HardenedBSD/usr.sbin/nscd/nscd.c
Ruslan Ermilov 0708945a3c Fix usage().
2006-09-30 18:11:59 +00:00

886 lines
24 KiB
C

/*-
* Copyright (c) 2005 Michael Bushkov <bushman@rsu.ru>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in thereg
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/event.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <sys/param.h>
#include <sys/un.h>
#include <assert.h>
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <libutil.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "agents/passwd.h"
#include "agents/group.h"
#include "agents/services.h"
#include "cachedcli.h"
#include "cachelib.h"
#include "config.h"
#include "debug.h"
#include "log.h"
#include "parser.h"
#include "query.h"
#include "singletons.h"
#ifndef CONFIG_PATH
#define CONFIG_PATH "/etc/cached.conf"
#endif
#define DEFAULT_CONFIG_PATH "cached.conf"
#define MAX_SOCKET_IO_SIZE 4096
struct processing_thread_args {
cache the_cache;
struct configuration *the_configuration;
struct runtime_env *the_runtime_env;
};
static void accept_connection(struct kevent *, struct runtime_env *,
struct configuration *);
static void destroy_cache_(cache);
static void destroy_runtime_env(struct runtime_env *);
static cache init_cache_(struct configuration *);
static struct runtime_env *init_runtime_env(struct configuration *);
static void print_version_info(void);
static void processing_loop(cache, struct runtime_env *,
struct configuration *);
static void process_socket_event(struct kevent *, struct runtime_env *,
struct configuration *);
static void process_timer_event(struct kevent *, struct runtime_env *,
struct configuration *);
static void *processing_thread(void *);
static void usage(void);
void get_time_func(struct timeval *);
static void
print_version_info(void)
{
TRACE_IN(print_version_info);
printf("cached v0.2 (20 Oct 2005)\nwas developed during SoC 2005\n");
TRACE_OUT(print_version_info);
}
static void
usage(void)
{
fprintf(stderr,
"usage: cached [-dnst] [-i cachename] [-I cachename]\n");
exit(1);
}
static cache
init_cache_(struct configuration *config)
{
struct cache_params params;
cache retval;
struct configuration_entry *config_entry;
size_t size, i;
int res;
TRACE_IN(init_cache_);
memset(&params, 0, sizeof(struct cache_params));
params.get_time_func = get_time_func;
retval = init_cache(&params);
size = configuration_get_entries_size(config);
for (i = 0; i < size; ++i) {
config_entry = configuration_get_entry(config, i);
/*
* We should register common entries now - multipart entries
* would be registered automatically during the queries.
*/
res = register_cache_entry(retval, (struct cache_entry_params *)
&config_entry->positive_cache_params);
config_entry->positive_cache_entry = find_cache_entry(retval,
config_entry->positive_cache_params.entry_name);
assert(config_entry->positive_cache_entry !=
INVALID_CACHE_ENTRY);
res = register_cache_entry(retval, (struct cache_entry_params *)
&config_entry->negative_cache_params);
config_entry->negative_cache_entry = find_cache_entry(retval,
config_entry->negative_cache_params.entry_name);
assert(config_entry->negative_cache_entry !=
INVALID_CACHE_ENTRY);
}
LOG_MSG_2("cache", "cache was successfully initialized");
TRACE_OUT(init_cache_);
return (retval);
}
static void
destroy_cache_(cache the_cache)
{
TRACE_IN(destroy_cache_);
destroy_cache(the_cache);
TRACE_OUT(destroy_cache_);
}
/*
* Socket and kqueues are prepared here. We have one global queue for both
* socket and timers events.
*/
static struct runtime_env *
init_runtime_env(struct configuration *config)
{
int serv_addr_len;
struct sockaddr_un serv_addr;
struct kevent eventlist;
struct timespec timeout;
struct runtime_env *retval;
TRACE_IN(init_runtime_env);
retval = (struct runtime_env *)malloc(sizeof(struct runtime_env));
assert(retval != NULL);
memset(retval, 0, sizeof(struct runtime_env));
retval->sockfd = socket(PF_LOCAL, SOCK_STREAM, 0);
if (config->force_unlink == 1)
unlink(config->socket_path);
memset(&serv_addr, 0, sizeof(struct sockaddr_un));
serv_addr.sun_family = PF_LOCAL;
strncpy(serv_addr.sun_path, config->socket_path,
sizeof(serv_addr.sun_path));
serv_addr_len = sizeof(serv_addr.sun_family) +
strlen(serv_addr.sun_path) + 1;
if (bind(retval->sockfd, (struct sockaddr *)&serv_addr,
serv_addr_len) == -1) {
close(retval->sockfd);
free(retval);
LOG_ERR_2("runtime environment", "can't bind socket to path: "
"%s", config->socket_path);
TRACE_OUT(init_runtime_env);
return (NULL);
}
LOG_MSG_2("runtime environment", "using socket %s",
config->socket_path);
/*
* Here we're marking socket as non-blocking and setting its backlog
* to the maximum value
*/
chmod(config->socket_path, config->socket_mode);
listen(retval->sockfd, -1);
fcntl(retval->sockfd, F_SETFL, O_NONBLOCK);
retval->queue = kqueue();
assert(retval->queue != -1);
EV_SET(&eventlist, retval->sockfd, EVFILT_READ, EV_ADD | EV_ONESHOT,
0, 0, 0);
memset(&timeout, 0, sizeof(struct timespec));
kevent(retval->queue, &eventlist, 1, NULL, 0, &timeout);
LOG_MSG_2("runtime environment", "successfully initialized");
TRACE_OUT(init_runtime_env);
return (retval);
}
static void
destroy_runtime_env(struct runtime_env *env)
{
TRACE_IN(destroy_runtime_env);
close(env->queue);
close(env->sockfd);
free(env);
TRACE_OUT(destroy_runtime_env);
}
static void
accept_connection(struct kevent *event_data, struct runtime_env *env,
struct configuration *config)
{
struct kevent eventlist[2];
struct timespec timeout;
struct query_state *qstate;
int fd;
int res;
uid_t euid;
gid_t egid;
TRACE_IN(accept_connection);
fd = accept(event_data->ident, NULL, NULL);
if (fd == -1) {
LOG_ERR_2("accept_connection", "error %d during accept()",
errno);
TRACE_OUT(accept_connection);
return;
}
if (getpeereid(fd, &euid, &egid) != 0) {
LOG_ERR_2("accept_connection", "error %d during getpeereid()",
errno);
TRACE_OUT(accept_connection);
return;
}
qstate = init_query_state(fd, sizeof(int), euid, egid);
if (qstate == NULL) {
LOG_ERR_2("accept_connection", "can't init query_state");
TRACE_OUT(accept_connection);
return;
}
memset(&timeout, 0, sizeof(struct timespec));
EV_SET(&eventlist[0], fd, EVFILT_TIMER, EV_ADD | EV_ONESHOT,
0, qstate->timeout.tv_sec * 1000, qstate);
EV_SET(&eventlist[1], fd, EVFILT_READ, EV_ADD | EV_ONESHOT,
NOTE_LOWAT, qstate->kevent_watermark, qstate);
res = kevent(env->queue, eventlist, 2, NULL, 0, &timeout);
if (res < 0)
LOG_ERR_2("accept_connection", "kevent error");
TRACE_OUT(accept_connection);
}
static void
process_socket_event(struct kevent *event_data, struct runtime_env *env,
struct configuration *config)
{
struct kevent eventlist[2];
struct timeval query_timeout;
struct timespec kevent_timeout;
int nevents;
int eof_res, res;
ssize_t io_res;
struct query_state *qstate;
TRACE_IN(process_socket_event);
eof_res = event_data->flags & EV_EOF ? 1 : 0;
res = 0;
memset(&kevent_timeout, 0, sizeof(struct timespec));
EV_SET(&eventlist[0], event_data->ident, EVFILT_TIMER, EV_DELETE,
0, 0, NULL);
nevents = kevent(env->queue, eventlist, 1, NULL, 0, &kevent_timeout);
if (nevents == -1) {
if (errno == ENOENT) {
/* the timer is already handling this event */
TRACE_OUT(process_socket_event);
return;
} else {
/* some other error happened */
LOG_ERR_2("process_socket_event", "kevent error, errno"
" is %d", errno);
TRACE_OUT(process_socket_event);
return;
}
}
qstate = (struct query_state *)event_data->udata;
/*
* If the buffer that is to be send/received is too large,
* we send it implicitly, by using query_io_buffer_read and
* query_io_buffer_write functions in the query_state. These functions
* use the temporary buffer, which is later send/received in parts.
* The code below implements buffer splitting/mergind for send/receive
* operations. It also does the actual socket IO operations.
*/
if (((qstate->use_alternate_io == 0) &&
(qstate->kevent_watermark <= event_data->data)) ||
((qstate->use_alternate_io != 0) &&
(qstate->io_buffer_watermark <= event_data->data))) {
if (qstate->use_alternate_io != 0) {
switch (qstate->io_buffer_filter) {
case EVFILT_READ:
io_res = query_socket_read(qstate,
qstate->io_buffer_p,
qstate->io_buffer_watermark);
if (io_res < 0) {
qstate->use_alternate_io = 0;
qstate->process_func = NULL;
} else {
qstate->io_buffer_p += io_res;
if (qstate->io_buffer_p ==
qstate->io_buffer +
qstate->io_buffer_size) {
qstate->io_buffer_p =
qstate->io_buffer;
qstate->use_alternate_io = 0;
}
}
break;
default:
break;
}
}
if (qstate->use_alternate_io == 0) {
do {
res = qstate->process_func(qstate);
} while ((qstate->kevent_watermark == 0) &&
(qstate->process_func != NULL) &&
(res == 0));
if (res != 0)
qstate->process_func = NULL;
}
if ((qstate->use_alternate_io != 0) &&
(qstate->io_buffer_filter == EVFILT_WRITE)) {
io_res = query_socket_write(qstate, qstate->io_buffer_p,
qstate->io_buffer_watermark);
if (io_res < 0) {
qstate->use_alternate_io = 0;
qstate->process_func = NULL;
} else
qstate->io_buffer_p += io_res;
}
} else {
/* assuming that socket was closed */
qstate->process_func = NULL;
qstate->use_alternate_io = 0;
}
if (((qstate->process_func == NULL) &&
(qstate->use_alternate_io == 0)) ||
(eof_res != 0) || (res != 0)) {
destroy_query_state(qstate);
close(event_data->ident);
TRACE_OUT(process_socket_event);
return;
}
/* updating the query_state lifetime variable */
get_time_func(&query_timeout);
query_timeout.tv_usec = 0;
query_timeout.tv_sec -= qstate->creation_time.tv_sec;
if (query_timeout.tv_sec > qstate->timeout.tv_sec)
query_timeout.tv_sec = 0;
else
query_timeout.tv_sec = qstate->timeout.tv_sec -
query_timeout.tv_sec;
if ((qstate->use_alternate_io != 0) && (qstate->io_buffer_p ==
qstate->io_buffer + qstate->io_buffer_size))
qstate->use_alternate_io = 0;
if (qstate->use_alternate_io == 0) {
/*
* If we must send/receive the large block of data,
* we should prepare the query_state's io_XXX fields.
* We should also substitute its write_func and read_func
* with the query_io_buffer_write and query_io_buffer_read,
* which will allow us to implicitly send/receive this large
* buffer later (in the subsequent calls to the
* process_socket_event).
*/
if (qstate->kevent_watermark > MAX_SOCKET_IO_SIZE) {
if (qstate->io_buffer != NULL)
free(qstate->io_buffer);
qstate->io_buffer = (char *)malloc(
qstate->kevent_watermark);
assert(qstate->io_buffer != NULL);
memset(qstate->io_buffer, 0, qstate->kevent_watermark);
qstate->io_buffer_p = qstate->io_buffer;
qstate->io_buffer_size = qstate->kevent_watermark;
qstate->io_buffer_filter = qstate->kevent_filter;
qstate->write_func = query_io_buffer_write;
qstate->read_func = query_io_buffer_read;
if (qstate->kevent_filter == EVFILT_READ)
qstate->use_alternate_io = 1;
qstate->io_buffer_watermark = MAX_SOCKET_IO_SIZE;
EV_SET(&eventlist[1], event_data->ident,
qstate->kevent_filter, EV_ADD | EV_ONESHOT,
NOTE_LOWAT, MAX_SOCKET_IO_SIZE, qstate);
} else {
EV_SET(&eventlist[1], event_data->ident,
qstate->kevent_filter, EV_ADD | EV_ONESHOT,
NOTE_LOWAT, qstate->kevent_watermark, qstate);
}
} else {
if (qstate->io_buffer + qstate->io_buffer_size -
qstate->io_buffer_p <
MAX_SOCKET_IO_SIZE) {
qstate->io_buffer_watermark = qstate->io_buffer +
qstate->io_buffer_size - qstate->io_buffer_p;
EV_SET(&eventlist[1], event_data->ident,
qstate->io_buffer_filter,
EV_ADD | EV_ONESHOT, NOTE_LOWAT,
qstate->io_buffer_watermark,
qstate);
} else {
qstate->io_buffer_watermark = MAX_SOCKET_IO_SIZE;
EV_SET(&eventlist[1], event_data->ident,
qstate->io_buffer_filter, EV_ADD | EV_ONESHOT,
NOTE_LOWAT, MAX_SOCKET_IO_SIZE, qstate);
}
}
EV_SET(&eventlist[0], event_data->ident, EVFILT_TIMER,
EV_ADD | EV_ONESHOT, 0, query_timeout.tv_sec * 1000, qstate);
kevent(env->queue, eventlist, 2, NULL, 0, &kevent_timeout);
TRACE_OUT(process_socket_event);
}
/*
* This routine is called if timer event has been signaled in the kqueue. It
* just closes the socket and destroys the query_state.
*/
static void
process_timer_event(struct kevent *event_data, struct runtime_env *env,
struct configuration *config)
{
struct query_state *qstate;
TRACE_IN(process_timer_event);
qstate = (struct query_state *)event_data->udata;
destroy_query_state(qstate);
close(event_data->ident);
TRACE_OUT(process_timer_event);
}
/*
* Processing loop is the basic processing routine, that forms a body of each
* procssing thread
*/
static void
processing_loop(cache the_cache, struct runtime_env *env,
struct configuration *config)
{
struct timespec timeout;
const int eventlist_size = 1;
struct kevent eventlist[eventlist_size];
int nevents, i;
TRACE_MSG("=> processing_loop");
memset(&timeout, 0, sizeof(struct timespec));
memset(&eventlist, 0, sizeof(struct kevent) * eventlist_size);
for (;;) {
nevents = kevent(env->queue, NULL, 0, eventlist,
eventlist_size, NULL);
/*
* we can only receive 1 event on success
*/
if (nevents == 1) {
struct kevent *event_data;
event_data = &eventlist[0];
if (event_data->ident == env->sockfd) {
for (i = 0; i < event_data->data; ++i)
accept_connection(event_data, env, config);
EV_SET(eventlist, s_runtime_env->sockfd,
EVFILT_READ, EV_ADD | EV_ONESHOT,
0, 0, 0);
memset(&timeout, 0,
sizeof(struct timespec));
kevent(s_runtime_env->queue, eventlist,
1, NULL, 0, &timeout);
} else {
switch (event_data->filter) {
case EVFILT_READ:
case EVFILT_WRITE:
process_socket_event(event_data,
env, config);
break;
case EVFILT_TIMER:
process_timer_event(event_data,
env, config);
break;
default:
break;
}
}
} else {
/* this branch shouldn't be currently executed */
}
}
TRACE_MSG("<= processing_loop");
}
/*
* Wrapper above the processing loop function. It sets the thread signal mask
* to avoid SIGPIPE signals (which can happen if the client works incorrectly).
*/
static void *
processing_thread(void *data)
{
struct processing_thread_args *args;
sigset_t new;
TRACE_MSG("=> processing_thread");
args = (struct processing_thread_args *)data;
sigemptyset(&new);
sigaddset(&new, SIGPIPE);
if (pthread_sigmask(SIG_BLOCK, &new, NULL) != 0)
LOG_ERR_1("processing thread",
"thread can't block the SIGPIPE signal");
processing_loop(args->the_cache, args->the_runtime_env,
args->the_configuration);
free(args);
TRACE_MSG("<= processing_thread");
return (NULL);
}
void
get_time_func(struct timeval *time)
{
struct timespec res;
memset(&res, 0, sizeof(struct timespec));
clock_gettime(CLOCK_MONOTONIC, &res);
time->tv_sec = res.tv_sec;
time->tv_usec = 0;
}
/*
* The idea of _nss_cache_cycle_prevention_function is that nsdispatch will
* search for this symbol in the executable. This symbol is the attribute of
* the caching daemon. So, if it exists, nsdispatch won't try to connect to
* the caching daemon and will just ignore the 'cache' source in the
* nsswitch.conf. This method helps to avoid cycles and organize
* self-performing requests.
*/
void
_nss_cache_cycle_prevention_function(void)
{
}
int
main(int argc, char *argv[])
{
struct processing_thread_args *thread_args;
pthread_t *threads;
struct pidfh *pidfile;
pid_t pid;
char const *config_file;
char const *error_str;
int error_line;
int i, res;
int trace_mode_enabled;
int force_single_threaded;
int do_not_daemonize;
int clear_user_cache_entries, clear_all_cache_entries;
char *user_config_entry_name, *global_config_entry_name;
int show_statistics;
int daemon_mode, interactive_mode;
/* by default all debug messages are omitted */
TRACE_OFF();
/* startup output */
print_version_info();
/* parsing command line arguments */
trace_mode_enabled = 0;
force_single_threaded = 0;
do_not_daemonize = 0;
clear_user_cache_entries = 0;
clear_all_cache_entries = 0;
show_statistics = 0;
user_config_entry_name = NULL;
global_config_entry_name = NULL;
while ((res = getopt(argc, argv, "nstdi:I:")) != -1) {
switch (res) {
case 'n':
do_not_daemonize = 1;
break;
case 's':
force_single_threaded = 1;
break;
case 't':
trace_mode_enabled = 1;
break;
case 'i':
clear_user_cache_entries = 1;
if (optarg != NULL)
if (strcmp(optarg, "all") != 0)
user_config_entry_name = strdup(optarg);
break;
case 'I':
clear_all_cache_entries = 1;
if (optarg != NULL)
if (strcmp(optarg, "all") != 0)
global_config_entry_name =
strdup(optarg);
break;
case 'd':
show_statistics = 1;
break;
case '?':
default:
usage();
/* NOT REACHED */
}
}
daemon_mode = do_not_daemonize | force_single_threaded |
trace_mode_enabled;
interactive_mode = clear_user_cache_entries | clear_all_cache_entries |
show_statistics;
if ((daemon_mode != 0) && (interactive_mode != 0)) {
LOG_ERR_1("main", "daemon mode and interactive_mode arguments "
"can't be used together");
usage();
}
if (interactive_mode != 0) {
FILE *pidfin = fopen(DEFAULT_PIDFILE_PATH, "r");
char pidbuf[256];
struct cached_connection_params connection_params;
cached_connection connection;
int result;
if (pidfin == NULL)
errx(EXIT_FAILURE, "There is no daemon running.");
memset(pidbuf, 0, sizeof(pidbuf));
fread(pidbuf, sizeof(pidbuf) - 1, 1, pidfin);
fclose(pidfin);
if (ferror(pidfin) != 0)
errx(EXIT_FAILURE, "Can't read from pidfile.");
if (sscanf(pidbuf, "%d", &pid) != 1)
errx(EXIT_FAILURE, "Invalid pidfile.");
LOG_MSG_1("main", "daemon PID is %d", pid);
memset(&connection_params, 0,
sizeof(struct cached_connection_params));
connection_params.socket_path = DEFAULT_SOCKET_PATH;
connection = open_cached_connection__(&connection_params);
if (connection == INVALID_CACHED_CONNECTION)
errx(EXIT_FAILURE, "Can't connect to the daemon.");
if (clear_user_cache_entries != 0) {
result = cached_transform__(connection,
user_config_entry_name, TT_USER);
if (result != 0)
LOG_MSG_1("main",
"user cache transformation failed");
else
LOG_MSG_1("main",
"user cache_transformation "
"succeeded");
}
if (clear_all_cache_entries != 0) {
if (geteuid() != 0)
errx(EXIT_FAILURE, "Only root can initiate "
"global cache transformation.");
result = cached_transform__(connection,
global_config_entry_name, TT_ALL);
if (result != 0)
LOG_MSG_1("main",
"global cache transformation "
"failed");
else
LOG_MSG_1("main",
"global cache transformation "
"succeeded");
}
close_cached_connection__(connection);
free(user_config_entry_name);
free(global_config_entry_name);
return (EXIT_SUCCESS);
}
pidfile = pidfile_open(DEFAULT_PIDFILE_PATH, 0644, &pid);
if (pidfile == NULL) {
if (errno == EEXIST)
errx(EXIT_FAILURE, "Daemon already running, pid: %d.",
pid);
warn("Cannot open or create pidfile");
}
if (trace_mode_enabled == 1)
TRACE_ON();
/* blocking the main thread from receiving SIGPIPE signal */
sigblock(sigmask(SIGPIPE));
/* daemonization */
if (do_not_daemonize == 0) {
res = daemon(0, trace_mode_enabled == 0 ? 0 : 1);
if (res != 0) {
LOG_ERR_1("main", "can't daemonize myself: %s",
strerror(errno));
pidfile_remove(pidfile);
goto fin;
} else
LOG_MSG_1("main", "successfully daemonized");
}
pidfile_write(pidfile);
s_agent_table = init_agent_table();
register_agent(s_agent_table, init_passwd_agent());
register_agent(s_agent_table, init_passwd_mp_agent());
register_agent(s_agent_table, init_group_agent());
register_agent(s_agent_table, init_group_mp_agent());
register_agent(s_agent_table, init_services_agent());
register_agent(s_agent_table, init_services_mp_agent());
LOG_MSG_1("main", "request agents registered successfully");
/*
* Hosts agent can't work properly until we have access to the
* appropriate dtab structures, which are used in nsdispatch
* calls
*
register_agent(s_agent_table, init_hosts_agent());
*/
/* configuration initialization */
s_configuration = init_configuration();
fill_configuration_defaults(s_configuration);
error_str = NULL;
error_line = 0;
config_file = CONFIG_PATH;
res = parse_config_file(s_configuration, config_file, &error_str,
&error_line);
if ((res != 0) && (error_str == NULL)) {
config_file = DEFAULT_CONFIG_PATH;
res = parse_config_file(s_configuration, config_file,
&error_str, &error_line);
}
if (res != 0) {
if (error_str != NULL) {
LOG_ERR_1("main", "error in configuration file(%s, %d): %s\n",
config_file, error_line, error_str);
} else {
LOG_ERR_1("main", "no configuration file found "
"- was looking for %s and %s",
CONFIG_PATH, DEFAULT_CONFIG_PATH);
}
destroy_configuration(s_configuration);
return (-1);
}
if (force_single_threaded == 1)
s_configuration->threads_num = 1;
/* cache initialization */
s_cache = init_cache_(s_configuration);
if (s_cache == NULL) {
LOG_ERR_1("main", "can't initialize the cache");
destroy_configuration(s_configuration);
return (-1);
}
/* runtime environment initialization */
s_runtime_env = init_runtime_env(s_configuration);
if (s_runtime_env == NULL) {
LOG_ERR_1("main", "can't initialize the runtime environment");
destroy_configuration(s_configuration);
destroy_cache_(s_cache);
return (-1);
}
if (s_configuration->threads_num > 1) {
threads = (pthread_t *)malloc(sizeof(pthread_t) *
s_configuration->threads_num);
memset(threads, 0, sizeof(pthread_t) *
s_configuration->threads_num);
for (i = 0; i < s_configuration->threads_num; ++i) {
thread_args = (struct processing_thread_args *)malloc(
sizeof(struct processing_thread_args));
thread_args->the_cache = s_cache;
thread_args->the_runtime_env = s_runtime_env;
thread_args->the_configuration = s_configuration;
LOG_MSG_1("main", "thread #%d was successfully created",
i);
pthread_create(&threads[i], NULL, processing_thread,
thread_args);
thread_args = NULL;
}
for (i = 0; i < s_configuration->threads_num; ++i)
pthread_join(threads[i], NULL);
} else {
LOG_MSG_1("main", "working in single-threaded mode");
processing_loop(s_cache, s_runtime_env, s_configuration);
}
fin:
/* runtime environment destruction */
destroy_runtime_env(s_runtime_env);
/* cache destruction */
destroy_cache_(s_cache);
/* configuration destruction */
destroy_configuration(s_configuration);
/* agents table destruction */
destroy_agent_table(s_agent_table);
pidfile_remove(pidfile);
return (EXIT_SUCCESS);
}