mirror of
https://git.hardenedbsd.org/hardenedbsd/HardenedBSD.git
synced 2025-01-11 17:04:19 +01:00
ff1fe75fab
and out of kernel address space (via the pass(4) and xpt(4) peripheral drivers) to 64K (DFLTPHYS). Some controllers, like the Adaptec 1542, don't support more than 64K transactions. We plan on eventually having the capability of limiting this size based on min(MAXPHYS, controller max), but since that capability isn't here yet, limit things to the lowest common denominator.
1560 lines
38 KiB
C
1560 lines
38 KiB
C
/*
|
|
* Common functions for CAM "type" (peripheral) drivers.
|
|
*
|
|
* Copyright (c) 1997, 1998 Justin T. Gibbs.
|
|
* Copyright (c) 1997, 1998 Kenneth D. Merry.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
* without modification, immediately at the beginning of the file.
|
|
* 2. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $Id: cam_periph.c,v 1.6 1998/10/22 22:16:48 ken Exp $
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/types.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/devicestat.h>
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_extern.h>
|
|
|
|
#include <cam/cam.h>
|
|
#include <cam/cam_conf.h>
|
|
#include <cam/cam_ccb.h>
|
|
#include <cam/cam_xpt_periph.h>
|
|
#include <cam/cam_periph.h>
|
|
#include <cam/cam_debug.h>
|
|
|
|
#include <cam/scsi/scsi_all.h>
|
|
#include <cam/scsi/scsi_message.h>
|
|
#include <cam/scsi/scsi_da.h>
|
|
#include <cam/scsi/scsi_pass.h>
|
|
|
|
static u_int camperiphnextunit(struct periph_driver *p_drv,
|
|
u_int newunit, int wired);
|
|
static u_int camperiphunit(struct periph_driver *p_drv,
|
|
path_id_t path_id_t,
|
|
target_id_t target, lun_id_t lun);
|
|
static void camperiphdone(struct cam_periph *periph,
|
|
union ccb *done_ccb);
|
|
static void camperiphfree(struct cam_periph *periph);
|
|
|
|
cam_status
|
|
cam_periph_alloc(periph_ctor_t *periph_ctor,
|
|
periph_oninv_t *periph_oninvalidate,
|
|
periph_dtor_t *periph_dtor, periph_start_t *periph_start,
|
|
char *name, cam_periph_type type, struct cam_path *path,
|
|
ac_callback_t *ac_callback, ac_code code, void *arg)
|
|
{
|
|
struct periph_driver **p_drv;
|
|
struct cam_periph *periph;
|
|
struct cam_periph *cur_periph;
|
|
path_id_t path_id;
|
|
target_id_t target_id;
|
|
lun_id_t lun_id;
|
|
cam_status status;
|
|
u_int init_level;
|
|
int s;
|
|
|
|
init_level = 0;
|
|
/*
|
|
* Handle Hot-Plug scenarios. If there is already a peripheral
|
|
* of our type assigned to this path, we are likely waiting for
|
|
* final close on an old, invalidated, peripheral. If this is
|
|
* the case, queue up a deferred call to the peripheral's async
|
|
* handler. If it looks like a mistaken re-alloation, complain.
|
|
*/
|
|
if ((periph = cam_periph_find(path, name)) != NULL) {
|
|
|
|
if ((periph->flags & CAM_PERIPH_INVALID) != 0
|
|
&& (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) {
|
|
periph->flags |= CAM_PERIPH_NEW_DEV_FOUND;
|
|
periph->deferred_callback = ac_callback;
|
|
periph->deferred_ac = code;
|
|
return (CAM_REQ_INPROG);
|
|
} else {
|
|
printf("cam_periph_alloc: attempt to re-allocate "
|
|
"valid device %s%d rejected\n",
|
|
periph->periph_name, periph->unit_number);
|
|
}
|
|
return (CAM_REQ_INVALID);
|
|
}
|
|
|
|
periph = (struct cam_periph *)malloc(sizeof(*periph), M_DEVBUF,
|
|
M_NOWAIT);
|
|
|
|
if (periph == NULL)
|
|
return (CAM_RESRC_UNAVAIL);
|
|
|
|
init_level++;
|
|
|
|
for (p_drv = (struct periph_driver **)periphdriver_set.ls_items;
|
|
*p_drv != NULL; p_drv++) {
|
|
if (strcmp((*p_drv)->driver_name, name) == 0)
|
|
break;
|
|
}
|
|
|
|
path_id = xpt_path_path_id(path);
|
|
target_id = xpt_path_target_id(path);
|
|
lun_id = xpt_path_lun_id(path);
|
|
bzero(periph, sizeof(*periph));
|
|
cam_init_pinfo(&periph->pinfo);
|
|
periph->periph_start = periph_start;
|
|
periph->periph_dtor = periph_dtor;
|
|
periph->periph_oninval = periph_oninvalidate;
|
|
periph->type = type;
|
|
periph->periph_name = name;
|
|
periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id);
|
|
periph->immediate_priority = CAM_PRIORITY_NONE;
|
|
periph->refcount = 0;
|
|
SLIST_INIT(&periph->ccb_list);
|
|
status = xpt_create_path(&path, periph, path_id, target_id, lun_id);
|
|
if (status != CAM_REQ_CMP)
|
|
goto failure;
|
|
|
|
periph->path = path;
|
|
init_level++;
|
|
|
|
status = xpt_add_periph(periph);
|
|
|
|
if (status != CAM_REQ_CMP)
|
|
goto failure;
|
|
|
|
s = splsoftcam();
|
|
cur_periph = TAILQ_FIRST(&(*p_drv)->units);
|
|
while (cur_periph != NULL
|
|
&& cur_periph->unit_number < periph->unit_number)
|
|
cur_periph = TAILQ_NEXT(cur_periph, unit_links);
|
|
|
|
if (cur_periph != NULL)
|
|
TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links);
|
|
else {
|
|
TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links);
|
|
(*p_drv)->generation++;
|
|
}
|
|
|
|
splx(s);
|
|
|
|
init_level++;
|
|
|
|
status = periph_ctor(periph, arg);
|
|
|
|
if (status == CAM_REQ_CMP)
|
|
init_level++;
|
|
|
|
failure:
|
|
switch (init_level) {
|
|
case 4:
|
|
/* Initialized successfully */
|
|
break;
|
|
case 3:
|
|
s = splsoftcam();
|
|
TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
|
|
splx(s);
|
|
xpt_remove_periph(periph);
|
|
case 2:
|
|
xpt_free_path(periph->path);
|
|
case 1:
|
|
free(periph, M_DEVBUF);
|
|
case 0:
|
|
/* No cleanup to perform. */
|
|
break;
|
|
default:
|
|
panic("cam_periph_alloc: Unkown init level");
|
|
}
|
|
return(status);
|
|
}
|
|
|
|
/*
|
|
* Find a peripheral structure with the specified path, target, lun,
|
|
* and (optionally) type. If the name is NULL, this function will return
|
|
* the first peripheral driver that matches the specified path.
|
|
*/
|
|
struct cam_periph *
|
|
cam_periph_find(struct cam_path *path, char *name)
|
|
{
|
|
struct periph_driver **p_drv;
|
|
struct cam_periph *periph;
|
|
int s;
|
|
|
|
for (p_drv = (struct periph_driver **)periphdriver_set.ls_items;
|
|
*p_drv != NULL; p_drv++) {
|
|
|
|
if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0))
|
|
continue;
|
|
|
|
s = splsoftcam();
|
|
for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
|
|
periph = TAILQ_NEXT(periph, unit_links)) {
|
|
if (xpt_path_comp(periph->path, path) == 0) {
|
|
splx(s);
|
|
return(periph);
|
|
}
|
|
}
|
|
splx(s);
|
|
if (name != NULL)
|
|
return(NULL);
|
|
}
|
|
return(NULL);
|
|
}
|
|
|
|
cam_status
|
|
cam_periph_acquire(struct cam_periph *periph)
|
|
{
|
|
int s;
|
|
|
|
if (periph == NULL)
|
|
return(CAM_REQ_CMP_ERR);
|
|
|
|
s = splsoftcam();
|
|
periph->refcount++;
|
|
splx(s);
|
|
|
|
return(CAM_REQ_CMP);
|
|
}
|
|
|
|
void
|
|
cam_periph_release(struct cam_periph *periph)
|
|
{
|
|
int s;
|
|
|
|
if (periph == NULL)
|
|
return;
|
|
|
|
s = splsoftcam();
|
|
if ((--periph->refcount == 0)
|
|
&& (periph->flags & CAM_PERIPH_INVALID)) {
|
|
camperiphfree(periph);
|
|
}
|
|
splx(s);
|
|
|
|
}
|
|
|
|
/*
|
|
* Look for the next unit number that is not currently in use for this
|
|
* peripheral type starting at "newunit". Also exclude unit numbers that
|
|
* are reserved by for future "hardwiring" unless we already know that this
|
|
* is a potential wired device. Only assume that the device is "wired" the
|
|
* first time through the loop since after that we'll be looking at unit
|
|
* numbers that did not match a wiring entry.
|
|
*/
|
|
static u_int
|
|
camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired)
|
|
{
|
|
struct cam_periph *periph;
|
|
struct cam_periph_config *periph_conf;
|
|
char *periph_name;
|
|
int s;
|
|
|
|
s = splsoftcam();
|
|
periph_name = p_drv->driver_name;
|
|
for (;;newunit++) {
|
|
|
|
for (periph = TAILQ_FIRST(&p_drv->units);
|
|
periph != NULL && periph->unit_number != newunit;
|
|
periph = TAILQ_NEXT(periph, unit_links))
|
|
;
|
|
|
|
if (periph != NULL && periph->unit_number == newunit) {
|
|
if (wired != 0) {
|
|
xpt_print_path(periph->path);
|
|
printf("Duplicate Wired Device entry!\n");
|
|
xpt_print_path(periph->path);
|
|
printf("Second device will not be wired\n");
|
|
wired = 0;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
for (periph_conf = cam_pinit;
|
|
wired == 0 && periph_conf->periph_name != NULL;
|
|
periph_conf++) {
|
|
|
|
/*
|
|
* Don't match entries like "da 4" as a wired down
|
|
* device, but do match entries like "da 4 target 5"
|
|
* or even "da 4 scbus 1".
|
|
*/
|
|
if (IS_SPECIFIED(periph_conf->periph_unit)
|
|
&& (!strcmp(periph_name, periph_conf->periph_name))
|
|
&& (IS_SPECIFIED(periph_conf->target)
|
|
|| IS_SPECIFIED(periph_conf->pathid))
|
|
&& (newunit == periph_conf->periph_unit))
|
|
break;
|
|
}
|
|
|
|
if (wired != 0 || periph_conf->periph_name == NULL)
|
|
break;
|
|
}
|
|
splx(s);
|
|
return (newunit);
|
|
}
|
|
|
|
static u_int
|
|
camperiphunit(struct periph_driver *p_drv, path_id_t pathid,
|
|
target_id_t target, lun_id_t lun)
|
|
{
|
|
struct cam_periph_config *periph_conf;
|
|
u_int unit;
|
|
int hit;
|
|
|
|
unit = 0;
|
|
hit = 0;
|
|
|
|
for (periph_conf = cam_pinit;
|
|
periph_conf->periph_name != NULL;
|
|
periph_conf++, hit = 0) {
|
|
|
|
if (!strcmp(p_drv->driver_name, periph_conf->periph_name)
|
|
&& IS_SPECIFIED(periph_conf->periph_unit)) {
|
|
|
|
if (IS_SPECIFIED(periph_conf->pathid)) {
|
|
|
|
if (pathid != periph_conf->pathid)
|
|
continue;
|
|
hit++;
|
|
}
|
|
|
|
if (IS_SPECIFIED(periph_conf->target)) {
|
|
|
|
if (target != periph_conf->target)
|
|
continue;
|
|
hit++;
|
|
}
|
|
|
|
if (IS_SPECIFIED(periph_conf->lun)) {
|
|
|
|
if (lun != periph_conf->lun)
|
|
continue;
|
|
hit++;
|
|
}
|
|
|
|
if (hit != 0) {
|
|
unit = periph_conf->periph_unit;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Either start from 0 looking for the next unit or from
|
|
* the unit number given in the periph_conf. This way,
|
|
* if we have wildcard matches, we don't return the same
|
|
* unit number twice.
|
|
*/
|
|
unit = camperiphnextunit(p_drv, unit, /*wired*/hit);
|
|
|
|
return (unit);
|
|
}
|
|
|
|
void
|
|
cam_periph_invalidate(struct cam_periph *periph)
|
|
{
|
|
int s;
|
|
|
|
s = splsoftcam();
|
|
/*
|
|
* We only call this routine the first time a peripheral is
|
|
* invalidated. The oninvalidate() routine is always called at
|
|
* splsoftcam().
|
|
*/
|
|
if (((periph->flags & CAM_PERIPH_INVALID) == 0)
|
|
&& (periph->periph_oninval != NULL))
|
|
periph->periph_oninval(periph);
|
|
|
|
periph->flags |= CAM_PERIPH_INVALID;
|
|
periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND;
|
|
|
|
if (periph->refcount == 0)
|
|
camperiphfree(periph);
|
|
else if (periph->refcount < 0)
|
|
printf("cam_invalidate_periph: refcount < 0!!\n");
|
|
splx(s);
|
|
}
|
|
|
|
static void
|
|
camperiphfree(struct cam_periph *periph)
|
|
{
|
|
int s;
|
|
struct periph_driver **p_drv;
|
|
|
|
for (p_drv = (struct periph_driver **)periphdriver_set.ls_items;
|
|
*p_drv != NULL; p_drv++) {
|
|
if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0)
|
|
break;
|
|
}
|
|
|
|
if (periph->periph_dtor != NULL)
|
|
periph->periph_dtor(periph);
|
|
|
|
s = splsoftcam();
|
|
TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
|
|
(*p_drv)->generation++;
|
|
splx(s);
|
|
|
|
xpt_remove_periph(periph);
|
|
|
|
if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) {
|
|
union ccb ccb;
|
|
void *arg;
|
|
|
|
switch (periph->deferred_ac) {
|
|
case AC_FOUND_DEVICE:
|
|
ccb.ccb_h.func_code = XPT_GDEV_TYPE;
|
|
xpt_setup_ccb(&ccb.ccb_h, periph->path, /*priority*/ 1);
|
|
xpt_action(&ccb);
|
|
arg = &ccb;
|
|
break;
|
|
case AC_PATH_REGISTERED:
|
|
ccb.ccb_h.func_code = XPT_PATH_INQ;
|
|
xpt_setup_ccb(&ccb.ccb_h, periph->path, /*priority*/ 1);
|
|
xpt_action(&ccb);
|
|
arg = &ccb;
|
|
break;
|
|
default:
|
|
arg = NULL;
|
|
break;
|
|
}
|
|
periph->deferred_callback(NULL, periph->deferred_ac,
|
|
periph->path, arg);
|
|
}
|
|
xpt_free_path(periph->path);
|
|
free(periph, M_DEVBUF);
|
|
}
|
|
|
|
/*
|
|
* Wait interruptibly for an exclusive lock.
|
|
*/
|
|
int
|
|
cam_periph_lock(struct cam_periph *periph, int priority)
|
|
{
|
|
int error;
|
|
|
|
while ((periph->flags & CAM_PERIPH_LOCKED) != 0) {
|
|
periph->flags |= CAM_PERIPH_LOCK_WANTED;
|
|
if ((error = tsleep(periph, priority, "caplck", 0)) != 0)
|
|
return error;
|
|
}
|
|
|
|
if (cam_periph_acquire(periph) != CAM_REQ_CMP)
|
|
return(ENXIO);
|
|
|
|
periph->flags |= CAM_PERIPH_LOCKED;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Unlock and wake up any waiters.
|
|
*/
|
|
void
|
|
cam_periph_unlock(struct cam_periph *periph)
|
|
{
|
|
periph->flags &= ~CAM_PERIPH_LOCKED;
|
|
if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) {
|
|
periph->flags &= ~CAM_PERIPH_LOCK_WANTED;
|
|
wakeup(periph);
|
|
}
|
|
|
|
cam_periph_release(periph);
|
|
}
|
|
|
|
/*
|
|
* Map user virtual pointers into kernel virtual address space, so we can
|
|
* access the memory. This won't work on physical pointers, for now it's
|
|
* up to the caller to check for that. (XXX KDM -- should we do that here
|
|
* instead?) This also only works for up to MAXPHYS memory. Since we use
|
|
* buffers to map stuff in and out, we're limited to the buffer size.
|
|
*/
|
|
int
|
|
cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
|
|
{
|
|
int numbufs, i;
|
|
int flags[CAM_PERIPH_MAXMAPS];
|
|
u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
|
|
u_int32_t lengths[CAM_PERIPH_MAXMAPS];
|
|
u_int32_t dirs[CAM_PERIPH_MAXMAPS];
|
|
|
|
switch(ccb->ccb_h.func_code) {
|
|
case XPT_DEV_MATCH:
|
|
if (ccb->cdm.match_buf_len == 0) {
|
|
printf("cam_periph_mapmem: invalid match buffer "
|
|
"length 0\n");
|
|
return(EINVAL);
|
|
}
|
|
if (ccb->cdm.pattern_buf_len > 0) {
|
|
data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
|
|
lengths[0] = ccb->cdm.pattern_buf_len;
|
|
dirs[0] = CAM_DIR_OUT;
|
|
data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
|
|
lengths[1] = ccb->cdm.match_buf_len;
|
|
dirs[1] = CAM_DIR_IN;
|
|
numbufs = 2;
|
|
} else {
|
|
data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
|
|
lengths[0] = ccb->cdm.match_buf_len;
|
|
dirs[0] = CAM_DIR_IN;
|
|
numbufs = 1;
|
|
}
|
|
break;
|
|
case XPT_SCSI_IO:
|
|
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
|
|
return(0);
|
|
|
|
data_ptrs[0] = &ccb->csio.data_ptr;
|
|
lengths[0] = ccb->csio.dxfer_len;
|
|
dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
|
|
numbufs = 1;
|
|
break;
|
|
default:
|
|
return(EINVAL);
|
|
break; /* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* Check the transfer length and permissions first, so we don't
|
|
* have to unmap any previously mapped buffers.
|
|
*/
|
|
for (i = 0; i < numbufs; i++) {
|
|
|
|
flags[i] = 0;
|
|
|
|
/*
|
|
* The userland data pointer passed in may not be page
|
|
* aligned. vmapbuf() truncates the address to a page
|
|
* boundary, so if the address isn't page aligned, we'll
|
|
* need enough space for the given transfer length, plus
|
|
* whatever extra space is necessary to make it to the page
|
|
* boundary.
|
|
*/
|
|
if ((lengths[i] +
|
|
(((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > DFLTPHYS){
|
|
printf("cam_periph_mapmem: attempt to map %u bytes, "
|
|
"which is greater than DFLTPHYS(%d)\n",
|
|
lengths[i] +
|
|
(((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK),
|
|
DFLTPHYS);
|
|
return(E2BIG);
|
|
}
|
|
|
|
if (dirs[i] & CAM_DIR_IN) {
|
|
flags[i] = B_READ;
|
|
if (useracc(*data_ptrs[i], lengths[i], B_READ) == 0){
|
|
printf("cam_periph_mapmem: error, "
|
|
"address %p, length %lu isn't "
|
|
"user accessible for READ\n",
|
|
(void *)*data_ptrs[i],
|
|
(u_long)lengths[i]);
|
|
return(EACCES);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* XXX this check is really bogus, since B_WRITE currently
|
|
* is all 0's, and so it is "set" all the time.
|
|
*/
|
|
if (dirs[i] & CAM_DIR_OUT) {
|
|
flags[i] |= B_WRITE;
|
|
if (useracc(*data_ptrs[i], lengths[i], B_WRITE) == 0){
|
|
printf("cam_periph_mapmem: error, "
|
|
"address %p, length %lu isn't "
|
|
"user accessible for WRITE\n",
|
|
(void *)*data_ptrs[i],
|
|
(u_long)lengths[i]);
|
|
|
|
return(EACCES);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/* this keeps the current process from getting swapped */
|
|
/*
|
|
* XXX KDM should I use P_NOSWAP instead?
|
|
*/
|
|
curproc->p_flag |= P_PHYSIO;
|
|
|
|
for (i = 0; i < numbufs; i++) {
|
|
/*
|
|
* Get the buffer.
|
|
*/
|
|
mapinfo->bp[i] = getpbuf();
|
|
|
|
/* save the buffer's data address */
|
|
mapinfo->bp[i]->b_saveaddr = mapinfo->bp[i]->b_data;
|
|
|
|
/* put our pointer in the data slot */
|
|
mapinfo->bp[i]->b_data = *data_ptrs[i];
|
|
|
|
/* set the transfer length, we know it's < DFLTPHYS */
|
|
mapinfo->bp[i]->b_bufsize = lengths[i];
|
|
|
|
/* set the flags */
|
|
mapinfo->bp[i]->b_flags = flags[i] | B_PHYS | B_BUSY;
|
|
|
|
/* map the buffer into kernel memory */
|
|
vmapbuf(mapinfo->bp[i]);
|
|
|
|
/* set our pointer to the new mapped area */
|
|
*data_ptrs[i] = mapinfo->bp[i]->b_data;
|
|
|
|
mapinfo->num_bufs_used++;
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Unmap memory segments mapped into kernel virtual address space by
|
|
* cam_periph_mapmem().
|
|
*/
|
|
void
|
|
cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
|
|
{
|
|
int numbufs, i;
|
|
u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
|
|
|
|
if (mapinfo->num_bufs_used <= 0) {
|
|
/* allow ourselves to be swapped once again */
|
|
curproc->p_flag &= ~P_PHYSIO;
|
|
return;
|
|
}
|
|
|
|
switch (ccb->ccb_h.func_code) {
|
|
case XPT_DEV_MATCH:
|
|
numbufs = min(mapinfo->num_bufs_used, 2);
|
|
|
|
if (numbufs == 1) {
|
|
data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
|
|
} else {
|
|
data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
|
|
data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
|
|
}
|
|
break;
|
|
case XPT_SCSI_IO:
|
|
data_ptrs[0] = &ccb->csio.data_ptr;
|
|
numbufs = min(mapinfo->num_bufs_used, 1);
|
|
break;
|
|
default:
|
|
/* allow ourselves to be swapped once again */
|
|
curproc->p_flag &= ~P_PHYSIO;
|
|
return;
|
|
break; /* NOTREACHED */
|
|
}
|
|
|
|
for (i = 0; i < numbufs; i++) {
|
|
/* Set the user's pointer back to the original value */
|
|
*data_ptrs[i] = mapinfo->bp[i]->b_saveaddr;
|
|
|
|
/* unmap the buffer */
|
|
vunmapbuf(mapinfo->bp[i]);
|
|
|
|
/* clear the flags we set above */
|
|
mapinfo->bp[i]->b_flags &= ~(B_PHYS|B_BUSY);
|
|
|
|
/* release the buffer */
|
|
relpbuf(mapinfo->bp[i]);
|
|
}
|
|
|
|
/* allow ourselves to be swapped once again */
|
|
curproc->p_flag &= ~P_PHYSIO;
|
|
}
|
|
|
|
union ccb *
|
|
cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
|
|
{
|
|
struct ccb_hdr *ccb_h;
|
|
int s;
|
|
|
|
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering cdgetccb\n"));
|
|
|
|
s = splsoftcam();
|
|
|
|
while (periph->ccb_list.slh_first == NULL) {
|
|
if (periph->immediate_priority > priority)
|
|
periph->immediate_priority = priority;
|
|
xpt_schedule(periph, priority);
|
|
if ((periph->ccb_list.slh_first != NULL)
|
|
&& (periph->ccb_list.slh_first->pinfo.priority == priority))
|
|
break;
|
|
tsleep(&periph->ccb_list, PRIBIO, "cgticb", 0);
|
|
}
|
|
|
|
ccb_h = periph->ccb_list.slh_first;
|
|
SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
|
|
splx(s);
|
|
return ((union ccb *)ccb_h);
|
|
}
|
|
|
|
void
|
|
cam_periph_ccbwait(union ccb *ccb)
|
|
{
|
|
int s;
|
|
|
|
s = splsoftcam();
|
|
if ((ccb->ccb_h.pinfo.index != CAM_UNQUEUED_INDEX)
|
|
|| ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG))
|
|
tsleep(&ccb->ccb_h.cbfcnp, PRIBIO, "cbwait", 0);
|
|
|
|
splx(s);
|
|
}
|
|
|
|
int
|
|
cam_periph_ioctl(struct cam_periph *periph, int cmd, caddr_t addr,
|
|
int (*error_routine)(union ccb *ccb,
|
|
cam_flags camflags,
|
|
u_int32_t sense_flags))
|
|
{
|
|
union ccb *ccb;
|
|
int error;
|
|
int found;
|
|
|
|
error = found = 0;
|
|
|
|
switch(cmd){
|
|
case CAMGETPASSTHRU:
|
|
ccb = cam_periph_getccb(periph, /* priority */ 1);
|
|
xpt_setup_ccb(&ccb->ccb_h,
|
|
ccb->ccb_h.path,
|
|
/*priority*/1);
|
|
ccb->ccb_h.func_code = XPT_GDEVLIST;
|
|
|
|
/*
|
|
* Basically, the point of this is that we go through
|
|
* getting the list of devices, until we find a passthrough
|
|
* device. In the current version of the CAM code, the
|
|
* only way to determine what type of device we're dealing
|
|
* with is by its name.
|
|
*/
|
|
while (found == 0) {
|
|
ccb->cgdl.index = 0;
|
|
ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS;
|
|
while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) {
|
|
|
|
/* we want the next device in the list */
|
|
xpt_action(ccb);
|
|
if (strncmp(ccb->cgdl.periph_name,
|
|
"pass", 4) == 0){
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) &&
|
|
(found == 0)) {
|
|
ccb->cgdl.periph_name[0] = '\0';
|
|
ccb->cgdl.unit_number = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* copy the result back out */
|
|
bcopy(ccb, addr, sizeof(union ccb));
|
|
|
|
/* and release the ccb */
|
|
xpt_release_ccb(ccb);
|
|
|
|
break;
|
|
default:
|
|
error = ENOTTY;
|
|
break;
|
|
}
|
|
return(error);
|
|
}
|
|
|
|
int
|
|
cam_periph_runccb(union ccb *ccb,
|
|
int (*error_routine)(union ccb *ccb,
|
|
cam_flags camflags,
|
|
u_int32_t sense_flags),
|
|
cam_flags camflags, u_int32_t sense_flags,
|
|
struct devstat *ds)
|
|
{
|
|
int error;
|
|
|
|
error = 0;
|
|
|
|
/*
|
|
* If the user has supplied a stats structure, and if we understand
|
|
* this particular type of ccb, record the transaction start.
|
|
*/
|
|
if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO))
|
|
devstat_start_transaction(ds);
|
|
|
|
xpt_action(ccb);
|
|
|
|
do {
|
|
cam_periph_ccbwait(ccb);
|
|
if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
|
|
error = 0;
|
|
else if (error_routine != NULL)
|
|
error = (*error_routine)(ccb, camflags, sense_flags);
|
|
else
|
|
error = 0;
|
|
|
|
} while (error == ERESTART);
|
|
|
|
if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
|
|
cam_release_devq(ccb->ccb_h.path,
|
|
/* relsim_flags */0,
|
|
/* openings */0,
|
|
/* timeout */0,
|
|
/* getcount_only */ FALSE);
|
|
|
|
if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO))
|
|
devstat_end_transaction(ds,
|
|
ccb->csio.dxfer_len,
|
|
ccb->csio.tag_action & 0xf,
|
|
((ccb->ccb_h.flags & CAM_DIR_MASK) ==
|
|
CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
|
|
(ccb->ccb_h.flags & CAM_DIR_OUT) ?
|
|
DEVSTAT_WRITE :
|
|
DEVSTAT_READ);
|
|
|
|
return(error);
|
|
}
|
|
|
|
u_int32_t
|
|
cam_release_devq(struct cam_path *path, u_int32_t relsim_flags,
|
|
u_int32_t openings, u_int32_t timeout,
|
|
int getcount_only)
|
|
{
|
|
struct ccb_relsim crs;
|
|
|
|
xpt_setup_ccb(&crs.ccb_h, path,
|
|
/*priority*/1);
|
|
crs.ccb_h.func_code = XPT_REL_SIMQ;
|
|
crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0;
|
|
crs.release_flags = relsim_flags;
|
|
crs.openings = openings;
|
|
crs.release_timeout = timeout;
|
|
xpt_action((union ccb *)&crs);
|
|
return (crs.qfrozen_cnt);
|
|
}
|
|
|
|
#define saved_ccb_ptr ppriv_ptr0
|
|
static void
|
|
camperiphdone(struct cam_periph *periph, union ccb *done_ccb)
|
|
{
|
|
cam_status status;
|
|
int frozen;
|
|
int sense;
|
|
struct scsi_start_stop_unit *scsi_cmd;
|
|
u_int32_t relsim_flags, timeout;
|
|
u_int32_t qfrozen_cnt;
|
|
|
|
status = done_ccb->ccb_h.status;
|
|
frozen = (status & CAM_DEV_QFRZN) != 0;
|
|
sense = (status & CAM_AUTOSNS_VALID) != 0;
|
|
status &= CAM_STATUS_MASK;
|
|
|
|
timeout = 0;
|
|
relsim_flags = 0;
|
|
|
|
/*
|
|
* Unfreeze the queue once if it is already frozen..
|
|
*/
|
|
if (frozen != 0) {
|
|
qfrozen_cnt = cam_release_devq(done_ccb->ccb_h.path,
|
|
/*relsim_flags*/0,
|
|
/*openings*/0,
|
|
/*timeout*/0,
|
|
/*getcount_only*/0);
|
|
}
|
|
|
|
switch (status) {
|
|
|
|
case CAM_REQ_CMP:
|
|
|
|
/*
|
|
* If we have successfully taken a device from the not
|
|
* ready to ready state, re-scan the device and re-get the
|
|
* inquiry information. Many devices (mostly disks) don't
|
|
* properly report their inquiry information unless they
|
|
* are spun up.
|
|
*/
|
|
if (done_ccb->ccb_h.func_code == XPT_SCSI_IO) {
|
|
scsi_cmd = (struct scsi_start_stop_unit *)
|
|
&done_ccb->csio.cdb_io.cdb_bytes;
|
|
|
|
if (scsi_cmd->opcode == START_STOP_UNIT)
|
|
xpt_async(AC_INQ_CHANGED,
|
|
done_ccb->ccb_h.path, NULL);
|
|
}
|
|
bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb,
|
|
sizeof(union ccb));
|
|
|
|
periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
|
|
|
|
xpt_action(done_ccb);
|
|
|
|
break;
|
|
case CAM_SCSI_STATUS_ERROR:
|
|
scsi_cmd = (struct scsi_start_stop_unit *)
|
|
&done_ccb->csio.cdb_io.cdb_bytes;
|
|
if (sense != 0) {
|
|
struct scsi_sense_data *sense;
|
|
int error_code, sense_key, asc, ascq;
|
|
|
|
sense = &done_ccb->csio.sense_data;
|
|
scsi_extract_sense(sense, &error_code,
|
|
&sense_key, &asc, &ascq);
|
|
|
|
/*
|
|
* If the error is "invalid field in CDB",
|
|
* and the load/eject flag is set, turn the
|
|
* flag off and try again. This is just in
|
|
* case the drive in question barfs on the
|
|
* load eject flag. The CAM code should set
|
|
* the load/eject flag by default for
|
|
* removable media.
|
|
*/
|
|
|
|
/* XXX KDM
|
|
* Should we check to see what the specific
|
|
* scsi status is?? Or does it not matter
|
|
* since we already know that there was an
|
|
* error, and we know what the specific
|
|
* error code was, and we know what the
|
|
* opcode is..
|
|
*/
|
|
if ((scsi_cmd->opcode == START_STOP_UNIT) &&
|
|
((scsi_cmd->how & SSS_LOEJ) != 0) &&
|
|
(asc == 0x24) && (ascq == 0x00) &&
|
|
(done_ccb->ccb_h.retry_count > 0)) {
|
|
|
|
scsi_cmd->how &= ~SSS_LOEJ;
|
|
|
|
xpt_action(done_ccb);
|
|
|
|
} else if (done_ccb->ccb_h.retry_count > 0) {
|
|
/*
|
|
* In this case, the error recovery
|
|
* command failed, but we've got
|
|
* some retries left on it. Give
|
|
* it another try.
|
|
*/
|
|
|
|
/* set the timeout to .5 sec */
|
|
relsim_flags =
|
|
RELSIM_RELEASE_AFTER_TIMEOUT;
|
|
timeout = 500;
|
|
|
|
xpt_action(done_ccb);
|
|
|
|
break;
|
|
|
|
} else {
|
|
/*
|
|
* Copy the original CCB back and
|
|
* send it back to the caller.
|
|
*/
|
|
bcopy(done_ccb->ccb_h.saved_ccb_ptr,
|
|
done_ccb, sizeof(union ccb));
|
|
|
|
periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
|
|
|
|
xpt_action(done_ccb);
|
|
}
|
|
} else {
|
|
/*
|
|
* Eh?? The command failed, but we don't
|
|
* have any sense. What's up with that?
|
|
* Fire the CCB again to return it to the
|
|
* caller.
|
|
*/
|
|
bcopy(done_ccb->ccb_h.saved_ccb_ptr,
|
|
done_ccb, sizeof(union ccb));
|
|
|
|
periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
|
|
|
|
xpt_action(done_ccb);
|
|
|
|
}
|
|
break;
|
|
default:
|
|
bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb,
|
|
sizeof(union ccb));
|
|
|
|
periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
|
|
|
|
xpt_action(done_ccb);
|
|
|
|
break;
|
|
}
|
|
|
|
/* decrement the retry count */
|
|
if (done_ccb->ccb_h.retry_count > 0)
|
|
done_ccb->ccb_h.retry_count--;
|
|
|
|
qfrozen_cnt = cam_release_devq(done_ccb->ccb_h.path,
|
|
/*relsim_flags*/relsim_flags,
|
|
/*openings*/0,
|
|
/*timeout*/timeout,
|
|
/*getcount_only*/0);
|
|
}
|
|
|
|
/*
|
|
* Generic error handler. Peripheral drivers usually filter
|
|
* out the errors that they handle in a unique mannor, then
|
|
* call this function.
|
|
*/
|
|
int
|
|
cam_periph_error(union ccb *ccb, cam_flags camflags,
|
|
u_int32_t sense_flags, union ccb *save_ccb)
|
|
{
|
|
cam_status status;
|
|
int frozen;
|
|
int sense;
|
|
int error;
|
|
int openings;
|
|
int retry;
|
|
u_int32_t relsim_flags;
|
|
u_int32_t timeout;
|
|
|
|
status = ccb->ccb_h.status;
|
|
frozen = (status & CAM_DEV_QFRZN) != 0;
|
|
sense = (status & CAM_AUTOSNS_VALID) != 0;
|
|
status &= CAM_STATUS_MASK;
|
|
relsim_flags = 0;
|
|
|
|
|
|
switch (status) {
|
|
case CAM_REQ_CMP:
|
|
/* decrement the number of retries */
|
|
retry = ccb->ccb_h.retry_count > 0;
|
|
if (retry)
|
|
ccb->ccb_h.retry_count--;
|
|
error = 0;
|
|
break;
|
|
case CAM_SCSI_STATUS_ERROR:
|
|
|
|
switch (ccb->csio.scsi_status) {
|
|
case SCSI_STATUS_OK:
|
|
case SCSI_STATUS_COND_MET:
|
|
case SCSI_STATUS_INTERMED:
|
|
case SCSI_STATUS_INTERMED_COND_MET:
|
|
error = 0;
|
|
break;
|
|
case SCSI_STATUS_CMD_TERMINATED:
|
|
case SCSI_STATUS_CHECK_COND:
|
|
if (sense != 0) {
|
|
struct scsi_sense_data *sense;
|
|
int error_code, sense_key, asc, ascq;
|
|
struct cam_periph *periph;
|
|
scsi_sense_action err_action;
|
|
struct ccb_getdev cgd;
|
|
|
|
sense = &ccb->csio.sense_data;
|
|
scsi_extract_sense(sense, &error_code,
|
|
&sense_key, &asc, &ascq);
|
|
periph = xpt_path_periph(ccb->ccb_h.path);
|
|
|
|
/*
|
|
* Grab the inquiry data for this device.
|
|
*/
|
|
xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path,
|
|
/*priority*/ 1);
|
|
cgd.ccb_h.func_code = XPT_GDEV_TYPE;
|
|
xpt_action((union ccb *)&cgd);
|
|
|
|
err_action = scsi_error_action(asc, ascq,
|
|
&cgd.inq_data);
|
|
|
|
/*
|
|
* Send a Test Unit Ready to the device.
|
|
* If the 'many' flag is set, we send 120
|
|
* test unit ready commands, one every half
|
|
* second. Otherwise, we just send one TUR.
|
|
* We only want to do this if the retry
|
|
* count has not been exhausted.
|
|
*/
|
|
if (((err_action & SS_MASK) == SS_TUR)
|
|
&& save_ccb != NULL
|
|
&& ccb->ccb_h.retry_count > 0) {
|
|
|
|
/*
|
|
* Since error recovery is already
|
|
* in progress, don't attempt to
|
|
* process this error. It is probably
|
|
* related to the error that caused
|
|
* the currently active error recovery
|
|
* action. Also, we only have
|
|
* space for one saved CCB, so if we
|
|
* had two concurrent error recovery
|
|
* actions, we would end up
|
|
* over-writing one error recovery
|
|
* CCB with another one.
|
|
*/
|
|
if (periph->flags &
|
|
CAM_PERIPH_RECOVERY_INPROG) {
|
|
error = ERESTART;
|
|
break;
|
|
}
|
|
|
|
periph->flags |=
|
|
CAM_PERIPH_RECOVERY_INPROG;
|
|
|
|
/* decrement the number of retries */
|
|
if ((err_action &
|
|
SSQ_DECREMENT_COUNT) != 0) {
|
|
retry = 1;
|
|
ccb->ccb_h.retry_count--;
|
|
}
|
|
|
|
bcopy(ccb, save_ccb, sizeof(*save_ccb));
|
|
|
|
/*
|
|
* We retry this one every half
|
|
* second for a minute. If the
|
|
* device hasn't become ready in a
|
|
* minute's time, it's unlikely to
|
|
* ever become ready. If the table
|
|
* doesn't specify SSQ_MANY, we can
|
|
* only try this once. Oh well.
|
|
*/
|
|
if ((err_action & SSQ_MANY) != 0)
|
|
scsi_test_unit_ready(&ccb->csio,
|
|
/*retries*/120,
|
|
camperiphdone,
|
|
MSG_SIMPLE_Q_TAG,
|
|
SSD_FULL_SIZE,
|
|
/*timeout*/5000);
|
|
else
|
|
scsi_test_unit_ready(&ccb->csio,
|
|
/*retries*/1,
|
|
camperiphdone,
|
|
MSG_SIMPLE_Q_TAG,
|
|
SSD_FULL_SIZE,
|
|
/*timeout*/5000);
|
|
|
|
/* release the queue after .5 sec. */
|
|
relsim_flags =
|
|
RELSIM_RELEASE_AFTER_TIMEOUT;
|
|
timeout = 500;
|
|
/*
|
|
* Drop the priority to 0 so that
|
|
* we are the first to execute. Also
|
|
* freeze the queue after this command
|
|
* is sent so that we can restore the
|
|
* old csio and have it queued in the
|
|
* proper order before we let normal
|
|
* transactions go to the drive.
|
|
*/
|
|
ccb->ccb_h.pinfo.priority = 0;
|
|
ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
|
|
|
|
/*
|
|
* Save a pointer to the original
|
|
* CCB in the new CCB.
|
|
*/
|
|
ccb->ccb_h.saved_ccb_ptr = save_ccb;
|
|
|
|
error = ERESTART;
|
|
}
|
|
/*
|
|
* Send a start unit command to the device,
|
|
* and then retry the command. We only
|
|
* want to do this if the retry count has
|
|
* not been exhausted. If the user
|
|
* specified 0 retries, then we follow
|
|
* their request and do not retry.
|
|
*/
|
|
else if (((err_action & SS_MASK) == SS_START)
|
|
&& save_ccb != NULL
|
|
&& ccb->ccb_h.retry_count > 0) {
|
|
int le;
|
|
|
|
/*
|
|
* Only one error recovery action
|
|
* at a time. See above.
|
|
*/
|
|
if (periph->flags &
|
|
CAM_PERIPH_RECOVERY_INPROG) {
|
|
error = ERESTART;
|
|
break;
|
|
}
|
|
|
|
periph->flags |=
|
|
CAM_PERIPH_RECOVERY_INPROG;
|
|
|
|
/* decrement the number of retries */
|
|
retry = 1;
|
|
ccb->ccb_h.retry_count--;
|
|
|
|
/*
|
|
* Check for removable media and
|
|
* set load/eject flag
|
|
* appropriately.
|
|
*/
|
|
if (SID_IS_REMOVABLE(&cgd.inq_data))
|
|
le = TRUE;
|
|
else
|
|
le = FALSE;
|
|
|
|
/*
|
|
* Attempt to start the drive up.
|
|
*
|
|
* Save the current ccb so it can
|
|
* be restored and retried once the
|
|
* drive is started up.
|
|
*/
|
|
bcopy(ccb, save_ccb, sizeof(*save_ccb));
|
|
|
|
scsi_start_stop(&ccb->csio,
|
|
/*retries*/1,
|
|
camperiphdone,
|
|
MSG_SIMPLE_Q_TAG,
|
|
/*start*/TRUE,
|
|
/*load/eject*/le,
|
|
/*immediate*/FALSE,
|
|
SSD_FULL_SIZE,
|
|
/*timeout*/50000);
|
|
/*
|
|
* Drop the priority to 0 so that
|
|
* we are the first to execute. Also
|
|
* freeze the queue after this command
|
|
* is sent so that we can restore the
|
|
* old csio and have it queued in the
|
|
* proper order before we let normal
|
|
* transactions go to the drive.
|
|
*/
|
|
ccb->ccb_h.pinfo.priority = 0;
|
|
ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
|
|
|
|
/*
|
|
* Save a pointer to the original
|
|
* CCB in the new CCB.
|
|
*/
|
|
ccb->ccb_h.saved_ccb_ptr = save_ccb;
|
|
|
|
error = ERESTART;
|
|
} else if ((sense_flags & SF_RETRY_UA) != 0) {
|
|
/*
|
|
* XXX KDM this is a *horrible*
|
|
* hack.
|
|
*/
|
|
error = scsi_interpret_sense(ccb,
|
|
sense_flags,
|
|
&relsim_flags,
|
|
&openings,
|
|
&timeout,
|
|
err_action);
|
|
}
|
|
|
|
/*
|
|
* Theoretically, this code should send a
|
|
* test unit ready to the given device, and
|
|
* if it returns and error, send a start
|
|
* unit command. Since we don't yet have
|
|
* the capability to do two-command error
|
|
* recovery, just send a start unit.
|
|
* XXX KDM fix this!
|
|
*/
|
|
else if (((err_action & SS_MASK) == SS_TURSTART)
|
|
&& save_ccb != NULL
|
|
&& ccb->ccb_h.retry_count > 0) {
|
|
int le;
|
|
|
|
/*
|
|
* Only one error recovery action
|
|
* at a time. See above.
|
|
*/
|
|
if (periph->flags &
|
|
CAM_PERIPH_RECOVERY_INPROG) {
|
|
error = ERESTART;
|
|
break;
|
|
}
|
|
|
|
periph->flags |=
|
|
CAM_PERIPH_RECOVERY_INPROG;
|
|
|
|
/* decrement the number of retries */
|
|
retry = 1;
|
|
ccb->ccb_h.retry_count--;
|
|
|
|
/*
|
|
* Check for removable media and
|
|
* set load/eject flag
|
|
* appropriately.
|
|
*/
|
|
if (SID_IS_REMOVABLE(&cgd.inq_data))
|
|
le = TRUE;
|
|
else
|
|
le = FALSE;
|
|
|
|
/*
|
|
* Attempt to start the drive up.
|
|
*
|
|
* Save the current ccb so it can
|
|
* be restored and retried once the
|
|
* drive is started up.
|
|
*/
|
|
bcopy(ccb, save_ccb, sizeof(*save_ccb));
|
|
|
|
scsi_start_stop(&ccb->csio,
|
|
/*retries*/1,
|
|
camperiphdone,
|
|
MSG_SIMPLE_Q_TAG,
|
|
/*start*/TRUE,
|
|
/*load/eject*/le,
|
|
/*immediate*/FALSE,
|
|
SSD_FULL_SIZE,
|
|
/*timeout*/50000);
|
|
|
|
/* release the queue after .5 sec. */
|
|
relsim_flags =
|
|
RELSIM_RELEASE_AFTER_TIMEOUT;
|
|
timeout = 500;
|
|
/*
|
|
* Drop the priority to 0 so that
|
|
* we are the first to execute. Also
|
|
* freeze the queue after this command
|
|
* is sent so that we can restore the
|
|
* old csio and have it queued in the
|
|
* proper order before we let normal
|
|
* transactions go to the drive.
|
|
*/
|
|
ccb->ccb_h.pinfo.priority = 0;
|
|
ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
|
|
|
|
/*
|
|
* Save a pointer to the original
|
|
* CCB in the new CCB.
|
|
*/
|
|
ccb->ccb_h.saved_ccb_ptr = save_ccb;
|
|
|
|
error = ERESTART;
|
|
} else {
|
|
error = scsi_interpret_sense(ccb,
|
|
sense_flags,
|
|
&relsim_flags,
|
|
&openings,
|
|
&timeout,
|
|
err_action);
|
|
}
|
|
} else if (ccb->csio.scsi_status ==
|
|
SCSI_STATUS_CHECK_COND) {
|
|
/* no point in decrementing the retry count */
|
|
panic("cam_periph_error: scsi status of "
|
|
"CHECK COND returned but no sense "
|
|
"information is availible. "
|
|
"Controller should have returned "
|
|
"CAM_AUTOSENSE_FAILED");
|
|
/* NOTREACHED */
|
|
error = EIO;
|
|
} else if (ccb->ccb_h.retry_count > 0) {
|
|
/*
|
|
* XXX KDM shouldn't there be a better
|
|
* argument to return??
|
|
*/
|
|
error = EIO;
|
|
} else {
|
|
/* decrement the number of retries */
|
|
retry = ccb->ccb_h.retry_count > 0;
|
|
if (retry)
|
|
ccb->ccb_h.retry_count--;
|
|
/*
|
|
* If it was aborted with no
|
|
* clue as to the reason, just
|
|
* retry it again.
|
|
*/
|
|
error = ERESTART;
|
|
}
|
|
break;
|
|
case SCSI_STATUS_QUEUE_FULL:
|
|
{
|
|
/* no decrement */
|
|
struct ccb_getdev cgd;
|
|
|
|
/*
|
|
* First off, find out what the current
|
|
* transaction counts are.
|
|
*/
|
|
xpt_setup_ccb(&cgd.ccb_h,
|
|
ccb->ccb_h.path,
|
|
/*priority*/1);
|
|
cgd.ccb_h.func_code = XPT_GDEV_TYPE;
|
|
xpt_action((union ccb *)&cgd);
|
|
|
|
/*
|
|
* If we were the only transaction active, treat
|
|
* the QUEUE FULL as if it were a BUSY condition.
|
|
*/
|
|
if (cgd.dev_active != 0) {
|
|
/*
|
|
* Reduce the number of openings to
|
|
* be 1 less than the amount it took
|
|
* to get a queue full bounded by the
|
|
* minimum allowed tag count for this
|
|
* device.
|
|
*/
|
|
openings = cgd.dev_active;
|
|
if (openings < cgd.mintags)
|
|
openings = cgd.mintags;
|
|
if (openings < cgd.dev_active+cgd.dev_openings)
|
|
relsim_flags = RELSIM_ADJUST_OPENINGS;
|
|
else {
|
|
/*
|
|
* Some devices report queue full for
|
|
* temporary resource shortages. For
|
|
* this reason, we allow a minimum
|
|
* tag count to be entered via a
|
|
* quirk entry to prevent the queue
|
|
* count on these devices from falling
|
|
* to a pessimisticly low value. We
|
|
* still wait for the next successful
|
|
* completion, however, before queueing
|
|
* more transactions to the device.
|
|
*/
|
|
relsim_flags =
|
|
RELSIM_RELEASE_AFTER_CMDCMPLT;
|
|
}
|
|
timeout = 0;
|
|
error = ERESTART;
|
|
break;
|
|
}
|
|
/* FALLTHROUGH */
|
|
}
|
|
case SCSI_STATUS_BUSY:
|
|
/*
|
|
* Restart the queue after either another
|
|
* command completes or a 1 second timeout.
|
|
*/
|
|
/*
|
|
* XXX KDM ask JTG about this again, do we need to
|
|
* be looking at the retry count here?
|
|
*/
|
|
error = ERESTART;
|
|
relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT
|
|
| RELSIM_RELEASE_AFTER_CMDCMPLT;
|
|
timeout = 1000;
|
|
break;
|
|
case SCSI_STATUS_RESERV_CONFLICT:
|
|
error = EIO;
|
|
break;
|
|
default:
|
|
error = EIO;
|
|
break;
|
|
}
|
|
break;
|
|
case CAM_REQ_CMP_ERR:
|
|
case CAM_AUTOSENSE_FAIL:
|
|
case CAM_CMD_TIMEOUT:
|
|
case CAM_UNEXP_BUSFREE:
|
|
case CAM_UNCOR_PARITY:
|
|
case CAM_DATA_RUN_ERR:
|
|
/* decrement the number of retries */
|
|
retry = ccb->ccb_h.retry_count > 0;
|
|
if (retry) {
|
|
ccb->ccb_h.retry_count--;
|
|
error = ERESTART;
|
|
} else {
|
|
error = EIO;
|
|
}
|
|
break;
|
|
case CAM_UA_ABORT:
|
|
case CAM_UA_TERMIO:
|
|
case CAM_MSG_REJECT_REC:
|
|
/* XXX Don't know that these are correct */
|
|
error = EIO;
|
|
break;
|
|
case CAM_SEL_TIMEOUT:
|
|
{
|
|
/*
|
|
* XXX
|
|
* A single selection timeout should not be enough
|
|
* to invalidate a device. We should retry for multiple
|
|
* seconds assuming this isn't a probe. We'll probably
|
|
* need a special flag for that.
|
|
*/
|
|
#if 0
|
|
struct cam_path *newpath;
|
|
|
|
/* Should we do more if we can't create the path?? */
|
|
if (xpt_create_path(&newpath, xpt_path_periph(ccb->ccb_h.path),
|
|
xpt_path_path_id(ccb->ccb_h.path),
|
|
xpt_path_target_id(ccb->ccb_h.path),
|
|
CAM_LUN_WILDCARD) != CAM_REQ_CMP)
|
|
break;
|
|
/*
|
|
* Let peripheral drivers know that this device has gone
|
|
* away.
|
|
*/
|
|
xpt_async(AC_LOST_DEVICE, newpath, NULL);
|
|
xpt_free_path(newpath);
|
|
#endif
|
|
error = ENXIO;
|
|
break;
|
|
}
|
|
case CAM_REQ_INVALID:
|
|
case CAM_PATH_INVALID:
|
|
case CAM_DEV_NOT_THERE:
|
|
case CAM_NO_HBA:
|
|
case CAM_PROVIDE_FAIL:
|
|
case CAM_REQ_TOO_BIG:
|
|
error = EINVAL;
|
|
break;
|
|
case CAM_SCSI_BUS_RESET:
|
|
case CAM_BDR_SENT:
|
|
case CAM_REQUEUE_REQ:
|
|
/* Unconditional requeue, dammit */
|
|
error = ERESTART;
|
|
break;
|
|
case CAM_RESRC_UNAVAIL:
|
|
case CAM_BUSY:
|
|
/* timeout??? */
|
|
default:
|
|
/* decrement the number of retries */
|
|
retry = ccb->ccb_h.retry_count > 0;
|
|
if (retry) {
|
|
ccb->ccb_h.retry_count--;
|
|
error = ERESTART;
|
|
} else {
|
|
/* Check the sense codes */
|
|
error = EIO;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Attempt a retry */
|
|
if (error == ERESTART || error == 0) {
|
|
if (frozen != 0)
|
|
ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
|
|
|
|
if (error == ERESTART)
|
|
xpt_action(ccb);
|
|
|
|
if (frozen != 0) {
|
|
cam_release_devq(ccb->ccb_h.path,
|
|
relsim_flags,
|
|
openings,
|
|
timeout,
|
|
/*getcount_only*/0);
|
|
}
|
|
}
|
|
|
|
|
|
return (error);
|
|
}
|