HardenedBSD/sys/scsi/cd.c
1994-12-24 09:48:32 +00:00

1384 lines
34 KiB
C

/*
* Written by Julian Elischer (julian@tfs.com)
* for TRW Financial Systems for use under the MACH(2.5) operating system.
*
* TRW Financial Systems, in accordance with their agreement with Carnegie
* Mellon University, makes this software available to CMU to distribute
* or use in any manner that they see fit as long as this message is kept with
* the software. For this reason TFS also grants any other persons or
* organisations permission to use or modify this software.
*
* TFS supplies this software to be publicly redistributed
* on the understanding that TFS is not responsible for the correct
* functioning of this software in any circumstances.
*
* Ported to run under 386BSD by Julian Elischer (julian@tfs.com) Sept 1992
*
* $Id: cd.c,v 1.31 1994/12/16 06:03:22 phk Exp $
*/
#define SPLCD splbio
#define ESUCCESS 0
#include <sys/types.h>
#include <sys/param.h>
#include <sys/dkbad.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/buf.h>
#include <sys/uio.h>
#include <sys/malloc.h>
#include <sys/cdio.h>
#include <sys/errno.h>
#include <sys/disklabel.h>
#include <scsi/scsi_all.h>
#include <scsi/scsi_cd.h>
#include <scsi/scsi_disk.h> /* rw_big and start_stop come from there */
#include <scsi/scsiconf.h>
#include <sys/devconf.h>
#include <sys/dkstat.h>
/* static function prototypes */
static errval cd_get_parms(int, int);
static errval cd_get_mode(u_int32, struct cd_mode_data *, u_int32);
static errval cd_set_mode(u_int32 unit, struct cd_mode_data *);
static errval cd_read_toc(u_int32, u_int32, u_int32, struct cd_toc_entry *,
u_int32);
static errval cd_pause __P((u_int32, u_int32));
static errval cd_reset __P((u_int32));
static errval cd_play_msf __P((u_int32, u_int32, u_int32, u_int32, u_int32, u_int32, u_int32));
static errval cd_play __P((u_int32, u_int32, u_int32));
static errval cd_play_tracks __P((u_int32, u_int32, u_int32, u_int32, u_int32));
static errval cd_read_subchannel __P((u_int32, u_int32, u_int32, int, struct cd_sub_channel_info *, u_int32));
static errval cd_getdisklabel __P((u_int8));
int32 cdstrats, cdqueues;
#define PAGESIZ 4096
#define SECSIZE 2048 /* XXX */ /* default only */
#define CDOUTSTANDING 2
#define CDRETRIES 1
#define UNITSHIFT 3
#define PARTITION(z) (minor(z) & 0x07)
#define RAW_PART 2
#define UNIT(z) ( (minor(z) >> UNITSHIFT) )
errval cdstrategy();
void cdstart();
struct scsi_device cd_switch =
{
NULL, /* use default error handler */
cdstart, /* we have a queue, which is started by this */
NULL, /* we do not have an async handler */
NULL, /* use default 'done' routine */
"cd", /* we are to be refered to by this name */
0, /* no device specific flags */
{ 0, 0 } /* spares not used */
};
struct cd_data {
u_int32 flags;
#define CDINIT 0x04 /* device has been init'd */
struct scsi_link *sc_link; /* address of scsi low level switch */
u_int32 ad_info; /* info about the adapter */
u_int32 cmdscount; /* cmds allowed outstanding by board */
struct cd_parms {
u_int32 blksize;
u_long disksize; /* total number sectors */
} params;
struct disklabel disklabel;
u_int32 partflags[MAXPARTITIONS]; /* per partition flags */
#define CDOPEN 0x01
u_int32 openparts; /* one bit for each open partition */
u_int32 xfer_block_wait;
struct buf buf_queue;
int dkunit;
};
#define CD_STOP 0
#define CD_START 1
#define CD_EJECT -2
struct cd_driver {
u_int32 size;
struct cd_data **cd_data;
} cd_driver;
static u_int32 next_cd_unit = 0;
static int
cd_goaway(struct kern_devconf *kdc, int force) /* XXX should do a lot more */
{
dev_detach(kdc);
FREE(kdc, M_TEMP);
return 0;
}
static int
cd_externalize(struct proc *p, struct kern_devconf *kdc, void *userp,
size_t len)
{
return scsi_externalize(cd_driver.cd_data[kdc->kdc_unit]->sc_link,
userp, &len);
}
static struct kern_devconf kdc_cd_template = {
0, 0, 0, /* filled in by dev_attach */
"cd", 0, MDDC_SCSI,
cd_externalize, 0, cd_goaway, SCSI_EXTERNALLEN,
&kdc_scbus0, /* parent - XXX should be host adapter*/
0, /* parentdata */
DC_UNKNOWN, /* not supported */
"SCSI CD-ROM drive"
};
static inline void
cd_registerdev(int unit)
{
struct kern_devconf *kdc;
MALLOC(kdc, struct kern_devconf *, sizeof *kdc, M_TEMP, M_NOWAIT);
if(!kdc) return;
*kdc = kdc_cd_template;
kdc->kdc_unit = unit;
/* XXX should set parentdata */
dev_attach(kdc);
if(dk_ndrive < DK_NDRIVE) {
sprintf(dk_names[dk_ndrive], "cd%d", unit);
dk_wpms[dk_ndrive] = (150*1024/2);
cd_driver.cd_data[unit]->dkunit = dk_ndrive++;
} else {
cd_driver.cd_data[unit]->dkunit = -1;
}
}
/*
* The routine called by the low level scsi routine when it discovers
* A device suitable for this driver
*/
int
cdattach(sc_link)
struct scsi_link *sc_link;
{
u_int32 unit;
struct cd_data *cd, **cdrealloc;
struct cd_parms *dp;
SC_DEBUG(sc_link, SDEV_DB2, ("cdattach "));
/*
* allocate the resources for another drive
* if we have already allocate a cd_data pointer we must
* copy the old pointers into a new region that is
* larger and release the old region, aka realloc
*/
/* XXX
* This if will always be true for now, but future code may
* preallocate more units to reduce overhead. This would be
* done by changing the malloc to be (next_cd_unit * x) and
* the cd_driver.size++ to be +x
*/
unit = next_cd_unit++;
if (unit >= cd_driver.size) {
cdrealloc =
malloc(sizeof(cd_driver.cd_data) * next_cd_unit,
M_DEVBUF, M_NOWAIT);
if (!cdrealloc) {
printf("cd%ld: malloc failed for cdrealloc\n", unit);
return (0);
}
/* Make sure we have something to copy before we copy it */
bzero(cdrealloc, sizeof(cd_driver.cd_data) * next_cd_unit);
if (cd_driver.size) {
bcopy(cd_driver.cd_data, cdrealloc,
sizeof(cd_driver.cd_data) * cd_driver.size);
free(cd_driver.cd_data, M_DEVBUF);
}
cd_driver.cd_data = cdrealloc;
cd_driver.cd_data[unit] = NULL;
cd_driver.size++;
}
if (cd_driver.cd_data[unit]) {
printf("cd%ld: Already has storage!\n", unit);
return (0);
}
/*
* allocate the per drive data area
*/
cd = cd_driver.cd_data[unit] =
malloc(sizeof(struct cd_data), M_DEVBUF, M_NOWAIT);
if (!cd) {
printf("cd%ld: malloc failed for cd_data\n", unit);
return (0);
}
bzero(cd, sizeof(struct cd_data));
dp = &(cd->params);
/*
* Store information needed to contact our base driver
*/
cd->sc_link = sc_link;
sc_link->device = &cd_switch;
sc_link->dev_unit = unit;
if (cd->sc_link->adapter->adapter_info) {
cd->ad_info = ((*(cd->sc_link->adapter->adapter_info)) (sc_link->adapter_unit));
cd->cmdscount = cd->ad_info & AD_INF_MAX_CMDS;
if (cd->cmdscount > CDOUTSTANDING)
cd->cmdscount = CDOUTSTANDING;
} else {
cd->ad_info = 1;
cd->cmdscount = 1;
}
sc_link->opennings = cd->cmdscount;
/*
* Use the subdriver to request information regarding
* the drive. We cannot use interrupts yet, so the
* request must specify this.
*/
cd_get_parms(unit, SCSI_NOSLEEP | SCSI_NOMASK);
if (dp->disksize) {
printf("cd%ld: cd present.[%ld x %ld byte records]\n",
unit,
cd->params.disksize,
cd->params.blksize);
} else {
printf("cd%ld: drive empty\n", unit);
}
cd->flags |= CDINIT;
cd_registerdev(unit);
return (1);
}
/*
* open the device. Make sure the partition info is a up-to-date as can be.
*/
errval
cdopen(dev)
dev_t dev;
{
errval errcode = 0;
u_int32 unit, part;
struct cd_data *cd;
struct scsi_link *sc_link;
unit = UNIT(dev);
part = PARTITION(dev);
/*
* Check the unit is legal
*/
if (unit >= cd_driver.size) {
return (ENXIO);
}
cd = cd_driver.cd_data[unit];
/*
* Make sure the device has been initialised
*/
if ((cd == NULL) || (!(cd->flags & CDINIT)))
return (ENXIO);
sc_link = cd->sc_link;
SC_DEBUG(sc_link, SDEV_DB1,
("cdopen: dev=0x%x (unit %d (of %d),partition %d)\n",
dev, unit, cd_driver.size, part));
/*
* If it's been invalidated, and not everybody has closed it then
* forbid re-entry. (may have changed media)
*/
if ((!(sc_link->flags & SDEV_MEDIA_LOADED))
&& (cd->openparts))
return (ENXIO);
/*
* Check that it is still responding and ok.
* if the media has been changed this will result in a
* "unit attention" error which the error code will
* disregard because the SDEV_MEDIA_LOADED flag is not yet set
*/
scsi_test_unit_ready(sc_link, SCSI_SILENT);
/*
* Next time actually take notice of error returns
*/
sc_link->flags |= SDEV_OPEN; /* unit attn errors are now errors */
if (scsi_test_unit_ready(sc_link, SCSI_SILENT) != 0) {
SC_DEBUG(sc_link, SDEV_DB3, ("not ready\n"));
errcode = ENXIO;
goto bad;
}
SC_DEBUG(sc_link, SDEV_DB3, ("Device present\n"));
/*
* In case it is a funny one, tell it to start
* not needed for some drives
*/
scsi_start_unit(sc_link, CD_START);
scsi_prevent(sc_link, PR_PREVENT, SCSI_SILENT);
SC_DEBUG(sc_link, SDEV_DB3, ("started "));
/*
* Load the physical device parameters
*/
if (cd_get_parms(unit, 0)) {
errcode = ENXIO;
goto bad;
}
SC_DEBUG(sc_link, SDEV_DB3, ("Params loaded "));
/*
* Make up some partition information
*/
cd_getdisklabel(unit);
SC_DEBUG(sc_link, SDEV_DB3, ("Disklabel fabricated "));
/*
* Check the partition is legal
*/
if ((part >= cd->disklabel.d_npartitions)
&& (part != RAW_PART)) {
SC_DEBUG(sc_link, SDEV_DB3, ("partition %d > %d\n", part
,cd->disklabel.d_npartitions));
errcode = ENXIO;
goto bad;
}
/*
* Check that the partition exists
*/
if ((cd->disklabel.d_partitions[part].p_fstype == FS_UNUSED)
&& (part != RAW_PART)) {
SC_DEBUG(sc_link, SDEV_DB3, ("part %d type UNUSED\n", part));
errcode = ENXIO;
goto bad;
}
cd->partflags[part] |= CDOPEN;
cd->openparts |= (1 << part);
SC_DEBUG(sc_link, SDEV_DB3, ("open complete\n"));
sc_link->flags |= SDEV_MEDIA_LOADED;
return (0);
bad:
/*
* if we would have been the only open
* then leave things back as they were
*/
if (!(cd->openparts)) {
sc_link->flags &= ~SDEV_OPEN;
scsi_prevent(sc_link, PR_ALLOW, SCSI_SILENT);
}
return (errcode);
}
/*
* close the device.. only called if we are the LAST
* occurence of an open device
*/
errval
cdclose(dev)
dev_t dev;
{
u_int8 unit, part;
struct cd_data *cd;
struct scsi_link *sc_link;
unit = UNIT(dev);
part = PARTITION(dev);
cd = cd_driver.cd_data[unit];
sc_link = cd->sc_link;
SC_DEBUG(sc_link, SDEV_DB2, ("cd%ld: closing part %d\n", unit, part));
cd->partflags[part] &= ~CDOPEN;
cd->openparts &= ~(1 << part);
/*
* If we were the last open of the entire device, release it.
*/
if (!(cd->openparts)) {
scsi_prevent(sc_link, PR_ALLOW, SCSI_SILENT);
cd->sc_link->flags &= ~SDEV_OPEN;
}
return (0);
}
/*
* trim the size of the transfer if needed,
* called by physio
* basically the smaller of our max and the scsi driver's
* minphys (note we have no max ourselves)
*
* Trim buffer length if buffer-size is bigger than page size
*/
void
cdminphys(bp)
struct buf *bp;
{
(*(cd_driver.cd_data[UNIT(bp->b_dev)]->sc_link->adapter->scsi_minphys)) (bp);
}
/*
* Actually translate the requested transfer into one the physical driver can
* understand. The transfer is described by a buf and will include only one
* physical transfer.
*/
errval
cdstrategy(bp)
struct buf *bp;
{
struct buf *dp;
u_int32 opri;
u_int32 unit = UNIT((bp->b_dev));
struct cd_data *cd = cd_driver.cd_data[unit];
cdstrats++;
SC_DEBUG(cd->sc_link, SDEV_DB2, ("\ncdstrategy "));
SC_DEBUG(cd->sc_link, SDEV_DB1, ("cd%ld: %d bytes @ blk%d\n",
unit, bp->b_bcount, bp->b_blkno));
cdminphys(bp);
/*
* If the device has been made invalid, error out
* maybe the media changed
*/
if (!(cd->sc_link->flags & SDEV_MEDIA_LOADED)) {
bp->b_error = EIO;
goto bad;
}
/*
* can't ever write to a CD
*/
if ((bp->b_flags & B_READ) == 0) {
bp->b_error = EROFS;
goto bad;
}
/*
* If it's a null transfer, return immediatly
*/
if (bp->b_bcount == 0) {
goto done;
}
/*
* Decide which unit and partition we are talking about
*/
if (PARTITION(bp->b_dev) != RAW_PART) {
/*
* do bounds checking, adjust transfer. if error, process.
* if end of partition, just return
*/
if (bounds_check_with_label(bp, &cd->disklabel, 1) <= 0)
goto done;
/* otherwise, process transfer request */
} else {
bp->b_pblkno = bp->b_blkno;
bp->b_resid = 0;
}
opri = SPLCD();
dp = &cd->buf_queue;
/*
* Use a bounce buffer if necessary
*/
#ifdef BOUNCE_BUFFERS
if (cd->sc_link->flags & SDEV_BOUNCE)
vm_bounce_alloc(bp);
#endif
/*
* Place it in the queue of disk activities for this disk
*/
disksort(dp, bp);
/*
* Tell the device to get going on the transfer if it's
* not doing anything, otherwise just wait for completion
*/
cdstart(unit);
splx(opri);
return 0; /* XXX ??? is this the right return? */
bad:
bp->b_flags |= B_ERROR;
done:
/*
* Correctly set the buf to indicate a completed xfer
*/
bp->b_resid = bp->b_bcount;
biodone(bp);
return (0);
}
/*
* cdstart looks to see if there is a buf waiting for the device
* and that the device is not already busy. If both are true,
* It deques the buf and creates a scsi command to perform the
* transfer in the buf. The transfer request will call scsi_done
* on completion, which will in turn call this routine again
* so that the next queued transfer is performed.
* The bufs are queued by the strategy routine (cdstrategy)
*
* This routine is also called after other non-queued requests
* have been made of the scsi driver, to ensure that the queue
* continues to be drained.
*
* must be called at the correct (highish) spl level
* cdstart() is called at SPLCD from cdstrategy and scsi_done
*/
void
cdstart(unit)
u_int32 unit;
{
register struct buf *bp = 0;
register struct buf *dp;
struct scsi_rw_big cmd;
u_int32 blkno, nblk;
struct partition *p;
struct cd_data *cd = cd_driver.cd_data[unit];
struct scsi_link *sc_link = cd->sc_link;
SC_DEBUG(sc_link, SDEV_DB2, ("cdstart%d ", unit));
/*
* See if there is a buf to do and we are not already
* doing one
*/
if (!sc_link->opennings) {
return; /* no room for us, unit already underway */
}
if (sc_link->flags & SDEV_WAITING) { /* is room, but a special waits */
return; /* give the special that's waiting a chance to run */
}
dp = &cd->buf_queue;
if ((bp = dp->b_actf) != NULL) { /* yes, an assign */
dp->b_actf = bp->b_actf;
} else {
return;
}
/*
* Should reject all queued entries if SDEV_MEDIA_LOADED is not true.
*/
if (!(sc_link->flags & SDEV_MEDIA_LOADED)) {
goto bad; /* no I/O.. media changed or something */
}
/*
* We have a buf, now we should make a command
*
* First, translate the block to absolute and put it in terms of the
* logical blocksize of the device. Really a bit silly until we have
* real partitions, but.
*/
blkno = bp->b_blkno / (cd->params.blksize / 512);
if (PARTITION(bp->b_dev) != RAW_PART) {
p = cd->disklabel.d_partitions + PARTITION(bp->b_dev);
blkno += p->p_offset;
}
nblk = (bp->b_bcount + (cd->params.blksize - 1)) / (cd->params.blksize);
/* what if something asks for 512 bytes not on a 2k boundary? *//*XXX */
/*
* Fill out the scsi command
*/
bzero(&cmd, sizeof(cmd));
cmd.op_code = READ_BIG;
cmd.addr_3 = (blkno & 0xff000000UL) >> 24;
cmd.addr_2 = (blkno & 0xff0000) >> 16;
cmd.addr_1 = (blkno & 0xff00) >> 8;
cmd.addr_0 = blkno & 0xff;
cmd.length2 = (nblk & 0xff00) >> 8;
cmd.length1 = (nblk & 0xff);
/*
* Call the routine that chats with the adapter.
* Note: we cannot sleep as we may be an interrupt
*/
if (scsi_scsi_cmd(sc_link,
(struct scsi_generic *) &cmd,
sizeof(cmd),
(u_char *) bp->b_un.b_addr,
bp->b_bcount,
CDRETRIES,
30000,
bp,
SCSI_NOSLEEP | ((bp->b_flags & B_READ) ?
SCSI_DATA_IN : SCSI_DATA_OUT))
!= SUCCESSFULLY_QUEUED) {
bad:
printf("cd%ld: oops not queued\n", unit);
bp->b_error = EIO;
bp->b_flags |= B_ERROR;
biodone(bp);
return;
}
cdqueues++;
if(cd->dkunit) {
dk_xfer[cd->dkunit]++;
dk_seek[cd->dkunit]++; /* don't know */
dk_wds[cd->dkunit] += bp->b_bcount >> 6;
}
}
/*
* Perform special action on behalf of the user.
* Knows about the internals of this device
*/
errval
cdioctl(dev_t dev, int cmd, caddr_t addr, int flag)
{
errval error = 0;
u_int8 unit, part;
register struct cd_data *cd;
/*
* Find the device that the user is talking about
*/
unit = UNIT(dev);
part = PARTITION(dev);
cd = cd_driver.cd_data[unit];
SC_DEBUG(cd->sc_link, SDEV_DB2, ("cdioctl 0x%x ", cmd));
/*
* If the device is not valid.. abandon ship
*/
if (!(cd->sc_link->flags & SDEV_MEDIA_LOADED))
return (EIO);
switch (cmd) {
case DIOCSBAD:
error = EINVAL;
break;
case DIOCGDINFO:
*(struct disklabel *) addr = cd->disklabel;
break;
case DIOCGPART:
((struct partinfo *) addr)->disklab = &cd->disklabel;
((struct partinfo *) addr)->part =
&cd->disklabel.d_partitions[PARTITION(dev)];
break;
/*
* a bit silly, but someone might want to test something on a
* section of cdrom.
*/
case DIOCWDINFO:
case DIOCSDINFO:
if ((flag & FWRITE) == 0)
error = EBADF;
else
error = setdisklabel(&cd->disklabel,
(struct disklabel *) addr, 0);
if (error == 0)
break;
case DIOCWLABEL:
error = EBADF;
break;
case CDIOCPLAYTRACKS:
{
struct ioc_play_track *args
= (struct ioc_play_track *) addr;
struct cd_mode_data data;
error = cd_get_mode(unit, &data, AUDIO_PAGE);
if (error)
break;
data.page.audio.flags &= ~CD_PA_SOTC;
data.page.audio.flags |= CD_PA_IMMED;
error = cd_set_mode(unit, &data);
if (error)
break;
return (cd_play_tracks(unit
,args->start_track
,args->start_index
,args->end_track
,args->end_index
));
}
break;
case CDIOCPLAYMSF:
{
struct ioc_play_msf *args
= (struct ioc_play_msf *) addr;
struct cd_mode_data data;
error = cd_get_mode(unit, &data, AUDIO_PAGE);
if (error)
break;
data.page.audio.flags &= ~CD_PA_SOTC;
data.page.audio.flags |= CD_PA_IMMED;
error = cd_set_mode(unit, &data);
if (error)
break;
return (cd_play_msf(unit
,args->start_m
,args->start_s
,args->start_f
,args->end_m
,args->end_s
,args->end_f
));
}
break;
case CDIOCPLAYBLOCKS:
{
struct ioc_play_blocks *args
= (struct ioc_play_blocks *) addr;
struct cd_mode_data data;
error = cd_get_mode(unit, &data, AUDIO_PAGE);
if (error)
break;
data.page.audio.flags &= ~CD_PA_SOTC;
data.page.audio.flags |= CD_PA_IMMED;
error = cd_set_mode(unit, &data);
if (error)
break;
return (cd_play(unit, args->blk, args->len));
}
break;
case CDIOCREADSUBCHANNEL:
{
struct ioc_read_subchannel *args
= (struct ioc_read_subchannel *) addr;
struct cd_sub_channel_info data;
u_int32 len = args->data_len;
if (len > sizeof(data) ||
len < sizeof(struct cd_sub_channel_header)) {
error = EINVAL;
break;
}
error = cd_read_subchannel(unit, args->address_format,
args->data_format, args->track, &data, len);
if (error)
break;
len = min(len, ((data.header.data_len[0] << 8) +
data.header.data_len[1] +
sizeof(struct cd_sub_channel_header)));
if (copyout(&data, args->data, len) != 0) {
error = EFAULT;
}
}
break;
case CDIOREADTOCHEADER:
{ /* ??? useless bcopy? XXX */
struct ioc_toc_header th;
error = cd_read_toc(unit, 0, 0,
(struct cd_toc_entry *)&th, sizeof th);
if (error)
break;
th.len = ((th.len & 0xff) << 8) + ((th.len >> 8) & 0xff);
bcopy(&th, addr, sizeof th);
}
break;
case CDIOREADTOCENTRYS:
{
struct cd_toc {
struct ioc_toc_header header;
struct cd_toc_entry entries[65];
} data;
struct ioc_read_toc_entry *te =
(struct ioc_read_toc_entry *) addr;
struct ioc_toc_header *th;
u_int32 len = te->data_len;
th = &data.header;
if (len > sizeof(data.entries) || len < sizeof(struct cd_toc_entry)) {
error = EINVAL;
break;
}
error = cd_read_toc(unit, te->address_format,
te->starting_track,
(struct cd_toc_entry *)&data,
len + sizeof(struct ioc_toc_header));
if (error)
break;
len = min(len, ((((th->len & 0xff) << 8) + ((th->len >> 8))) - (sizeof(th->starting_track) + sizeof(th->ending_track))));
if (copyout(data.entries, te->data, len) != 0) {
error = EFAULT;
}
}
break;
case CDIOCSETPATCH:
{
struct ioc_patch *arg = (struct ioc_patch *) addr;
struct cd_mode_data data;
error = cd_get_mode(unit, &data, AUDIO_PAGE);
if (error)
break;
data.page.audio.port[LEFT_PORT].channels = arg->patch[0];
data.page.audio.port[RIGHT_PORT].channels = arg->patch[1];
data.page.audio.port[2].channels = arg->patch[2];
data.page.audio.port[3].channels = arg->patch[3];
error = cd_set_mode(unit, &data);
if (error)
break; /* eh? */
}
break;
case CDIOCGETVOL:
{
struct ioc_vol *arg = (struct ioc_vol *) addr;
struct cd_mode_data data;
error = cd_get_mode(unit, &data, AUDIO_PAGE);
if (error)
break;
arg->vol[LEFT_PORT] = data.page.audio.port[LEFT_PORT].volume;
arg->vol[RIGHT_PORT] = data.page.audio.port[RIGHT_PORT].volume;
arg->vol[2] = data.page.audio.port[2].volume;
arg->vol[3] = data.page.audio.port[3].volume;
}
break;
case CDIOCSETVOL:
{
struct ioc_vol *arg = (struct ioc_vol *) addr;
struct cd_mode_data data;
error = cd_get_mode(unit, &data, AUDIO_PAGE);
if (error)
break;
data.page.audio.port[LEFT_PORT].channels = CHANNEL_0;
data.page.audio.port[LEFT_PORT].volume = arg->vol[LEFT_PORT];
data.page.audio.port[RIGHT_PORT].channels = CHANNEL_1;
data.page.audio.port[RIGHT_PORT].volume = arg->vol[RIGHT_PORT];
data.page.audio.port[2].volume = arg->vol[2];
data.page.audio.port[3].volume = arg->vol[3];
error = cd_set_mode(unit, &data);
if (error)
break;
}
break;
case CDIOCSETMONO:
{
struct cd_mode_data data;
error = cd_get_mode(unit, &data, AUDIO_PAGE);
if (error)
break;
data.page.audio.port[LEFT_PORT].channels = LEFT_CHANNEL | RIGHT_CHANNEL | 4 | 8;
data.page.audio.port[RIGHT_PORT].channels = LEFT_CHANNEL | RIGHT_CHANNEL;
data.page.audio.port[2].channels = 0;
data.page.audio.port[3].channels = 0;
error = cd_set_mode(unit, &data);
if (error)
break;
}
break;
case CDIOCSETSTERIO:
{
struct cd_mode_data data;
error = cd_get_mode(unit, &data, AUDIO_PAGE);
if (error)
break;
data.page.audio.port[LEFT_PORT].channels = LEFT_CHANNEL;
data.page.audio.port[RIGHT_PORT].channels = RIGHT_CHANNEL;
data.page.audio.port[2].channels = 0;
data.page.audio.port[3].channels = 0;
error = cd_set_mode(unit, &data);
if (error)
break;
}
break;
case CDIOCSETMUTE:
{
struct cd_mode_data data;
error = cd_get_mode(unit, &data, AUDIO_PAGE);
if (error)
break;
data.page.audio.port[LEFT_PORT].channels = 0;
data.page.audio.port[RIGHT_PORT].channels = 0;
data.page.audio.port[2].channels = 0;
data.page.audio.port[3].channels = 0;
error = cd_set_mode(unit, &data);
if (error)
break;
}
break;
case CDIOCSETLEFT:
{
struct cd_mode_data data;
error = cd_get_mode(unit, &data, AUDIO_PAGE);
if (error)
break;
data.page.audio.port[LEFT_PORT].channels = LEFT_CHANNEL;
data.page.audio.port[RIGHT_PORT].channels = LEFT_CHANNEL;
data.page.audio.port[2].channels = 0;
data.page.audio.port[3].channels = 0;
error = cd_set_mode(unit, &data);
if (error)
break;
}
break;
case CDIOCSETRIGHT:
{
struct cd_mode_data data;
error = cd_get_mode(unit, &data, AUDIO_PAGE);
if (error)
break;
data.page.audio.port[LEFT_PORT].channels = RIGHT_CHANNEL;
data.page.audio.port[RIGHT_PORT].channels = RIGHT_CHANNEL;
data.page.audio.port[2].channels = 0;
data.page.audio.port[3].channels = 0;
error = cd_set_mode(unit, &data);
if (error)
break;
}
break;
case CDIOCRESUME:
error = cd_pause(unit, 1);
break;
case CDIOCPAUSE:
error = cd_pause(unit, 0);
break;
case CDIOCSTART:
error = scsi_start_unit(cd->sc_link, 0);
break;
case CDIOCSTOP:
error = scsi_stop_unit(cd->sc_link, 0, 0);
break;
case CDIOCEJECT:
error = scsi_stop_unit(cd->sc_link, 1, 0);
break;
case CDIOCALLOW:
error = scsi_prevent(cd->sc_link, PR_ALLOW, 0);
break;
case CDIOCPREVENT:
error = scsi_prevent(cd->sc_link, PR_PREVENT, 0);
break;
case CDIOCSETDEBUG:
cd->sc_link->flags |= (SDEV_DB1 | SDEV_DB2);
break;
case CDIOCCLRDEBUG:
cd->sc_link->flags &= ~(SDEV_DB1 | SDEV_DB2);
break;
case CDIOCRESET:
return (cd_reset(unit));
break;
default:
if(part == RAW_PART)
error = scsi_do_ioctl(cd->sc_link,cmd,addr,flag);
else
error = ENOTTY;
break;
}
return (error);
}
/*
* Load the label information on the named device
* Actually fabricate a disklabel
*
* EVENTUALLY take information about different
* data tracks from the TOC and put it in the disklabel
*/
errval
cd_getdisklabel(unit)
u_int8 unit;
{
/*unsigned int n, m; */
struct cd_data *cd;
cd = cd_driver.cd_data[unit];
bzero(&cd->disklabel, sizeof(struct disklabel));
/*
* make partition 0 the whole disk
*/
strncpy(cd->disklabel.d_typename, "scsi cd_rom", 16);
strncpy(cd->disklabel.d_packname, "ficticious", 16);
cd->disklabel.d_secsize = cd->params.blksize; /* as long as it's not 0 */
cd->disklabel.d_nsectors = 100;
cd->disklabel.d_ntracks = 1;
cd->disklabel.d_ncylinders = (cd->params.disksize / 100) + 1;
cd->disklabel.d_secpercyl = 100;
cd->disklabel.d_secperunit = cd->params.disksize;
cd->disklabel.d_rpm = 300;
cd->disklabel.d_interleave = 1;
cd->disklabel.d_flags = D_REMOVABLE;
/*
* remember that comparisons with the partition are done
* assuming the blocks are 512 bytes so fudge it.
*/
cd->disklabel.d_npartitions = 1;
cd->disklabel.d_partitions[0].p_offset = 0;
cd->disklabel.d_partitions[0].p_size
= cd->params.disksize * (cd->params.blksize / 512);
cd->disklabel.d_partitions[0].p_fstype = 9;
cd->disklabel.d_magic = DISKMAGIC;
cd->disklabel.d_magic2 = DISKMAGIC;
cd->disklabel.d_checksum = dkcksum(&(cd->disklabel));
/*
* Signal to other users and routines that we now have a
* disklabel that represents the media (maybe)
*/
return (ESUCCESS);
}
/*
* Find out from the device what it's capacity is
*/
u_int32
cd_size(unit, flags)
int unit;
int flags;
{
struct scsi_read_cd_cap_data rdcap;
struct scsi_read_cd_capacity scsi_cmd;
u_int32 size;
u_int32 blksize;
struct cd_data *cd = cd_driver.cd_data[unit];
/*
* make up a scsi command and ask the scsi driver to do
* it for you.
*/
bzero(&scsi_cmd, sizeof(scsi_cmd));
scsi_cmd.op_code = READ_CD_CAPACITY;
/*
* If the command works, interpret the result as a 4 byte
* number of blocks and a blocksize
*/
if (scsi_scsi_cmd(cd->sc_link,
(struct scsi_generic *) &scsi_cmd,
sizeof(scsi_cmd),
(u_char *) & rdcap,
sizeof(rdcap),
CDRETRIES,
20000, /* might be a disk-changer */
NULL,
SCSI_DATA_IN | flags) != 0) {
printf("cd%d: could not get size\n", unit);
return (0);
} else {
size = rdcap.addr_0 + 1;
size += rdcap.addr_1 << 8;
size += rdcap.addr_2 << 16;
size += rdcap.addr_3 << 24;
blksize = rdcap.length_0;
blksize += rdcap.length_1 << 8;
blksize += rdcap.length_2 << 16;
blksize += rdcap.length_3 << 24;
}
if (blksize < 512)
blksize = 2048; /* some drives lie ! */
if (size < 100)
size = 400000; /* ditto */
SC_DEBUG(cd->sc_link, SDEV_DB3, ("cd%ld: %d %d byte blocks\n"
,unit, size, blksize));
cd->params.disksize = size;
cd->params.blksize = blksize;
return (size);
}
/*
* Get the requested page into the buffer given
*/
static errval
cd_get_mode(unit, data, page)
u_int32 unit;
struct cd_mode_data *data;
u_int32 page;
{
struct scsi_mode_sense scsi_cmd;
errval retval;
bzero(&scsi_cmd, sizeof(scsi_cmd));
bzero(data, sizeof(*data));
scsi_cmd.op_code = MODE_SENSE;
scsi_cmd.page = page;
scsi_cmd.length = sizeof(*data) & 0xff;
retval = scsi_scsi_cmd(cd_driver.cd_data[unit]->sc_link,
(struct scsi_generic *) &scsi_cmd,
sizeof(scsi_cmd),
(u_char *) data,
sizeof(*data),
CDRETRIES,
20000, /* should be immed */
NULL,
SCSI_DATA_IN);
return (retval);
}
/*
* Get the requested page into the buffer given
*/
errval
cd_set_mode(unit, data)
u_int32 unit;
struct cd_mode_data *data;
{
struct scsi_mode_select scsi_cmd;
bzero(&scsi_cmd, sizeof(scsi_cmd));
scsi_cmd.op_code = MODE_SELECT;
scsi_cmd.byte2 |= SMS_PF;
scsi_cmd.length = sizeof(*data) & 0xff;
data->header.data_length = 0;
return (scsi_scsi_cmd(cd_driver.cd_data[unit]->sc_link,
(struct scsi_generic *) &scsi_cmd,
sizeof(scsi_cmd),
(u_char *) data,
sizeof(*data),
CDRETRIES,
20000, /* should be immed */
NULL,
SCSI_DATA_OUT));
}
/*
* Get scsi driver to send a "start playing" command
*/
errval
cd_play(unit, blk, len)
u_int32 unit, blk, len;
{
struct scsi_play scsi_cmd;
bzero(&scsi_cmd, sizeof(scsi_cmd));
scsi_cmd.op_code = PLAY;
scsi_cmd.blk_addr[0] = (blk >> 24) & 0xff;
scsi_cmd.blk_addr[1] = (blk >> 16) & 0xff;
scsi_cmd.blk_addr[2] = (blk >> 8) & 0xff;
scsi_cmd.blk_addr[3] = blk & 0xff;
scsi_cmd.xfer_len[0] = (len >> 8) & 0xff;
scsi_cmd.xfer_len[1] = len & 0xff;
return (scsi_scsi_cmd(cd_driver.cd_data[unit]->sc_link,
(struct scsi_generic *) &scsi_cmd,
sizeof(scsi_cmd),
0,
0,
CDRETRIES,
200000, /* should be immed */
NULL,
0));
}
/*
* Get scsi driver to send a "start playing" command
*/
errval
cd_play_big(unit, blk, len)
u_int32 unit, blk, len;
{
struct scsi_play_big scsi_cmd;
bzero(&scsi_cmd, sizeof(scsi_cmd));
scsi_cmd.op_code = PLAY_BIG;
scsi_cmd.blk_addr[0] = (blk >> 24) & 0xff;
scsi_cmd.blk_addr[1] = (blk >> 16) & 0xff;
scsi_cmd.blk_addr[2] = (blk >> 8) & 0xff;
scsi_cmd.blk_addr[3] = blk & 0xff;
scsi_cmd.xfer_len[0] = (len >> 24) & 0xff;
scsi_cmd.xfer_len[1] = (len >> 16) & 0xff;
scsi_cmd.xfer_len[2] = (len >> 8) & 0xff;
scsi_cmd.xfer_len[3] = len & 0xff;
return (scsi_scsi_cmd(cd_driver.cd_data[unit]->sc_link,
(struct scsi_generic *) &scsi_cmd,
sizeof(scsi_cmd),
0,
0,
CDRETRIES,
20000, /* should be immed */
NULL,
0));
}
/*
* Get scsi driver to send a "start playing" command
*/
errval
cd_play_tracks(unit, strack, sindex, etrack, eindex)
u_int32 unit, strack, sindex, etrack, eindex;
{
struct scsi_play_track scsi_cmd;
bzero(&scsi_cmd, sizeof(scsi_cmd));
scsi_cmd.op_code = PLAY_TRACK;
scsi_cmd.start_track = strack;
scsi_cmd.start_index = sindex;
scsi_cmd.end_track = etrack;
scsi_cmd.end_index = eindex;
return (scsi_scsi_cmd(cd_driver.cd_data[unit]->sc_link,
(struct scsi_generic *) &scsi_cmd,
sizeof(scsi_cmd),
0,
0,
CDRETRIES,
20000, /* should be immed */
NULL,
0));
}
/*
* Get scsi driver to send a "play msf" command
*/
errval
cd_play_msf(unit, startm, starts, startf, endm, ends, endf)
u_int32 unit, startm, starts, startf, endm, ends, endf;
{
struct scsi_play_msf scsi_cmd;
bzero(&scsi_cmd, sizeof(scsi_cmd));
scsi_cmd.op_code = PLAY_MSF;
scsi_cmd.start_m = startm;
scsi_cmd.start_s = starts;
scsi_cmd.start_f = startf;
scsi_cmd.end_m = endm;
scsi_cmd.end_s = ends;
scsi_cmd.end_f = endf;
return (scsi_scsi_cmd(cd_driver.cd_data[unit]->sc_link,
(struct scsi_generic *) &scsi_cmd,
sizeof(scsi_cmd),
0,
0,
CDRETRIES,
2000,
NULL,
0));
}
/*
* Get scsi driver to send a "start up" command
*/
errval
cd_pause(unit, go)
u_int32 unit, go;
{
struct scsi_pause scsi_cmd;
bzero(&scsi_cmd, sizeof(scsi_cmd));
scsi_cmd.op_code = PAUSE;
scsi_cmd.resume = go;
return (scsi_scsi_cmd(cd_driver.cd_data[unit]->sc_link,
(struct scsi_generic *) &scsi_cmd,
sizeof(scsi_cmd),
0,
0,
CDRETRIES,
2000,
NULL,
0));
}
/*
* Get scsi driver to send a "RESET" command
*/
errval
cd_reset(unit)
u_int32 unit;
{
return (scsi_scsi_cmd(cd_driver.cd_data[unit]->sc_link,
0,
0,
0,
0,
CDRETRIES,
2000,
NULL,
SCSI_RESET));
}
/*
* Read subchannel
*/
errval
cd_read_subchannel(unit, mode, format, track, data, len)
u_int32 unit, mode, format;
int track;
struct cd_sub_channel_info *data;
u_int32 len;
{
struct scsi_read_subchannel scsi_cmd;
bzero(&scsi_cmd, sizeof(scsi_cmd));
scsi_cmd.op_code = READ_SUBCHANNEL;
if (mode == CD_MSF_FORMAT)
scsi_cmd.byte2 |= CD_MSF;
scsi_cmd.byte3 = SRS_SUBQ;
scsi_cmd.subchan_format = format;
scsi_cmd.track = track;
scsi_cmd.data_len[0] = (len) >> 8;
scsi_cmd.data_len[1] = (len) & 0xff;
return (scsi_scsi_cmd(cd_driver.cd_data[unit]->sc_link,
(struct scsi_generic *) &scsi_cmd,
sizeof(struct scsi_read_subchannel),
(u_char *) data,
len,
CDRETRIES,
5000,
NULL,
SCSI_DATA_IN));
}
/*
* Read table of contents
*/
static errval
cd_read_toc(unit, mode, start, data, len)
u_int32 unit, mode, start;
struct cd_toc_entry *data;
u_int32 len;
{
struct scsi_read_toc scsi_cmd;
u_int32 ntoc;
bzero(&scsi_cmd, sizeof(scsi_cmd));
/*if(len!=sizeof(struct ioc_toc_header))
* ntoc=((len)-sizeof(struct ioc_toc_header))/sizeof(struct cd_toc_entry);
* else */
ntoc = len;
scsi_cmd.op_code = READ_TOC;
if (mode == CD_MSF_FORMAT)
scsi_cmd.byte2 |= CD_MSF;
scsi_cmd.from_track = start;
scsi_cmd.data_len[0] = (ntoc) >> 8;
scsi_cmd.data_len[1] = (ntoc) & 0xff;
return (scsi_scsi_cmd(cd_driver.cd_data[unit]->sc_link,
(struct scsi_generic *) &scsi_cmd,
sizeof(struct scsi_read_toc),
(u_char *) data,
len,
CDRETRIES,
5000,
NULL,
SCSI_DATA_IN));
}
#define b2tol(a) (((unsigned)(a##_1) << 8) + (unsigned)a##_0 )
/*
* Get the scsi driver to send a full inquiry to the device and use the
* results to fill out the disk parameter structure.
*/
static errval
cd_get_parms(unit, flags)
int unit;
int flags;
{
struct cd_data *cd = cd_driver.cd_data[unit];
/*
* First check if we have it all loaded
*/
if (cd->sc_link->flags & SDEV_MEDIA_LOADED)
return (0);
/*
* give a number of sectors so that sec * trks * cyls
* is <= disk_size
*/
if (cd_size(unit, flags)) {
cd->sc_link->flags |= SDEV_MEDIA_LOADED;
return (0);
} else {
return (ENXIO);
}
}
int
cdsize(dev_t dev)
{
return (-1);
}