mirror of
https://git.hardenedbsd.org/hardenedbsd/HardenedBSD.git
synced 2025-01-11 17:04:19 +01:00
318 lines
7.9 KiB
C
318 lines
7.9 KiB
C
/*
|
|
* Copyright (c) 1993 Jan-Simon Pendry
|
|
* Copyright (c) 1993 Sean Eric Fagan
|
|
* Copyright (c) 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Jan-Simon Pendry and Sean Eric Fagan.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)procfs_mem.c 8.5 (Berkeley) 6/15/94
|
|
*
|
|
* $Id: procfs_mem.c,v 1.29 1998/02/04 22:32:49 eivind Exp $
|
|
*/
|
|
|
|
/*
|
|
* This is a lightly hacked and merged version
|
|
* of sef's pread/pwrite functions
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/vnode.h>
|
|
#include <miscfs/procfs/procfs.h>
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_prot.h>
|
|
#include <sys/lock.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <sys/user.h>
|
|
|
|
static int procfs_rwmem __P((struct proc *p, struct uio *uio));
|
|
|
|
static int
|
|
procfs_rwmem(p, uio)
|
|
struct proc *p;
|
|
struct uio *uio;
|
|
{
|
|
int error;
|
|
int writing;
|
|
struct vmspace *vm;
|
|
vm_map_t map;
|
|
vm_object_t object = NULL;
|
|
vm_offset_t pageno = 0; /* page number */
|
|
vm_prot_t reqprot;
|
|
vm_offset_t kva;
|
|
|
|
/*
|
|
* if the vmspace is in the midst of being deallocated or the
|
|
* process is exiting, don't try to grab anything. The page table
|
|
* usage in that process can be messed up.
|
|
*/
|
|
vm = p->p_vmspace;
|
|
if ((p->p_flag & P_WEXIT) || (vm->vm_refcnt < 1))
|
|
return EFAULT;
|
|
++vm->vm_refcnt;
|
|
/*
|
|
* The map we want...
|
|
*/
|
|
map = &vm->vm_map;
|
|
|
|
writing = uio->uio_rw == UIO_WRITE;
|
|
reqprot = writing ? (VM_PROT_WRITE | VM_PROT_OVERRIDE_WRITE) : VM_PROT_READ;
|
|
|
|
kva = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
|
|
|
|
/*
|
|
* Only map in one page at a time. We don't have to, but it
|
|
* makes things easier. This way is trivial - right?
|
|
*/
|
|
do {
|
|
vm_map_t tmap;
|
|
vm_offset_t uva;
|
|
int page_offset; /* offset into page */
|
|
vm_map_entry_t out_entry;
|
|
vm_prot_t out_prot;
|
|
boolean_t wired;
|
|
vm_pindex_t pindex;
|
|
u_int len;
|
|
vm_page_t m;
|
|
|
|
object = NULL;
|
|
|
|
uva = (vm_offset_t) uio->uio_offset;
|
|
|
|
/*
|
|
* Get the page number of this segment.
|
|
*/
|
|
pageno = trunc_page(uva);
|
|
page_offset = uva - pageno;
|
|
|
|
/*
|
|
* How many bytes to copy
|
|
*/
|
|
len = min(PAGE_SIZE - page_offset, uio->uio_resid);
|
|
|
|
if (uva >= VM_MAXUSER_ADDRESS) {
|
|
vm_offset_t tkva;
|
|
|
|
if (writing || (uva >= (VM_MAXUSER_ADDRESS + UPAGES * PAGE_SIZE))) {
|
|
error = 0;
|
|
break;
|
|
}
|
|
|
|
/* we are reading the "U area", force it into core */
|
|
PHOLD(p);
|
|
|
|
/* sanity check */
|
|
if (!(p->p_flag & P_INMEM)) {
|
|
/* aiee! */
|
|
PRELE(p);
|
|
error = EFAULT;
|
|
break;
|
|
}
|
|
|
|
/* populate the ptrace/procfs area */
|
|
p->p_addr->u_kproc.kp_proc = *p;
|
|
fill_eproc (p, &p->p_addr->u_kproc.kp_eproc);
|
|
|
|
/* locate the in-core address */
|
|
tkva = (u_int)p->p_addr + uva - VM_MAXUSER_ADDRESS;
|
|
|
|
/* transfer it */
|
|
error = uiomove((caddr_t)tkva, len, uio);
|
|
|
|
/* let the pages go */
|
|
PRELE(p);
|
|
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Fault the page on behalf of the process
|
|
*/
|
|
error = vm_fault(map, pageno, reqprot, FALSE);
|
|
if (error) {
|
|
error = EFAULT;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Now we need to get the page. out_entry, out_prot, wired,
|
|
* and single_use aren't used. One would think the vm code
|
|
* would be a *bit* nicer... We use tmap because
|
|
* vm_map_lookup() can change the map argument.
|
|
*/
|
|
tmap = map;
|
|
error = vm_map_lookup(&tmap, pageno, reqprot,
|
|
&out_entry, &object, &pindex, &out_prot,
|
|
&wired);
|
|
|
|
if (error) {
|
|
error = EFAULT;
|
|
|
|
/*
|
|
* Make sure that there is no residue in 'object' from
|
|
* an error return on vm_map_lookup.
|
|
*/
|
|
object = NULL;
|
|
|
|
break;
|
|
}
|
|
|
|
m = vm_page_lookup(object, pindex);
|
|
|
|
/* Allow fallback to backing objects if we are reading */
|
|
|
|
while (m == NULL && !writing && object->backing_object) {
|
|
|
|
pindex += OFF_TO_IDX(object->backing_object_offset);
|
|
object = object->backing_object;
|
|
|
|
m = vm_page_lookup(object, pindex);
|
|
}
|
|
|
|
if (m == NULL) {
|
|
error = EFAULT;
|
|
|
|
/*
|
|
* Make sure that there is no residue in 'object' from
|
|
* an error return on vm_map_lookup.
|
|
*/
|
|
object = NULL;
|
|
|
|
vm_map_lookup_done(tmap, out_entry);
|
|
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Wire the page into memory
|
|
*/
|
|
vm_page_wire(m);
|
|
|
|
/*
|
|
* We're done with tmap now.
|
|
* But reference the object first, so that we won't loose
|
|
* it.
|
|
*/
|
|
vm_object_reference(object);
|
|
vm_map_lookup_done(tmap, out_entry);
|
|
|
|
pmap_kenter(kva, VM_PAGE_TO_PHYS(m));
|
|
|
|
/*
|
|
* Now do the i/o move.
|
|
*/
|
|
error = uiomove((caddr_t)(kva + page_offset), len, uio);
|
|
|
|
pmap_kremove(kva);
|
|
|
|
/*
|
|
* release the page and the object
|
|
*/
|
|
vm_page_unwire(m);
|
|
vm_object_deallocate(object);
|
|
|
|
object = NULL;
|
|
|
|
} while (error == 0 && uio->uio_resid > 0);
|
|
|
|
if (object)
|
|
vm_object_deallocate(object);
|
|
|
|
kmem_free(kernel_map, kva, PAGE_SIZE);
|
|
vmspace_free(vm);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Copy data in and out of the target process.
|
|
* We do this by mapping the process's page into
|
|
* the kernel and then doing a uiomove direct
|
|
* from the kernel address space.
|
|
*/
|
|
int
|
|
procfs_domem(curp, p, pfs, uio)
|
|
struct proc *curp;
|
|
struct proc *p;
|
|
struct pfsnode *pfs;
|
|
struct uio *uio;
|
|
{
|
|
|
|
if (uio->uio_resid == 0)
|
|
return (0);
|
|
|
|
/*
|
|
* XXX
|
|
* We need to check for KMEM_GROUP because ps is sgid kmem;
|
|
* not allowing it here causes ps to not work properly. Arguably,
|
|
* this is a bug with what ps does. We only need to do this
|
|
* for Pmem nodes, and only if it's reading. This is still not
|
|
* good, as it may still be possible to grab illicit data if
|
|
* a process somehow gets to be KMEM_GROUP. Note that this also
|
|
* means that KMEM_GROUP can't change without editing procfs.h!
|
|
* All in all, quite yucky.
|
|
*/
|
|
|
|
if (!CHECKIO(curp, p) &&
|
|
!(curp->p_cred->pc_ucred->cr_gid == KMEM_GROUP &&
|
|
uio->uio_rw == UIO_READ))
|
|
return EPERM;
|
|
|
|
return (procfs_rwmem(p, uio));
|
|
}
|
|
|
|
/*
|
|
* Given process (p), find the vnode from which
|
|
* it's text segment is being executed.
|
|
*
|
|
* It would be nice to grab this information from
|
|
* the VM system, however, there is no sure-fire
|
|
* way of doing that. Instead, fork(), exec() and
|
|
* wait() all maintain the p_textvp field in the
|
|
* process proc structure which contains a held
|
|
* reference to the exec'ed vnode.
|
|
*/
|
|
struct vnode *
|
|
procfs_findtextvp(p)
|
|
struct proc *p;
|
|
{
|
|
|
|
return (p->p_textvp);
|
|
}
|