HardenedBSD/sys/netinet/cc/cc_dctcp.c
Michael Tuexen 00d3b74406 tcp cc: remove non-working sctp support
As suggested by lstewart, remove the non-working SCTP support in the
TCP congestion control modules. SCTP has a similar functionality
(although not using kernel loadable modules), on which the TCP stuff
was built on, but the integration was never done.
No functional change intended.

Reviewed by:		Peter Lei, cc
Sponsored by:		Netflix, Inc.
Differential Revision:	https://reviews.freebsd.org/D46142
2024-07-28 22:25:48 +02:00

500 lines
14 KiB
C

/*-
* Copyright (c) 2007-2008
* Swinburne University of Technology, Melbourne, Australia
* Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
* Copyright (c) 2014 Midori Kato <katoon@sfc.wide.ad.jp>
* Copyright (c) 2014 The FreeBSD Foundation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* An implementation of the DCTCP algorithm for FreeBSD, based on
* "Data Center TCP (DCTCP)" by M. Alizadeh, A. Greenberg, D. A. Maltz,
* J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.,
* in ACM Conference on SIGCOMM 2010, New York, USA,
* Originally released as the contribution of Microsoft Research project.
*/
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <net/vnet.h>
#include <net/route.h>
#include <net/route/nhop.h>
#include <netinet/in_pcb.h>
#include <netinet/tcp.h>
#include <netinet/tcp_seq.h>
#include <netinet/tcp_var.h>
#include <netinet/cc/cc.h>
#include <netinet/cc/cc_module.h>
#define DCTCP_SHIFT 10
#define MAX_ALPHA_VALUE (1<<DCTCP_SHIFT)
VNET_DEFINE_STATIC(uint32_t, dctcp_alpha) = MAX_ALPHA_VALUE;
#define V_dctcp_alpha VNET(dctcp_alpha)
VNET_DEFINE_STATIC(uint32_t, dctcp_shift_g) = 4;
#define V_dctcp_shift_g VNET(dctcp_shift_g)
VNET_DEFINE_STATIC(uint32_t, dctcp_slowstart) = 0;
#define V_dctcp_slowstart VNET(dctcp_slowstart)
VNET_DEFINE_STATIC(uint32_t, dctcp_ect1) = 0;
#define V_dctcp_ect1 VNET(dctcp_ect1)
struct dctcp {
uint32_t bytes_ecn; /* # of marked bytes during a RTT */
uint32_t bytes_total; /* # of acked bytes during a RTT */
int alpha; /* the fraction of marked bytes */
int ce_prev; /* CE state of the last segment */
tcp_seq save_sndnxt; /* end sequence number of the current window */
int ece_curr; /* ECE flag in this segment */
int ece_prev; /* ECE flag in the last segment */
uint32_t num_cong_events; /* # of congestion events */
};
static void dctcp_ack_received(struct cc_var *ccv, ccsignal_t type);
static void dctcp_after_idle(struct cc_var *ccv);
static void dctcp_cb_destroy(struct cc_var *ccv);
static int dctcp_cb_init(struct cc_var *ccv, void *ptr);
static void dctcp_cong_signal(struct cc_var *ccv, ccsignal_t type);
static void dctcp_conn_init(struct cc_var *ccv);
static void dctcp_post_recovery(struct cc_var *ccv);
static void dctcp_ecnpkt_handler(struct cc_var *ccv);
static void dctcp_update_alpha(struct cc_var *ccv);
static size_t dctcp_data_sz(void);
struct cc_algo dctcp_cc_algo = {
.name = "dctcp",
.ack_received = dctcp_ack_received,
.cb_destroy = dctcp_cb_destroy,
.cb_init = dctcp_cb_init,
.cong_signal = dctcp_cong_signal,
.conn_init = dctcp_conn_init,
.post_recovery = dctcp_post_recovery,
.ecnpkt_handler = dctcp_ecnpkt_handler,
.after_idle = dctcp_after_idle,
.cc_data_sz = dctcp_data_sz,
};
static void
dctcp_ack_received(struct cc_var *ccv, ccsignal_t type)
{
struct dctcp *dctcp_data;
int bytes_acked = 0;
dctcp_data = ccv->cc_data;
if (CCV(ccv, t_flags2) & TF2_ECN_PERMIT) {
/*
* DCTCP doesn't treat receipt of ECN marked packet as a
* congestion event. Thus, DCTCP always executes the ACK
* processing out of congestion recovery.
*/
if (IN_CONGRECOVERY(CCV(ccv, t_flags))) {
EXIT_CONGRECOVERY(CCV(ccv, t_flags));
newreno_cc_ack_received(ccv, type);
ENTER_CONGRECOVERY(CCV(ccv, t_flags));
} else
newreno_cc_ack_received(ccv, type);
if (type == CC_DUPACK)
bytes_acked = min(ccv->bytes_this_ack, CCV(ccv, t_maxseg));
if (type == CC_ACK)
bytes_acked = ccv->bytes_this_ack;
/* Update total bytes. */
dctcp_data->bytes_total += bytes_acked;
/* Update total marked bytes. */
if (dctcp_data->ece_curr) {
//XXRMS: For fluid-model DCTCP, update
//cwnd here during for RTT fairness
if (!dctcp_data->ece_prev
&& bytes_acked > CCV(ccv, t_maxseg)) {
dctcp_data->bytes_ecn +=
(bytes_acked - CCV(ccv, t_maxseg));
} else
dctcp_data->bytes_ecn += bytes_acked;
dctcp_data->ece_prev = 1;
} else {
if (dctcp_data->ece_prev
&& bytes_acked > CCV(ccv, t_maxseg))
dctcp_data->bytes_ecn += CCV(ccv, t_maxseg);
dctcp_data->ece_prev = 0;
}
dctcp_data->ece_curr = 0;
/*
* Update the fraction of marked bytes at the end of
* current window size.
*/
if (!IN_FASTRECOVERY(CCV(ccv, t_flags)) &&
SEQ_GT(ccv->curack, dctcp_data->save_sndnxt))
dctcp_update_alpha(ccv);
} else
newreno_cc_ack_received(ccv, type);
}
static size_t
dctcp_data_sz(void)
{
return (sizeof(struct dctcp));
}
static void
dctcp_after_idle(struct cc_var *ccv)
{
struct dctcp *dctcp_data;
if (CCV(ccv, t_flags2) & TF2_ECN_PERMIT) {
dctcp_data = ccv->cc_data;
/* Initialize internal parameters after idle time */
dctcp_data->bytes_ecn = 0;
dctcp_data->bytes_total = 0;
dctcp_data->save_sndnxt = CCV(ccv, snd_nxt);
dctcp_data->alpha = V_dctcp_alpha;
dctcp_data->ece_curr = 0;
dctcp_data->ece_prev = 0;
dctcp_data->num_cong_events = 0;
}
newreno_cc_after_idle(ccv);
}
static void
dctcp_cb_destroy(struct cc_var *ccv)
{
free(ccv->cc_data, M_CC_MEM);
}
static int
dctcp_cb_init(struct cc_var *ccv, void *ptr)
{
struct dctcp *dctcp_data;
INP_WLOCK_ASSERT(tptoinpcb(ccv->tp));
if (ptr == NULL) {
dctcp_data = malloc(sizeof(struct dctcp), M_CC_MEM, M_NOWAIT|M_ZERO);
if (dctcp_data == NULL)
return (ENOMEM);
} else
dctcp_data = ptr;
/* Initialize some key variables with sensible defaults. */
dctcp_data->bytes_ecn = 0;
dctcp_data->bytes_total = 0;
/*
* When alpha is set to 0 in the beginning, DCTCP sender transfers as
* much data as possible until the value converges which may expand the
* queueing delay at the switch. When alpha is set to 1, queueing delay
* is kept small.
* Throughput-sensitive applications should have alpha = 0
* Latency-sensitive applications should have alpha = 1
*
* Note: DCTCP draft suggests initial alpha to be 1 but we've decided to
* keep it 0 as default.
*/
dctcp_data->alpha = V_dctcp_alpha;
dctcp_data->save_sndnxt = 0;
dctcp_data->ce_prev = 0;
dctcp_data->ece_curr = 0;
dctcp_data->ece_prev = 0;
dctcp_data->num_cong_events = 0;
ccv->cc_data = dctcp_data;
return (0);
}
/*
* Perform any necessary tasks before we enter congestion recovery.
*/
static void
dctcp_cong_signal(struct cc_var *ccv, ccsignal_t type)
{
struct dctcp *dctcp_data;
uint32_t cwin, mss, pipe;
if (CCV(ccv, t_flags2) & TF2_ECN_PERMIT) {
dctcp_data = ccv->cc_data;
cwin = CCV(ccv, snd_cwnd);
mss = tcp_fixed_maxseg(ccv->tp);
switch (type) {
case CC_NDUPACK:
if (!IN_FASTRECOVERY(CCV(ccv, t_flags))) {
if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
CCV(ccv, snd_ssthresh) =
max(cwin / 2, 2 * mss);
dctcp_data->num_cong_events++;
} else {
/* cwnd has already updated as congestion
* recovery. Reverse cwnd value using
* snd_cwnd_prev and recalculate snd_ssthresh
*/
cwin = CCV(ccv, snd_cwnd_prev);
CCV(ccv, snd_ssthresh) =
max(cwin / 2, 2 * mss);
}
ENTER_RECOVERY(CCV(ccv, t_flags));
}
break;
case CC_ECN:
/*
* Save current snd_cwnd when the host encounters both
* congestion recovery and fast recovery.
*/
CCV(ccv, snd_cwnd_prev) = cwin;
if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
if (V_dctcp_slowstart &&
dctcp_data->num_cong_events++ == 0) {
CCV(ccv, snd_ssthresh) =
max(cwin / 2, 2 * mss);
dctcp_data->alpha = MAX_ALPHA_VALUE;
dctcp_data->bytes_ecn = 0;
dctcp_data->bytes_total = 0;
dctcp_data->save_sndnxt = CCV(ccv, snd_nxt);
} else
CCV(ccv, snd_ssthresh) =
max((cwin - (((uint64_t)cwin *
dctcp_data->alpha) >> (DCTCP_SHIFT+1))),
2 * mss);
CCV(ccv, snd_cwnd) = CCV(ccv, snd_ssthresh);
ENTER_CONGRECOVERY(CCV(ccv, t_flags));
}
dctcp_data->ece_curr = 1;
break;
case CC_RTO:
if (CCV(ccv, t_rxtshift) == 1) {
if (V_tcp_do_newsack) {
pipe = tcp_compute_pipe(ccv->tp);
} else {
pipe = CCV(ccv, snd_max) -
CCV(ccv, snd_fack) +
CCV(ccv, sackhint.sack_bytes_rexmit);
}
CCV(ccv, snd_ssthresh) = max(2,
min(CCV(ccv, snd_wnd), pipe) / 2 / mss) * mss;
}
CCV(ccv, snd_cwnd) = mss;
dctcp_update_alpha(ccv);
dctcp_data->save_sndnxt += CCV(ccv, t_maxseg);
dctcp_data->num_cong_events++;
break;
default:
break;
}
} else
newreno_cc_cong_signal(ccv, type);
}
static void
dctcp_conn_init(struct cc_var *ccv)
{
struct dctcp *dctcp_data;
dctcp_data = ccv->cc_data;
if (CCV(ccv, t_flags2) & TF2_ECN_PERMIT) {
dctcp_data->save_sndnxt = CCV(ccv, snd_nxt);
if (V_dctcp_ect1)
CCV(ccv, t_flags2) |= TF2_ECN_USE_ECT1;
}
}
/*
* Perform any necessary tasks before we exit congestion recovery.
*/
static void
dctcp_post_recovery(struct cc_var *ccv)
{
newreno_cc_post_recovery(ccv);
if (CCV(ccv, t_flags2) & TF2_ECN_PERMIT)
dctcp_update_alpha(ccv);
}
/*
* Execute an additional ECN processing using ECN field in IP header
* and the CWR bit in TCP header.
*/
static void
dctcp_ecnpkt_handler(struct cc_var *ccv)
{
struct dctcp *dctcp_data;
uint32_t ccflag;
int acknow;
dctcp_data = ccv->cc_data;
ccflag = ccv->flags;
acknow = 0;
/*
* DCTCP responds with an ACK immediately when the CE state
* in between this segment and the last segment has changed.
*/
if (ccflag & CCF_IPHDR_CE) {
if (!dctcp_data->ce_prev) {
acknow = 1;
dctcp_data->ce_prev = 1;
CCV(ccv, t_flags2) |= TF2_ECN_SND_ECE;
}
} else {
if (dctcp_data->ce_prev) {
acknow = 1;
dctcp_data->ce_prev = 0;
CCV(ccv, t_flags2) &= ~TF2_ECN_SND_ECE;
}
}
if ((acknow) || (ccflag & CCF_TCPHDR_CWR)) {
ccv->flags |= CCF_ACKNOW;
} else {
ccv->flags &= ~CCF_ACKNOW;
}
}
/*
* Update the fraction of marked bytes represented as 'alpha'.
* Also initialize several internal parameters at the end of this function.
*/
static void
dctcp_update_alpha(struct cc_var *ccv)
{
struct dctcp *dctcp_data;
int alpha_prev;
dctcp_data = ccv->cc_data;
alpha_prev = dctcp_data->alpha;
dctcp_data->bytes_total = max(dctcp_data->bytes_total, 1);
/*
* Update alpha: alpha = (1 - g) * alpha + g * M.
* Here:
* g is weight factor
* recommaded to be set to 1/16
* small g = slow convergence between competitive DCTCP flows
* large g = impacts low utilization of bandwidth at switches
* M is fraction of marked segments in last RTT
* updated every RTT
* Alpha must be round to 0 - MAX_ALPHA_VALUE.
*/
dctcp_data->alpha = ulmin(alpha_prev - (alpha_prev >> V_dctcp_shift_g) +
((uint64_t)dctcp_data->bytes_ecn << (DCTCP_SHIFT - V_dctcp_shift_g)) /
dctcp_data->bytes_total, MAX_ALPHA_VALUE);
/* Initialize internal parameters for next alpha calculation */
dctcp_data->bytes_ecn = 0;
dctcp_data->bytes_total = 0;
dctcp_data->save_sndnxt = CCV(ccv, snd_nxt);
}
static int
dctcp_alpha_handler(SYSCTL_HANDLER_ARGS)
{
uint32_t new;
int error;
new = V_dctcp_alpha;
error = sysctl_handle_int(oidp, &new, 0, req);
if (error == 0 && req->newptr != NULL) {
if (new > MAX_ALPHA_VALUE)
error = EINVAL;
else
V_dctcp_alpha = new;
}
return (error);
}
static int
dctcp_shift_g_handler(SYSCTL_HANDLER_ARGS)
{
uint32_t new;
int error;
new = V_dctcp_shift_g;
error = sysctl_handle_int(oidp, &new, 0, req);
if (error == 0 && req->newptr != NULL) {
if (new > DCTCP_SHIFT)
error = EINVAL;
else
V_dctcp_shift_g = new;
}
return (error);
}
static int
dctcp_slowstart_handler(SYSCTL_HANDLER_ARGS)
{
uint32_t new;
int error;
new = V_dctcp_slowstart;
error = sysctl_handle_int(oidp, &new, 0, req);
if (error == 0 && req->newptr != NULL) {
if (new > 1)
error = EINVAL;
else
V_dctcp_slowstart = new;
}
return (error);
}
SYSCTL_DECL(_net_inet_tcp_cc_dctcp);
SYSCTL_NODE(_net_inet_tcp_cc, OID_AUTO, dctcp,
CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
"dctcp congestion control related settings");
SYSCTL_PROC(_net_inet_tcp_cc_dctcp, OID_AUTO, alpha,
CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
&VNET_NAME(dctcp_alpha), 0, &dctcp_alpha_handler, "IU",
"dctcp alpha parameter at start of session");
SYSCTL_PROC(_net_inet_tcp_cc_dctcp, OID_AUTO, shift_g,
CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
&VNET_NAME(dctcp_shift_g), 4, &dctcp_shift_g_handler, "IU",
"dctcp shift parameter");
SYSCTL_PROC(_net_inet_tcp_cc_dctcp, OID_AUTO, slowstart,
CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
&VNET_NAME(dctcp_slowstart), 0, &dctcp_slowstart_handler, "IU",
"half CWND reduction after the first slow start");
SYSCTL_UINT(_net_inet_tcp_cc_dctcp, OID_AUTO, ect1,
CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
&VNET_NAME(dctcp_ect1), 0,
"Send DCTCP segments with ÍP ECT(0) or ECT(1)");
DECLARE_CC_MODULE(dctcp, &dctcp_cc_algo);
MODULE_VERSION(dctcp, 2);