HardenedBSD/contrib/elftoolchain/libdwarf/libdwarf_rw.c
Ed Maste 839529caa9 Update ELF Tool Chain to upstream rev 3400
Some notable improvements include:

readelf:
- Add AArch64 relocation definitions.
- Report value of unknown relocation types.

elfcopy:
- Consider symbols with STB_GNU_UNIQUE binding as global symbols.
- Fixed support for VMA adjustment for loadable sections found
  in relocatable objects.
- Handle nameless global symbols.
- Improve wildcard matching for !-prefixed symbols.
- Add PE/COFF support.

elfdump:
- Improve section type reporting.
- Add MIPS-specific section types.

This update also includes a significant number of bug fixes.

PR:		207091 [exp-run]
Sponsored by:	The FreeBSD Foundation
2016-02-12 20:54:02 +00:00

575 lines
11 KiB
C

/*-
* Copyright (c) 2007 John Birrell (jb@freebsd.org)
* Copyright (c) 2010 Kai Wang
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "_libdwarf.h"
ELFTC_VCSID("$Id: libdwarf_rw.c 3286 2015-12-31 16:45:46Z emaste $");
uint64_t
_dwarf_read_lsb(uint8_t *data, uint64_t *offsetp, int bytes_to_read)
{
uint64_t ret;
uint8_t *src;
src = data + *offsetp;
ret = 0;
switch (bytes_to_read) {
case 8:
ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40;
ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56;
/* FALLTHROUGH */
case 4:
ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24;
/* FALLTHROUGH */
case 2:
ret |= ((uint64_t) src[1]) << 8;
/* FALLTHROUGH */
case 1:
ret |= src[0];
break;
default:
return (0);
}
*offsetp += bytes_to_read;
return (ret);
}
uint64_t
_dwarf_decode_lsb(uint8_t **data, int bytes_to_read)
{
uint64_t ret;
uint8_t *src;
src = *data;
ret = 0;
switch (bytes_to_read) {
case 8:
ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40;
ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56;
/* FALLTHROUGH */
case 4:
ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24;
/* FALLTHROUGH */
case 2:
ret |= ((uint64_t) src[1]) << 8;
/* FALLTHROUGH */
case 1:
ret |= src[0];
break;
default:
return (0);
}
*data += bytes_to_read;
return (ret);
}
uint64_t
_dwarf_read_msb(uint8_t *data, uint64_t *offsetp, int bytes_to_read)
{
uint64_t ret;
uint8_t *src;
src = data + *offsetp;
switch (bytes_to_read) {
case 1:
ret = src[0];
break;
case 2:
ret = src[1] | ((uint64_t) src[0]) << 8;
break;
case 4:
ret = src[3] | ((uint64_t) src[2]) << 8;
ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24;
break;
case 8:
ret = src[7] | ((uint64_t) src[6]) << 8;
ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24;
ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40;
ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56;
break;
default:
return (0);
}
*offsetp += bytes_to_read;
return (ret);
}
uint64_t
_dwarf_decode_msb(uint8_t **data, int bytes_to_read)
{
uint64_t ret;
uint8_t *src;
src = *data;
ret = 0;
switch (bytes_to_read) {
case 1:
ret = src[0];
break;
case 2:
ret = src[1] | ((uint64_t) src[0]) << 8;
break;
case 4:
ret = src[3] | ((uint64_t) src[2]) << 8;
ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24;
break;
case 8:
ret = src[7] | ((uint64_t) src[6]) << 8;
ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24;
ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40;
ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56;
break;
default:
return (0);
break;
}
*data += bytes_to_read;
return (ret);
}
void
_dwarf_write_lsb(uint8_t *data, uint64_t *offsetp, uint64_t value,
int bytes_to_write)
{
uint8_t *dst;
dst = data + *offsetp;
switch (bytes_to_write) {
case 8:
dst[7] = (value >> 56) & 0xff;
dst[6] = (value >> 48) & 0xff;
dst[5] = (value >> 40) & 0xff;
dst[4] = (value >> 32) & 0xff;
/* FALLTHROUGH */
case 4:
dst[3] = (value >> 24) & 0xff;
dst[2] = (value >> 16) & 0xff;
/* FALLTHROUGH */
case 2:
dst[1] = (value >> 8) & 0xff;
/* FALLTHROUGH */
case 1:
dst[0] = value & 0xff;
break;
default:
return;
}
*offsetp += bytes_to_write;
}
int
_dwarf_write_lsb_alloc(uint8_t **block, uint64_t *size, uint64_t *offsetp,
uint64_t value, int bytes_to_write, Dwarf_Error *error)
{
assert(*size > 0);
while (*offsetp + bytes_to_write > *size) {
*size *= 2;
*block = realloc(*block, (size_t) *size);
if (*block == NULL) {
DWARF_SET_ERROR(NULL, error, DW_DLE_MEMORY);
return (DW_DLE_MEMORY);
}
}
_dwarf_write_lsb(*block, offsetp, value, bytes_to_write);
return (DW_DLE_NONE);
}
void
_dwarf_write_msb(uint8_t *data, uint64_t *offsetp, uint64_t value,
int bytes_to_write)
{
uint8_t *dst;
dst = data + *offsetp;
switch (bytes_to_write) {
case 8:
dst[7] = value & 0xff;
dst[6] = (value >> 8) & 0xff;
dst[5] = (value >> 16) & 0xff;
dst[4] = (value >> 24) & 0xff;
value >>= 32;
/* FALLTHROUGH */
case 4:
dst[3] = value & 0xff;
dst[2] = (value >> 8) & 0xff;
value >>= 16;
/* FALLTHROUGH */
case 2:
dst[1] = value & 0xff;
value >>= 8;
/* FALLTHROUGH */
case 1:
dst[0] = value & 0xff;
break;
default:
return;
}
*offsetp += bytes_to_write;
}
int
_dwarf_write_msb_alloc(uint8_t **block, uint64_t *size, uint64_t *offsetp,
uint64_t value, int bytes_to_write, Dwarf_Error *error)
{
assert(*size > 0);
while (*offsetp + bytes_to_write > *size) {
*size *= 2;
*block = realloc(*block, (size_t) *size);
if (*block == NULL) {
DWARF_SET_ERROR(NULL, error, DW_DLE_MEMORY);
return (DW_DLE_MEMORY);
}
}
_dwarf_write_msb(*block, offsetp, value, bytes_to_write);
return (DW_DLE_NONE);
}
int64_t
_dwarf_read_sleb128(uint8_t *data, uint64_t *offsetp)
{
int64_t ret = 0;
uint8_t b;
int shift = 0;
uint8_t *src;
src = data + *offsetp;
do {
b = *src++;
ret |= ((b & 0x7f) << shift);
(*offsetp)++;
shift += 7;
} while ((b & 0x80) != 0);
if (shift < 64 && (b & 0x40) != 0)
ret |= (-1 << shift);
return (ret);
}
int
_dwarf_write_sleb128(uint8_t *data, uint8_t *end, int64_t val)
{
uint8_t *p;
p = data;
for (;;) {
if (p >= end)
return (-1);
*p = val & 0x7f;
val >>= 7;
if ((val == 0 && (*p & 0x40) == 0) ||
(val == -1 && (*p & 0x40) != 0)) {
p++;
break;
}
*p++ |= 0x80;
}
return (p - data);
}
int
_dwarf_write_sleb128_alloc(uint8_t **block, uint64_t *size, uint64_t *offsetp,
int64_t val, Dwarf_Error *error)
{
int len;
assert(*size > 0);
while ((len = _dwarf_write_sleb128(*block + *offsetp, *block + *size,
val)) < 0) {
*size *= 2;
*block = realloc(*block, (size_t) *size);
if (*block == NULL) {
DWARF_SET_ERROR(NULL, error, DW_DLE_MEMORY);
return (DW_DLE_MEMORY);
}
}
*offsetp += len;
return (DW_DLE_NONE);
}
uint64_t
_dwarf_read_uleb128(uint8_t *data, uint64_t *offsetp)
{
uint64_t ret = 0;
uint8_t b;
int shift = 0;
uint8_t *src;
src = data + *offsetp;
do {
b = *src++;
ret |= ((b & 0x7f) << shift);
(*offsetp)++;
shift += 7;
} while ((b & 0x80) != 0);
return (ret);
}
int
_dwarf_write_uleb128(uint8_t *data, uint8_t *end, uint64_t val)
{
uint8_t *p;
p = data;
do {
if (p >= end)
return (-1);
*p = val & 0x7f;
val >>= 7;
if (val > 0)
*p |= 0x80;
p++;
} while (val > 0);
return (p - data);
}
int
_dwarf_write_uleb128_alloc(uint8_t **block, uint64_t *size, uint64_t *offsetp,
uint64_t val, Dwarf_Error *error)
{
int len;
assert(*size > 0);
while ((len = _dwarf_write_uleb128(*block + *offsetp, *block + *size,
val)) < 0) {
*size *= 2;
*block = realloc(*block, (size_t) *size);
if (*block == NULL) {
DWARF_SET_ERROR(NULL, error, DW_DLE_MEMORY);
return (DW_DLE_MEMORY);
}
}
*offsetp += len;
return (DW_DLE_NONE);
}
int64_t
_dwarf_decode_sleb128(uint8_t **dp)
{
int64_t ret = 0;
uint8_t b;
int shift = 0;
uint8_t *src = *dp;
do {
b = *src++;
ret |= ((b & 0x7f) << shift);
shift += 7;
} while ((b & 0x80) != 0);
if (shift < 64 && (b & 0x40) != 0)
ret |= (-1 << shift);
*dp = src;
return (ret);
}
uint64_t
_dwarf_decode_uleb128(uint8_t **dp)
{
uint64_t ret = 0;
uint8_t b;
int shift = 0;
uint8_t *src = *dp;
do {
b = *src++;
ret |= ((b & 0x7f) << shift);
shift += 7;
} while ((b & 0x80) != 0);
*dp = src;
return (ret);
}
char *
_dwarf_read_string(void *data, Dwarf_Unsigned size, uint64_t *offsetp)
{
char *ret, *src;
ret = src = (char *) data + *offsetp;
while (*src != '\0' && *offsetp < size) {
src++;
(*offsetp)++;
}
if (*src == '\0' && *offsetp < size)
(*offsetp)++;
return (ret);
}
void
_dwarf_write_string(void *data, uint64_t *offsetp, char *string)
{
char *dst;
dst = (char *) data + *offsetp;
strcpy(dst, string);
(*offsetp) += strlen(string) + 1;
}
int
_dwarf_write_string_alloc(uint8_t **block, uint64_t *size, uint64_t *offsetp,
char *string, Dwarf_Error *error)
{
size_t len;
assert(*size > 0);
len = strlen(string) + 1;
while (*offsetp + len > *size) {
*size *= 2;
*block = realloc(*block, (size_t) *size);
if (*block == NULL) {
DWARF_SET_ERROR(NULL, error, DW_DLE_MEMORY);
return (DW_DLE_MEMORY);
}
}
_dwarf_write_string(*block, offsetp, string);
return (DW_DLE_NONE);
}
uint8_t *
_dwarf_read_block(void *data, uint64_t *offsetp, uint64_t length)
{
uint8_t *ret, *src;
ret = src = (uint8_t *) data + *offsetp;
(*offsetp) += length;
return (ret);
}
void
_dwarf_write_block(void *data, uint64_t *offsetp, uint8_t *blk,
uint64_t length)
{
uint8_t *dst;
dst = (uint8_t *) data + *offsetp;
memcpy(dst, blk, length);
(*offsetp) += length;
}
int
_dwarf_write_block_alloc(uint8_t **block, uint64_t *size, uint64_t *offsetp,
uint8_t *blk, uint64_t length, Dwarf_Error *error)
{
assert(*size > 0);
while (*offsetp + length > *size) {
*size *= 2;
*block = realloc(*block, (size_t) *size);
if (*block == NULL) {
DWARF_SET_ERROR(NULL, error, DW_DLE_MEMORY);
return (DW_DLE_MEMORY);
}
}
_dwarf_write_block(*block, offsetp, blk, length);
return (DW_DLE_NONE);
}
void
_dwarf_write_padding(void *data, uint64_t *offsetp, uint8_t byte,
uint64_t length)
{
uint8_t *dst;
dst = (uint8_t *) data + *offsetp;
memset(dst, byte, length);
(*offsetp) += length;
}
int
_dwarf_write_padding_alloc(uint8_t **block, uint64_t *size, uint64_t *offsetp,
uint8_t byte, uint64_t cnt, Dwarf_Error *error)
{
assert(*size > 0);
while (*offsetp + cnt > *size) {
*size *= 2;
*block = realloc(*block, (size_t) *size);
if (*block == NULL) {
DWARF_SET_ERROR(NULL, error, DW_DLE_MEMORY);
return (DW_DLE_MEMORY);
}
}
_dwarf_write_padding(*block, offsetp, byte, cnt);
return (DW_DLE_NONE);
}