
}
if (uh_sum) {
UDPSTAT_INC(udps_badsum);
m_freem(m);
return (IPPROTO_DONE);
}
} else {
if (proto == IPPROTO_UDP) {
UDPSTAT_INC(udps_nosum);
} else {
/* UDPLite requires a checksum */
/* XXX: What is the right UDPLite MIB counter here? */
m_freem(m);
return (IPPROTO_DONE);
}
}
if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
in_broadcast(ip->ip_dst, ifp))
return (udp_multi_input(m, proto, udp_in));
pcbinfo = udp_get_inpcbinfo(proto);
/*
* Locate pcb for datagram.
*
* Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
*/
if ((m->m_flags & M_IP_NEXTHOP) &&
(fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
struct sockaddr_in *next_hop;
next_hop = (struct sockaddr_in *)(fwd_tag + 1);
/*
* Transparently forwarded. Pretend to be the destination.
* Already got one like this?
*/
inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m);
if (!inp) {
/*
* It's new. Try to find the ambushing socket.
* Because we've rewritten the destination address,
* any hardware-generated hash is ignored.
*/
inp = in_pcblookup(pcbinfo, ip->ip_src,
uh->uh_sport, next_hop->sin_addr,
next_hop->sin_port ? htons(next_hop->sin_port) :
uh->uh_dport, INPLOOKUP_WILDCARD |
INPLOOKUP_RLOCKPCB, ifp);
}
/* Remove the tag from the packet. We don't need it anymore. */
m_tag_delete(m, fwd_tag);
m->m_flags &= ~M_IP_NEXTHOP;
} else
inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD |
INPLOOKUP_RLOCKPCB, ifp, m);
if (inp == NULL) {
if (V_udp_log_in_vain) {
char src[INET_ADDRSTRLEN];
char dst[INET_ADDRSTRLEN];
log(LOG_INFO,
"Connection attempt to UDP %s:%d from %s:%d\n",
inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport),
inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport));
}
if (proto == IPPROTO_UDPLITE)
UDPLITE_PROBE(receive, NULL, NULL, ip, NULL, uh);
else
UDP_PROBE(receive, NULL, NULL, ip, NULL, uh);
UDPSTAT_INC(udps_noport);
if (m->m_flags & (M_BCAST | M_MCAST)) {
UDPSTAT_INC(udps_noportbcast);
goto badunlocked;
}
if (V_udp_blackhole && (V_udp_blackhole_local ||
!in_localip(ip->ip_src)))
goto badunlocked;
if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
goto badunlocked;
icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
return (IPPROTO_DONE);
}
/*
* Check the minimum TTL for socket.
*/
INP_RLOCK_ASSERT(inp);
if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
if (proto == IPPROTO_UDPLITE)
UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh);
else
UDP_PROBE(receive, NULL, inp, ip, inp, uh);
INP_RUNLOCK(inp);
m_freem(m);
return (IPPROTO_DONE);
}
if (cscov_partial) {
struct udpcb *up;
up = intoudpcb(inp);
if (up->u_rxcslen == 0 || up->u_rxcslen > len) {
INP_RUNLOCK(inp);
m_freem(m);
return (IPPROTO_DONE);
}
}
if (proto == IPPROTO_UDPLITE)
UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh);
else
UDP_PROBE(receive, NULL, inp, ip, inp, uh);
if (udp_append(inp, ip, m, iphlen, udp_in) == 0)
INP_RUNLOCK(inp);
return (IPPROTO_DONE);
badunlocked:
m_freem(m);
return (IPPROTO_DONE);
}
#endif /* INET */
/*
* Notify a udp user of an asynchronous error; just wake up so that they can
* collect error status.
*/
struct inpcb *
udp_notify(struct inpcb *inp, int errno)
{
INP_WLOCK_ASSERT(inp);
if ((errno == EHOSTUNREACH || errno == ENETUNREACH ||
errno == EHOSTDOWN) && inp->inp_route.ro_nh) {
NH_FREE(inp->inp_route.ro_nh);
inp->inp_route.ro_nh = (struct nhop_object *)NULL;
}
inp->inp_socket->so_error = errno;
sorwakeup(inp->inp_socket);
sowwakeup(inp->inp_socket);
return (inp);
}
#ifdef INET
static void
udp_common_ctlinput(struct icmp *icmp, struct inpcbinfo *pcbinfo)
{
struct ip *ip = &icmp->icmp_ip;
struct udphdr *uh;
struct inpcb *inp;
if (icmp_errmap(icmp) == 0)
return;
uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
inp = in_pcblookup(pcbinfo, ip->ip_dst, uh->uh_dport, ip->ip_src,
uh->uh_sport, INPLOOKUP_WLOCKPCB, NULL);
if (inp != NULL) {
INP_WLOCK_ASSERT(inp);
if (inp->inp_socket != NULL)
udp_notify(inp, icmp_errmap(icmp));
INP_WUNLOCK(inp);
} else {
inp = in_pcblookup(pcbinfo, ip->ip_dst, uh->uh_dport,
ip->ip_src, uh->uh_sport,
INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
if (inp != NULL) {
struct udpcb *up;
udp_tun_icmp_t *func;
up = intoudpcb(inp);
func = up->u_icmp_func;
INP_RUNLOCK(inp);
if (func != NULL)
func(icmp);
}
}
}
static void
udp_ctlinput(struct icmp *icmp)
{
return (udp_common_ctlinput(icmp, &V_udbinfo));
}
static void
udplite_ctlinput(struct icmp *icmp)
{
return (udp_common_ctlinput(icmp, &V_ulitecbinfo));
}
#endif /* INET */
static int
udp_pcblist(SYSCTL_HANDLER_ARGS)
{
struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_udbinfo,
INPLOOKUP_RLOCKPCB);
struct xinpgen xig;
struct inpcb *inp;
int error;
if (req->newptr != 0)
return (EPERM);
if (req->oldptr == 0) {
int n;
n = V_udbinfo.ipi_count;
n += imax(n / 8, 10);
req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
return (0);
}
if ((error = sysctl_wire_old_buffer(req, 0)) != 0)
return (error);
bzero(&xig, sizeof(xig));
xig.xig_len = sizeof xig;
xig.xig_count = V_udbinfo.ipi_count;
xig.xig_gen = V_udbinfo.ipi_gencnt;
xig.xig_sogen = so_gencnt;
error = SYSCTL_OUT(req, &xig, sizeof xig);
if (error)
return (error);
while ((inp = inp_next(&inpi)) != NULL) {
if (inp->inp_gencnt <= xig.xig_gen &&
cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
struct xinpcb xi;
in_pcbtoxinpcb(inp, &xi);
error = SYSCTL_OUT(req, &xi, sizeof xi);
if (error) {
INP_RUNLOCK(inp);
break;
}
}
}
if (!error) {
/*
* Give the user an updated idea of our state. If the
* generation differs from what we told her before, she knows
* that something happened while we were processing this
* request, and it might be necessary to retry.
*/
xig.xig_gen = V_udbinfo.ipi_gencnt;
xig.xig_sogen = so_gencnt;
xig.xig_count = V_udbinfo.ipi_count;
error = SYSCTL_OUT(req, &xig, sizeof xig);
}
return (error);
}
SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
udp_pcblist, "S,xinpcb",
"List of active UDP sockets");
#ifdef INET
static int
udp_getcred(SYSCTL_HANDLER_ARGS)
{
struct xucred xuc;
struct sockaddr_in addrs[2];
struct epoch_tracker et;
struct inpcb *inp;
int error;
error = priv_check(req->td, PRIV_NETINET_GETCRED);
if (error)
return (error);
error = SYSCTL_IN(req, addrs, sizeof(addrs));
if (error)
return (error);
NET_EPOCH_ENTER(et);
inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
addrs[0].sin_addr, addrs[0].sin_port,
INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
NET_EPOCH_EXIT(et);
if (inp != NULL) {
INP_RLOCK_ASSERT(inp);
if (inp->inp_socket == NULL)
error = ENOENT;
if (error == 0)
error = cr_canseeinpcb(req->td->td_ucred, inp);
if (error == 0)
cru2x(inp->inp_cred, &xuc);
INP_RUNLOCK(inp);
} else
error = ENOENT;
if (error == 0)
error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
return (error);
}
SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_MPSAFE,
0, 0, udp_getcred, "S,xucred",
"Get the xucred of a UDP connection");
#endif /* INET */
int
udp_ctloutput(struct socket *so, struct sockopt *sopt)
{
struct inpcb *inp;
struct udpcb *up;
int isudplite, error, optval;
error = 0;
isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
INP_WLOCK(inp);
if (sopt->sopt_level != so->so_proto->pr_protocol) {
#ifdef INET6
if (INP_CHECK_SOCKAF(so, AF_INET6)) {
INP_WUNLOCK(inp);
error = ip6_ctloutput(so, sopt);
}
#endif
#if defined(INET) && defined(INET6)
else
#endif
#ifdef INET
{
INP_WUNLOCK(inp);
error = ip_ctloutput(so, sopt);
}
#endif
return (error);
}
switch (sopt->sopt_dir) {
case SOPT_SET:
switch (sopt->sopt_name) {
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
#if defined(INET) || defined(INET6)
case UDP_ENCAP:
#ifdef INET
if (INP_SOCKAF(so) == AF_INET) {
if (!IPSEC_ENABLED(ipv4)) {
INP_WUNLOCK(inp);
return (ENOPROTOOPT);
}
error = UDPENCAP_PCBCTL(ipv4, inp, sopt);
break;
}
#endif /* INET */
#ifdef INET6
if (INP_SOCKAF(so) == AF_INET6) {
if (!IPSEC_ENABLED(ipv6)) {
INP_WUNLOCK(inp);
return (ENOPROTOOPT);
}
error = UDPENCAP_PCBCTL(ipv6, inp, sopt);
break;
}
#endif /* INET6 */
INP_WUNLOCK(inp);
return (EINVAL);
#endif /* INET || INET6 */
#endif /* IPSEC */
case UDPLITE_SEND_CSCOV:
case UDPLITE_RECV_CSCOV:
if (!isudplite) {
INP_WUNLOCK(inp);
error = ENOPROTOOPT;
break;
}
INP_WUNLOCK(inp);
error = sooptcopyin(sopt, &optval, sizeof(optval),
sizeof(optval));
if (error != 0)
break;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
INP_WLOCK(inp);
up = intoudpcb(inp);
KASSERT(up != NULL, ("%s: up == NULL", __func__));
if ((optval != 0 && optval < 8) || (optval > 65535)) {
INP_WUNLOCK(inp);
error = EINVAL;
break;
}
if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
up->u_txcslen = optval;
else
up->u_rxcslen = optval;
INP_WUNLOCK(inp);
break;
default:
INP_WUNLOCK(inp);
error = ENOPROTOOPT;
break;
}
break;
case SOPT_GET:
switch (sopt->sopt_name) {
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
#if defined(INET) || defined(INET6)
case UDP_ENCAP:
#ifdef INET
if (INP_SOCKAF(so) == AF_INET) {
if (!IPSEC_ENABLED(ipv4)) {
INP_WUNLOCK(inp);
return (ENOPROTOOPT);
}
error = UDPENCAP_PCBCTL(ipv4, inp, sopt);
break;
}
#endif /* INET */
#ifdef INET6
if (INP_SOCKAF(so) == AF_INET6) {
if (!IPSEC_ENABLED(ipv6)) {
INP_WUNLOCK(inp);
return (ENOPROTOOPT);
}
error = UDPENCAP_PCBCTL(ipv6, inp, sopt);
break;
}
#endif /* INET6 */
INP_WUNLOCK(inp);
return (EINVAL);
#endif /* INET || INET6 */
#endif /* IPSEC */
case UDPLITE_SEND_CSCOV:
case UDPLITE_RECV_CSCOV:
if (!isudplite) {
INP_WUNLOCK(inp);
error = ENOPROTOOPT;
break;
}
up = intoudpcb(inp);
KASSERT(up != NULL, ("%s: up == NULL", __func__));
if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
optval = up->u_txcslen;
else
optval = up->u_rxcslen;
INP_WUNLOCK(inp);
error = sooptcopyout(sopt, &optval, sizeof(optval));
break;
default:
INP_WUNLOCK(inp);
error = ENOPROTOOPT;
break;
}
break;
}
return (error);
}
#ifdef INET
#ifdef INET6
/* The logic here is derived from ip6_setpktopt(). See comments there. */
static int
udp_v4mapped_pktinfo(struct cmsghdr *cm, struct sockaddr_in * src,
struct inpcb *inp, int flags)
{
struct ifnet *ifp;
struct in6_pktinfo *pktinfo;
struct in_addr ia;
if ((flags & PRUS_IPV6) == 0)
return (0);
if (cm->cmsg_level != IPPROTO_IPV6)
return (0);
if (cm->cmsg_type != IPV6_2292PKTINFO &&
cm->cmsg_type != IPV6_PKTINFO)
return (0);
if (cm->cmsg_len !=
CMSG_LEN(sizeof(struct in6_pktinfo)))
return (EINVAL);
pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
if (!IN6_IS_ADDR_V4MAPPED(&pktinfo->ipi6_addr) &&
!IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr))
return (EINVAL);
/* Validate the interface index if specified. */
if (pktinfo->ipi6_ifindex) {
struct epoch_tracker et;
NET_EPOCH_ENTER(et);
ifp = ifnet_byindex(pktinfo->ipi6_ifindex);
NET_EPOCH_EXIT(et); /* XXXGL: unsafe ifp */
if (ifp == NULL)
return (ENXIO);
} else
ifp = NULL;
if (ifp != NULL && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
ia.s_addr = pktinfo->ipi6_addr.s6_addr32[3];
if (in_ifhasaddr(ifp, ia) == 0)
return (EADDRNOTAVAIL);
}
bzero(src, sizeof(*src));
src->sin_family = AF_INET;
src->sin_len = sizeof(*src);
src->sin_port = inp->inp_lport;
src->sin_addr.s_addr = pktinfo->ipi6_addr.s6_addr32[3];
return (0);
}
#endif /* INET6 */
int
udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
struct mbuf *control, struct thread *td)
{
struct inpcb *inp;
struct udpiphdr *ui;
int len, error = 0;
struct in_addr faddr, laddr;
struct cmsghdr *cm;
struct inpcbinfo *pcbinfo;
struct sockaddr_in *sin, src;
struct epoch_tracker et;
int cscov_partial = 0;
int ipflags = 0;
u_short fport, lport;
u_char tos, vflagsav;
uint8_t pr;
uint16_t cscov = 0;
uint32_t flowid = 0;
uint8_t flowtype = M_HASHTYPE_NONE;
bool use_cached_route;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_send: inp == NULL"));
if (addr != NULL) {
if (addr->sa_family != AF_INET)
error = EAFNOSUPPORT;
else if (addr->sa_len != sizeof(struct sockaddr_in))
error = EINVAL;
if (__predict_false(error != 0)) {
m_freem(control);
m_freem(m);
return (error);
}
}
len = m->m_pkthdr.len;
if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
if (control)
m_freem(control);
m_freem(m);
return (EMSGSIZE);
}
src.sin_family = 0;
sin = (struct sockaddr_in *)addr;
/*
* udp_send() may need to temporarily bind or connect the current
* inpcb. As such, we don't know up front whether we will need the
* pcbinfo lock or not. Do any work to decide what is needed up
* front before acquiring any locks.
*
* We will need network epoch in either case, to safely lookup into
* pcb hash.
*/
use_cached_route = sin == NULL || (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0);
if (use_cached_route || (flags & PRUS_IPV6) != 0)
INP_WLOCK(inp);
else
INP_RLOCK(inp);
NET_EPOCH_ENTER(et);
tos = inp->inp_ip_tos;
if (control != NULL) {
/*
* XXX: Currently, we assume all the optional information is
* stored in a single mbuf.
*/
if (control->m_next) {
m_freem(control);
error = EINVAL;
goto release;
}
for (; control->m_len > 0;
control->m_data += CMSG_ALIGN(cm->cmsg_len),
control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
cm = mtod(control, struct cmsghdr *);
if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
|| cm->cmsg_len > control->m_len) {
error = EINVAL;
break;
}
#ifdef INET6
error = udp_v4mapped_pktinfo(cm, &src, inp, flags);
if (error != 0)
break;
#endif
if (cm->cmsg_level != IPPROTO_IP)
continue;
switch (cm->cmsg_type) {
case IP_SENDSRCADDR:
if (cm->cmsg_len !=
CMSG_LEN(sizeof(struct in_addr))) {
error = EINVAL;
break;
}
bzero(&src, sizeof(src));
src.sin_family = AF_INET;
src.sin_len = sizeof(src);
src.sin_port = inp->inp_lport;
src.sin_addr =
*(struct in_addr *)CMSG_DATA(cm);
break;
case IP_TOS:
if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) {
error = EINVAL;
break;
}
tos = *(u_char *)CMSG_DATA(cm);
break;
case IP_FLOWID:
if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
error = EINVAL;
break;
}
flowid = *(uint32_t *) CMSG_DATA(cm);
break;
case IP_FLOWTYPE:
if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
error = EINVAL;
break;
}
flowtype = *(uint32_t *) CMSG_DATA(cm);
break;
#ifdef RSS
case IP_RSSBUCKETID:
if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
error = EINVAL;
break;
}
/* This is just a placeholder for now */
break;
#endif /* RSS */
default:
error = ENOPROTOOPT;
break;
}
if (error)
break;
}
m_freem(control);
control = NULL;
}
if (error)
goto release;
pr = inp->inp_socket->so_proto->pr_protocol;
pcbinfo = udp_get_inpcbinfo(pr);
/*
* If the IP_SENDSRCADDR control message was specified, override the
* source address for this datagram. Its use is invalidated if the
* address thus specified is incomplete or clobbers other inpcbs.
*/
laddr = inp->inp_laddr;
lport = inp->inp_lport;
if (src.sin_family == AF_INET) {
if ((lport == 0) ||
(laddr.s_addr == INADDR_ANY &&
src.sin_addr.s_addr == INADDR_ANY)) {
error = EINVAL;
goto release;
}
if ((flags & PRUS_IPV6) != 0) {
vflagsav = inp->inp_vflag;
inp->inp_vflag |= INP_IPV4;
inp->inp_vflag &= ~INP_IPV6;
}
INP_HASH_WLOCK(pcbinfo);
error = in_pcbbind_setup(inp, &src, &laddr.s_addr, &lport,
td->td_ucred);
INP_HASH_WUNLOCK(pcbinfo);
if ((flags & PRUS_IPV6) != 0)
inp->inp_vflag = vflagsav;
if (error)
goto release;
}
/*
* If a UDP socket has been connected, then a local address/port will
* have been selected and bound.
*
* If a UDP socket has not been connected to, then an explicit
* destination address must be used, in which case a local
* address/port may not have been selected and bound.
*/
if (sin != NULL) {
INP_LOCK_ASSERT(inp);
if (inp->inp_faddr.s_addr != INADDR_ANY) {
error = EISCONN;
goto release;
}
/*
* Jail may rewrite the destination address, so let it do
* that before we use it.
*/
error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
if (error)
goto release;
/*
* If a local address or port hasn't yet been selected, or if
* the destination address needs to be rewritten due to using
* a special INADDR_ constant, invoke in_pcbconnect_setup()
* to do the heavy lifting. Once a port is selected, we
* commit the binding back to the socket; we also commit the
* binding of the address if in jail.
*
* If we already have a valid binding and we're not
* requesting a destination address rewrite, use a fast path.
*/
if (inp->inp_laddr.s_addr == INADDR_ANY ||
inp->inp_lport == 0 ||
sin->sin_addr.s_addr == INADDR_ANY ||
sin->sin_addr.s_addr == INADDR_BROADCAST) {
if ((flags & PRUS_IPV6) != 0) {
vflagsav = inp->inp_vflag;
inp->inp_vflag |= INP_IPV4;
inp->inp_vflag &= ~INP_IPV6;
}
INP_HASH_WLOCK(pcbinfo);
error = in_pcbconnect_setup(inp, sin, &laddr.s_addr,
&lport, &faddr.s_addr, &fport, td->td_ucred);
if ((flags & PRUS_IPV6) != 0)
inp->inp_vflag = vflagsav;
if (error) {
INP_HASH_WUNLOCK(pcbinfo);
goto release;
}
/*
* XXXRW: Why not commit the port if the address is
* !INADDR_ANY?
*/
/* Commit the local port if newly assigned. */
if (inp->inp_laddr.s_addr == INADDR_ANY &&
inp->inp_lport == 0) {
INP_WLOCK_ASSERT(inp);
/*
* Remember addr if jailed, to prevent
* rebinding.
*/
if (prison_flag(td->td_ucred, PR_IP4))
inp->inp_laddr = laddr;
inp->inp_lport = lport;
error = in_pcbinshash(inp);
INP_HASH_WUNLOCK(pcbinfo);
if (error != 0) {
inp->inp_lport = 0;
error = EAGAIN;
goto release;
}
inp->inp_flags |= INP_ANONPORT;
} else
INP_HASH_WUNLOCK(pcbinfo);
} else {
faddr = sin->sin_addr;
fport = sin->sin_port;
}
} else {
INP_LOCK_ASSERT(inp);
faddr = inp->inp_faddr;
fport = inp->inp_fport;
if (faddr.s_addr == INADDR_ANY) {
error = ENOTCONN;
goto release;
}
}
/*
* Calculate data length and get a mbuf for UDP, IP, and possible
* link-layer headers. Immediate slide the data pointer back forward
* since we won't use that space at this layer.
*/
M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT);
if (m == NULL) {
error = ENOBUFS;
goto release;
}
m->m_data += max_linkhdr;
m->m_len -= max_linkhdr;
m->m_pkthdr.len -= max_linkhdr;
/*
* Fill in mbuf with extended UDP header and addresses and length put
* into network format.
*/
ui = mtod(m, struct udpiphdr *);
/*
* Filling only those fields of udpiphdr that participate in the
* checksum calculation. The rest must be zeroed and will be filled
* later.
*/
bzero(ui->ui_x1, sizeof(ui->ui_x1));
ui->ui_pr = pr;
ui->ui_src = laddr;
ui->ui_dst = faddr;
ui->ui_sport = lport;
ui->ui_dport = fport;
ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
if (pr == IPPROTO_UDPLITE) {
struct udpcb *up;
uint16_t plen;
up = intoudpcb(inp);
cscov = up->u_txcslen;
plen = (u_short)len + sizeof(struct udphdr);
if (cscov >= plen)
cscov = 0;
ui->ui_len = htons(plen);
ui->ui_ulen = htons(cscov);
/*
* For UDP-Lite, checksum coverage length of zero means
* the entire UDPLite packet is covered by the checksum.
*/
cscov_partial = (cscov == 0) ? 0 : 1;
}
if (inp->inp_socket->so_options & SO_DONTROUTE)
ipflags |= IP_ROUTETOIF;
if (inp->inp_socket->so_options & SO_BROADCAST)
ipflags |= IP_ALLOWBROADCAST;
if (inp->inp_flags & INP_ONESBCAST)
ipflags |= IP_SENDONES;
#ifdef MAC
mac_inpcb_create_mbuf(inp, m);
#endif
/*
* Set up checksum and output datagram.
*/
ui->ui_sum = 0;
if (pr == IPPROTO_UDPLITE) {
if (inp->inp_flags & INP_ONESBCAST)
faddr.s_addr = INADDR_BROADCAST;
if (cscov_partial) {
if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0)
ui->ui_sum = 0xffff;
} else {
if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0)
ui->ui_sum = 0xffff;
}
} else if (V_udp_cksum) {
if (inp->inp_flags & INP_ONESBCAST)
faddr.s_addr = INADDR_BROADCAST;
ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
htons((u_short)len + sizeof(struct udphdr) + pr));
m->m_pkthdr.csum_flags = CSUM_UDP;
m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
}
/*
* After finishing the checksum computation, fill the remaining fields
* of udpiphdr.
*/
((struct ip *)ui)->ip_v = IPVERSION;
((struct ip *)ui)->ip_tos = tos;
((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len);
if (inp->inp_flags & INP_DONTFRAG)
((struct ip *)ui)->ip_off |= htons(IP_DF);
((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl;
UDPSTAT_INC(udps_opackets);
/*
* Setup flowid / RSS information for outbound socket.
*
* Once the UDP code decides to set a flowid some other way,
* this allows the flowid to be overridden by userland.
*/
if (flowtype != M_HASHTYPE_NONE) {
m->m_pkthdr.flowid = flowid;
M_HASHTYPE_SET(m, flowtype);
}
#if defined(ROUTE_MPATH) || defined(RSS)
else if (CALC_FLOWID_OUTBOUND_SENDTO) {
uint32_t hash_val, hash_type;
hash_val = fib4_calc_packet_hash(laddr, faddr,
lport, fport, pr, &hash_type);
m->m_pkthdr.flowid = hash_val;
M_HASHTYPE_SET(m, hash_type);
}
/*
* Don't override with the inp cached flowid value.
*
* Depending upon the kind of send being done, the inp
* flowid/flowtype values may actually not be appropriate
* for this particular socket send.
*
* We should either leave the flowid at zero (which is what is
* currently done) or set it to some software generated
* hash value based on the packet contents.
*/
ipflags |= IP_NODEFAULTFLOWID;
#endif /* RSS */
if (pr == IPPROTO_UDPLITE)
UDPLITE_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
else
UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
error = ip_output(m, inp->inp_options,
use_cached_route ? &inp->inp_route : NULL, ipflags,
inp->inp_moptions, inp);
INP_UNLOCK(inp);
NET_EPOCH_EXIT(et);
return (error);
release:
INP_UNLOCK(inp);
NET_EPOCH_EXIT(et);
m_freem(m);
return (error);
}
void
udp_abort(struct socket *so)
{
struct inpcb *inp;
struct inpcbinfo *pcbinfo;
pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
INP_WLOCK(inp);
if (inp->inp_faddr.s_addr != INADDR_ANY) {
INP_HASH_WLOCK(pcbinfo);
in_pcbdisconnect(inp);
INP_HASH_WUNLOCK(pcbinfo);
soisdisconnected(so);
}
INP_WUNLOCK(inp);
}
static int
udp_attach(struct socket *so, int proto, struct thread *td)
{
static uint32_t udp_flowid;
struct inpcbinfo *pcbinfo;
struct inpcb *inp;
struct udpcb *up;
int error;
pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
inp = sotoinpcb(so);
KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
error = soreserve(so, udp_sendspace, udp_recvspace);
if (error)
return (error);
error = in_pcballoc(so, pcbinfo);
if (error)
return (error);
inp = sotoinpcb(so);
inp->inp_ip_ttl = V_ip_defttl;
inp->inp_flowid = atomic_fetchadd_int(&udp_flowid, 1);
inp->inp_flowtype = M_HASHTYPE_OPAQUE;
up = intoudpcb(inp);
bzero(&up->u_start_zero, u_zero_size);
INP_WUNLOCK(inp);
return (0);
}
#endif /* INET */
int
udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx)
{
struct inpcb *inp;
struct udpcb *up;
KASSERT(so->so_type == SOCK_DGRAM,
("udp_set_kernel_tunneling: !dgram"));
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL"));
INP_WLOCK(inp);
up = intoudpcb(inp);
if ((f != NULL || i != NULL) && ((up->u_tun_func != NULL) ||
(up->u_icmp_func != NULL))) {
INP_WUNLOCK(inp);
return (EBUSY);
}
up->u_tun_func = f;
up->u_icmp_func = i;
up->u_tun_ctx = ctx;
INP_WUNLOCK(inp);
return (0);
}
#ifdef INET
static int
udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
{
struct inpcb *inp;
struct inpcbinfo *pcbinfo;
struct sockaddr_in *sinp;
int error;
pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
sinp = (struct sockaddr_in *)nam;
if (nam->sa_family != AF_INET) {
/*
* Preserve compatibility with old programs.
*/
if (nam->sa_family != AF_UNSPEC ||
nam->sa_len < offsetof(struct sockaddr_in, sin_zero) ||
sinp->sin_addr.s_addr != INADDR_ANY)
return (EAFNOSUPPORT);
nam->sa_family = AF_INET;
}
if (nam->sa_len != sizeof(struct sockaddr_in))
return (EINVAL);
INP_WLOCK(inp);
INP_HASH_WLOCK(pcbinfo);
error = in_pcbbind(inp, sinp, td->td_ucred);
INP_HASH_WUNLOCK(pcbinfo);
INP_WUNLOCK(inp);
return (error);
}
static void
udp_close(struct socket *so)
{
struct inpcb *inp;
struct inpcbinfo *pcbinfo;
pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_close: inp == NULL"));
INP_WLOCK(inp);
if (inp->inp_faddr.s_addr != INADDR_ANY) {
INP_HASH_WLOCK(pcbinfo);
in_pcbdisconnect(inp);
INP_HASH_WUNLOCK(pcbinfo);
soisdisconnected(so);
}
INP_WUNLOCK(inp);
}
static int
udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
{
struct epoch_tracker et;
struct inpcb *inp;
struct inpcbinfo *pcbinfo;
struct sockaddr_in *sin;
int error;
pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
sin = (struct sockaddr_in *)nam;
if (sin->sin_family != AF_INET)
return (EAFNOSUPPORT);
if (sin->sin_len != sizeof(*sin))
return (EINVAL);
INP_WLOCK(inp);
if (inp->inp_faddr.s_addr != INADDR_ANY) {
INP_WUNLOCK(inp);
return (EISCONN);
}
error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
if (error != 0) {
INP_WUNLOCK(inp);
return (error);
}
NET_EPOCH_ENTER(et);
INP_HASH_WLOCK(pcbinfo);
error = in_pcbconnect(inp, sin, td->td_ucred, true);
INP_HASH_WUNLOCK(pcbinfo);
NET_EPOCH_EXIT(et);
if (error == 0)
soisconnected(so);
INP_WUNLOCK(inp);
return (error);
}
static void
udp_detach(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
("udp_detach: not disconnected"));
INP_WLOCK(inp);
in_pcbfree(inp);
}
int
udp_disconnect(struct socket *so)
{
struct inpcb *inp;
struct inpcbinfo *pcbinfo;
pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
INP_WLOCK(inp);
if (inp->inp_faddr.s_addr == INADDR_ANY) {
INP_WUNLOCK(inp);
return (ENOTCONN);
}
INP_HASH_WLOCK(pcbinfo);
in_pcbdisconnect(inp);
INP_HASH_WUNLOCK(pcbinfo);
SOCK_LOCK(so);
so->so_state &= ~SS_ISCONNECTED; /* XXX */
SOCK_UNLOCK(so);
INP_WUNLOCK(inp);
return (0);
}
#endif /* INET */
int
udp_shutdown(struct socket *so, enum shutdown_how how)
{
int error;
SOCK_LOCK(so);
if (!(so->so_state & SS_ISCONNECTED))
/*
* POSIX mandates us to just return ENOTCONN when shutdown(2) is
* invoked on a datagram sockets, however historically we would
* actually tear socket down. This is known to be leveraged by
* some applications to unblock process waiting in recv(2) by
* other process that it shares that socket with. Try to meet
* both backward-compatibility and POSIX requirements by forcing
* ENOTCONN but still flushing buffers and performing wakeup(9).
*
* XXXGL: it remains unknown what applications expect this
* behavior and is this isolated to unix/dgram or inet/dgram or
* both. See: D10351, D3039.
*/
error = ENOTCONN;
else
error = 0;
SOCK_UNLOCK(so);
switch (how) {
case SHUT_RD:
sorflush(so);
break;
case SHUT_RDWR:
sorflush(so);
/* FALLTHROUGH */
case SHUT_WR:
socantsendmore(so);
}
return (error);
}
#ifdef INET
#define UDP_PROTOSW \
.pr_type = SOCK_DGRAM, \
.pr_flags = PR_ATOMIC | PR_ADDR | PR_CAPATTACH, \
.pr_ctloutput = udp_ctloutput, \
.pr_abort = udp_abort, \
.pr_attach = udp_attach, \
.pr_bind = udp_bind, \
.pr_connect = udp_connect, \
.pr_control = in_control, \
.pr_detach = udp_detach, \
.pr_disconnect = udp_disconnect, \
.pr_peeraddr = in_getpeeraddr, \
.pr_send = udp_send, \
.pr_soreceive = soreceive_dgram, \
.pr_sosend = sosend_dgram, \
.pr_shutdown = udp_shutdown, \
.pr_sockaddr = in_getsockaddr, \
.pr_sosetlabel = in_pcbsosetlabel, \
.pr_close = udp_close
struct protosw udp_protosw = {
.pr_protocol = IPPROTO_UDP,
UDP_PROTOSW
};
struct protosw udplite_protosw = {
.pr_protocol = IPPROTO_UDPLITE,
UDP_PROTOSW
};
static void
udp_init(void *arg __unused)
{
IPPROTO_REGISTER(IPPROTO_UDP, udp_input, udp_ctlinput);
IPPROTO_REGISTER(IPPROTO_UDPLITE, udp_input, udplite_ctlinput);
}
SYSINIT(udp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, udp_init, NULL);
#endif /* INET */