mirror of
https://git.hardenedbsd.org/hardenedbsd/HardenedBSD.git
synced 2024-11-22 11:14:18 +01:00
aa3860851b
Change 4787572d05
made if_alloc_domain() never fail, then also do the
wrappers if_alloc(), if_alloc_dev(), and if_gethandle().
No functional change intended.
Reviewed by: kp, imp, glebius, stevek
MFC after: 2 weeks
Differential Revision: https://reviews.freebsd.org/D45740
932 lines
21 KiB
C
932 lines
21 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*
|
|
* Copyright (c) 2008 The FreeBSD Foundation
|
|
* Copyright (c) 2009-2021 Bjoern A. Zeeb <bz@FreeBSD.org>
|
|
*
|
|
* This software was developed by CK Software GmbH under sponsorship
|
|
* from the FreeBSD Foundation.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* A pair of virtual back-to-back connected ethernet like interfaces
|
|
* (``two interfaces with a virtual cross-over cable'').
|
|
*
|
|
* This is mostly intended to be used to provide connectivity between
|
|
* different virtual network stack instances.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
#include "opt_rss.h"
|
|
#include "opt_inet.h"
|
|
#include "opt_inet6.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/hash.h>
|
|
#include <sys/interrupt.h>
|
|
#include <sys/jail.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/libkern.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/module.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/taskqueue.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_clone.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_private.h>
|
|
#include <net/if_types.h>
|
|
#include <net/netisr.h>
|
|
#ifdef RSS
|
|
#include <net/rss_config.h>
|
|
#ifdef INET
|
|
#include <netinet/in_rss.h>
|
|
#endif
|
|
#ifdef INET6
|
|
#include <netinet6/in6_rss.h>
|
|
#endif
|
|
#endif
|
|
#include <net/vnet.h>
|
|
|
|
static const char epairname[] = "epair";
|
|
#define RXRSIZE 4096 /* Probably overkill by 4-8x. */
|
|
|
|
static MALLOC_DEFINE(M_EPAIR, epairname,
|
|
"Pair of virtual cross-over connected Ethernet-like interfaces");
|
|
|
|
VNET_DEFINE_STATIC(struct if_clone *, epair_cloner);
|
|
#define V_epair_cloner VNET(epair_cloner)
|
|
|
|
static unsigned int next_index = 0;
|
|
#define EPAIR_LOCK_INIT() mtx_init(&epair_n_index_mtx, "epairidx", \
|
|
NULL, MTX_DEF)
|
|
#define EPAIR_LOCK_DESTROY() mtx_destroy(&epair_n_index_mtx)
|
|
#define EPAIR_LOCK() mtx_lock(&epair_n_index_mtx)
|
|
#define EPAIR_UNLOCK() mtx_unlock(&epair_n_index_mtx)
|
|
|
|
struct epair_softc;
|
|
struct epair_queue {
|
|
struct mtx mtx;
|
|
struct mbufq q;
|
|
int id;
|
|
enum {
|
|
EPAIR_QUEUE_IDLE,
|
|
EPAIR_QUEUE_WAKING,
|
|
EPAIR_QUEUE_RUNNING,
|
|
} state;
|
|
struct task tx_task;
|
|
struct epair_softc *sc;
|
|
};
|
|
|
|
static struct mtx epair_n_index_mtx;
|
|
struct epair_softc {
|
|
struct ifnet *ifp; /* This ifp. */
|
|
struct ifnet *oifp; /* other ifp of pair. */
|
|
int num_queues;
|
|
struct epair_queue *queues;
|
|
struct ifmedia media; /* Media config (fake). */
|
|
STAILQ_ENTRY(epair_softc) entry;
|
|
};
|
|
|
|
struct epair_tasks_t {
|
|
int tasks;
|
|
struct taskqueue *tq[MAXCPU];
|
|
};
|
|
|
|
static struct epair_tasks_t epair_tasks;
|
|
|
|
static void
|
|
epair_clear_mbuf(struct mbuf *m)
|
|
{
|
|
M_ASSERTPKTHDR(m);
|
|
|
|
/* Remove any CSUM_SND_TAG as ether_input will barf. */
|
|
if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) {
|
|
m_snd_tag_rele(m->m_pkthdr.snd_tag);
|
|
m->m_pkthdr.snd_tag = NULL;
|
|
m->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
|
|
}
|
|
|
|
/* Clear vlan information. */
|
|
m->m_flags &= ~M_VLANTAG;
|
|
m->m_pkthdr.ether_vtag = 0;
|
|
|
|
m_tag_delete_nonpersistent(m);
|
|
}
|
|
|
|
static void
|
|
epair_tx_start_deferred(void *arg, int pending)
|
|
{
|
|
struct epair_queue *q = (struct epair_queue *)arg;
|
|
if_t ifp;
|
|
struct mbuf *m, *n;
|
|
bool resched;
|
|
|
|
ifp = q->sc->ifp;
|
|
|
|
if_ref(ifp);
|
|
CURVNET_SET(ifp->if_vnet);
|
|
|
|
mtx_lock(&q->mtx);
|
|
m = mbufq_flush(&q->q);
|
|
q->state = EPAIR_QUEUE_RUNNING;
|
|
mtx_unlock(&q->mtx);
|
|
|
|
while (m != NULL) {
|
|
n = STAILQ_NEXT(m, m_stailqpkt);
|
|
m->m_nextpkt = NULL;
|
|
if_input(ifp, m);
|
|
m = n;
|
|
}
|
|
|
|
/*
|
|
* Avoid flushing the queue more than once per task. We can otherwise
|
|
* end up starving ourselves in a multi-epair routing configuration.
|
|
*/
|
|
mtx_lock(&q->mtx);
|
|
if (!mbufq_empty(&q->q)) {
|
|
resched = true;
|
|
q->state = EPAIR_QUEUE_WAKING;
|
|
} else {
|
|
resched = false;
|
|
q->state = EPAIR_QUEUE_IDLE;
|
|
}
|
|
mtx_unlock(&q->mtx);
|
|
|
|
if (resched)
|
|
taskqueue_enqueue(epair_tasks.tq[q->id], &q->tx_task);
|
|
|
|
CURVNET_RESTORE();
|
|
if_rele(ifp);
|
|
}
|
|
|
|
static struct epair_queue *
|
|
epair_select_queue(struct epair_softc *sc, struct mbuf *m)
|
|
{
|
|
uint32_t bucket;
|
|
#ifdef RSS
|
|
struct ether_header *eh;
|
|
int ret;
|
|
|
|
ret = rss_m2bucket(m, &bucket);
|
|
if (ret) {
|
|
/* Actually hash the packet. */
|
|
eh = mtod(m, struct ether_header *);
|
|
|
|
switch (ntohs(eh->ether_type)) {
|
|
#ifdef INET
|
|
case ETHERTYPE_IP:
|
|
rss_soft_m2cpuid_v4(m, 0, &bucket);
|
|
break;
|
|
#endif
|
|
#ifdef INET6
|
|
case ETHERTYPE_IPV6:
|
|
rss_soft_m2cpuid_v6(m, 0, &bucket);
|
|
break;
|
|
#endif
|
|
default:
|
|
bucket = 0;
|
|
break;
|
|
}
|
|
}
|
|
bucket %= sc->num_queues;
|
|
#else
|
|
bucket = 0;
|
|
#endif
|
|
return (&sc->queues[bucket]);
|
|
}
|
|
|
|
static void
|
|
epair_prepare_mbuf(struct mbuf *m, struct ifnet *src_ifp)
|
|
{
|
|
M_ASSERTPKTHDR(m);
|
|
epair_clear_mbuf(m);
|
|
if_setrcvif(m, src_ifp);
|
|
M_SETFIB(m, src_ifp->if_fib);
|
|
|
|
MPASS(m->m_nextpkt == NULL);
|
|
MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
|
|
}
|
|
|
|
static void
|
|
epair_menq(struct mbuf *m, struct epair_softc *osc)
|
|
{
|
|
struct epair_queue *q;
|
|
struct ifnet *ifp, *oifp;
|
|
int error, len;
|
|
bool mcast;
|
|
|
|
/*
|
|
* I know this looks weird. We pass the "other sc" as we need that one
|
|
* and can get both ifps from it as well.
|
|
*/
|
|
oifp = osc->ifp;
|
|
ifp = osc->oifp;
|
|
|
|
epair_prepare_mbuf(m, oifp);
|
|
|
|
/* Save values as once the mbuf is queued, it's not ours anymore. */
|
|
len = m->m_pkthdr.len;
|
|
mcast = (m->m_flags & (M_BCAST | M_MCAST)) != 0;
|
|
|
|
q = epair_select_queue(osc, m);
|
|
|
|
mtx_lock(&q->mtx);
|
|
if (q->state == EPAIR_QUEUE_IDLE) {
|
|
q->state = EPAIR_QUEUE_WAKING;
|
|
taskqueue_enqueue(epair_tasks.tq[q->id], &q->tx_task);
|
|
}
|
|
error = mbufq_enqueue(&q->q, m);
|
|
mtx_unlock(&q->mtx);
|
|
|
|
if (error != 0) {
|
|
m_freem(m);
|
|
if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1);
|
|
} else {
|
|
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
|
|
if_inc_counter(ifp, IFCOUNTER_OBYTES, len);
|
|
if (mcast)
|
|
if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
|
|
if_inc_counter(oifp, IFCOUNTER_IPACKETS, 1);
|
|
}
|
|
}
|
|
|
|
static void
|
|
epair_start(struct ifnet *ifp)
|
|
{
|
|
struct mbuf *m;
|
|
struct epair_softc *sc;
|
|
struct ifnet *oifp;
|
|
|
|
/*
|
|
* We get packets here from ether_output via if_handoff()
|
|
* and need to put them into the input queue of the oifp
|
|
* and will put the packet into the receive-queue (rxq) of the
|
|
* other interface (oifp) of our pair.
|
|
*/
|
|
sc = ifp->if_softc;
|
|
oifp = sc->oifp;
|
|
sc = oifp->if_softc;
|
|
for (;;) {
|
|
IFQ_DEQUEUE(&ifp->if_snd, m);
|
|
if (m == NULL)
|
|
break;
|
|
M_ASSERTPKTHDR(m);
|
|
BPF_MTAP(ifp, m);
|
|
|
|
/* In case either interface is not usable drop the packet. */
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
|
|
(ifp->if_flags & IFF_UP) == 0 ||
|
|
(oifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
|
|
(oifp->if_flags & IFF_UP) == 0) {
|
|
m_freem(m);
|
|
continue;
|
|
}
|
|
|
|
epair_menq(m, sc);
|
|
}
|
|
}
|
|
|
|
static int
|
|
epair_transmit(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
struct epair_softc *sc;
|
|
struct ifnet *oifp;
|
|
#ifdef ALTQ
|
|
int len;
|
|
bool mcast;
|
|
#endif
|
|
|
|
if (m == NULL)
|
|
return (0);
|
|
M_ASSERTPKTHDR(m);
|
|
|
|
/*
|
|
* We could just transmit this, but it makes testing easier if we're a
|
|
* little bit more like real hardware.
|
|
* Allow just that little bit extra for ethernet (and vlan) headers.
|
|
*/
|
|
if (m->m_pkthdr.len > (ifp->if_mtu + sizeof(struct ether_vlan_header))) {
|
|
m_freem(m);
|
|
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
|
|
return (E2BIG);
|
|
}
|
|
|
|
/*
|
|
* We are not going to use the interface en/dequeue mechanism
|
|
* on the TX side. We are called from ether_output_frame()
|
|
* and will put the packet into the receive-queue (rxq) of the
|
|
* other interface (oifp) of our pair.
|
|
*/
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
|
|
m_freem(m);
|
|
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
|
|
return (ENXIO);
|
|
}
|
|
if ((ifp->if_flags & IFF_UP) == 0) {
|
|
m_freem(m);
|
|
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
|
|
return (ENETDOWN);
|
|
}
|
|
|
|
BPF_MTAP(ifp, m);
|
|
|
|
/*
|
|
* In case the outgoing interface is not usable,
|
|
* drop the packet.
|
|
*/
|
|
sc = ifp->if_softc;
|
|
oifp = sc->oifp;
|
|
if ((oifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
|
|
(oifp->if_flags & IFF_UP) == 0) {
|
|
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
|
|
m_freem(m);
|
|
return (0);
|
|
}
|
|
|
|
#ifdef ALTQ
|
|
len = m->m_pkthdr.len;
|
|
mcast = (m->m_flags & (M_BCAST | M_MCAST)) != 0;
|
|
int error = 0;
|
|
|
|
/* Support ALTQ via the classic if_start() path. */
|
|
IF_LOCK(&ifp->if_snd);
|
|
if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
|
|
ALTQ_ENQUEUE(&ifp->if_snd, m, NULL, error);
|
|
if (error)
|
|
if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1);
|
|
IF_UNLOCK(&ifp->if_snd);
|
|
if (!error) {
|
|
if_inc_counter(ifp, IFCOUNTER_OBYTES, len);
|
|
if (mcast)
|
|
if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
|
|
epair_start(ifp);
|
|
}
|
|
return (error);
|
|
}
|
|
IF_UNLOCK(&ifp->if_snd);
|
|
#endif
|
|
|
|
epair_menq(m, oifp->if_softc);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
epair_qflush(struct ifnet *ifp __unused)
|
|
{
|
|
}
|
|
|
|
static int
|
|
epair_media_change(struct ifnet *ifp __unused)
|
|
{
|
|
|
|
/* Do nothing. */
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
epair_media_status(struct ifnet *ifp __unused, struct ifmediareq *imr)
|
|
{
|
|
|
|
imr->ifm_status = IFM_AVALID | IFM_ACTIVE;
|
|
imr->ifm_active = IFM_ETHER | IFM_10G_T | IFM_FDX;
|
|
}
|
|
|
|
static int
|
|
epair_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
|
|
{
|
|
struct epair_softc *sc;
|
|
struct ifreq *ifr;
|
|
int error;
|
|
|
|
ifr = (struct ifreq *)data;
|
|
switch (cmd) {
|
|
case SIOCSIFFLAGS:
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
error = 0;
|
|
break;
|
|
|
|
case SIOCSIFMEDIA:
|
|
case SIOCGIFMEDIA:
|
|
sc = ifp->if_softc;
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->media, cmd);
|
|
break;
|
|
|
|
case SIOCSIFMTU:
|
|
/* We basically allow all kinds of MTUs. */
|
|
ifp->if_mtu = ifr->ifr_mtu;
|
|
error = 0;
|
|
break;
|
|
|
|
default:
|
|
/* Let the common ethernet handler process this. */
|
|
error = ether_ioctl(ifp, cmd, data);
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
epair_init(void *dummy __unused)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Interface cloning functions.
|
|
* We use our private ones so that we can create/destroy our secondary
|
|
* device along with the primary one.
|
|
*/
|
|
static int
|
|
epair_clone_match(struct if_clone *ifc, const char *name)
|
|
{
|
|
const char *cp;
|
|
|
|
/*
|
|
* Our base name is epair.
|
|
* Our interfaces will be named epair<n>[ab].
|
|
* So accept anything of the following list:
|
|
* - epair
|
|
* - epair<n>
|
|
* but not the epair<n>[ab] versions.
|
|
*/
|
|
if (strncmp(epairname, name, sizeof(epairname)-1) != 0)
|
|
return (0);
|
|
|
|
for (cp = name + sizeof(epairname) - 1; *cp != '\0'; cp++) {
|
|
if (*cp < '0' || *cp > '9')
|
|
return (0);
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
static void
|
|
epair_clone_add(struct if_clone *ifc, struct epair_softc *scb)
|
|
{
|
|
struct ifnet *ifp;
|
|
uint8_t eaddr[ETHER_ADDR_LEN]; /* 00:00:00:00:00:00 */
|
|
|
|
ifp = scb->ifp;
|
|
/* Copy epairNa etheraddr and change the last byte. */
|
|
memcpy(eaddr, scb->oifp->if_hw_addr, ETHER_ADDR_LEN);
|
|
eaddr[5] = 0x0b;
|
|
ether_ifattach(ifp, eaddr);
|
|
|
|
if_clone_addif(ifc, ifp);
|
|
}
|
|
|
|
static struct epair_softc *
|
|
epair_alloc_sc(struct if_clone *ifc)
|
|
{
|
|
struct epair_softc *sc;
|
|
|
|
struct ifnet *ifp = if_alloc(IFT_ETHER);
|
|
sc = malloc(sizeof(struct epair_softc), M_EPAIR, M_WAITOK | M_ZERO);
|
|
sc->ifp = ifp;
|
|
sc->num_queues = epair_tasks.tasks;
|
|
sc->queues = mallocarray(sc->num_queues, sizeof(struct epair_queue),
|
|
M_EPAIR, M_WAITOK);
|
|
for (int i = 0; i < sc->num_queues; i++) {
|
|
struct epair_queue *q = &sc->queues[i];
|
|
q->id = i;
|
|
q->state = EPAIR_QUEUE_IDLE;
|
|
mtx_init(&q->mtx, "epairq", NULL, MTX_DEF | MTX_NEW);
|
|
mbufq_init(&q->q, RXRSIZE);
|
|
q->sc = sc;
|
|
NET_TASK_INIT(&q->tx_task, 0, epair_tx_start_deferred, q);
|
|
}
|
|
|
|
/* Initialise pseudo media types. */
|
|
ifmedia_init(&sc->media, 0, epair_media_change, epair_media_status);
|
|
ifmedia_add(&sc->media, IFM_ETHER | IFM_10G_T, 0, NULL);
|
|
ifmedia_set(&sc->media, IFM_ETHER | IFM_10G_T);
|
|
|
|
return (sc);
|
|
}
|
|
|
|
static void
|
|
epair_setup_ifp(struct epair_softc *sc, char *name, int unit)
|
|
{
|
|
struct ifnet *ifp = sc->ifp;
|
|
|
|
ifp->if_softc = sc;
|
|
strlcpy(ifp->if_xname, name, IFNAMSIZ);
|
|
ifp->if_dname = epairname;
|
|
ifp->if_dunit = unit;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_capabilities = IFCAP_VLAN_MTU;
|
|
ifp->if_capenable = IFCAP_VLAN_MTU;
|
|
ifp->if_transmit = epair_transmit;
|
|
ifp->if_qflush = epair_qflush;
|
|
ifp->if_start = epair_start;
|
|
ifp->if_ioctl = epair_ioctl;
|
|
ifp->if_init = epair_init;
|
|
if_setsendqlen(ifp, ifqmaxlen);
|
|
if_setsendqready(ifp);
|
|
|
|
ifp->if_baudrate = IF_Gbps(10); /* arbitrary maximum */
|
|
}
|
|
|
|
static void
|
|
epair_generate_mac(struct epair_softc *sc, uint8_t *eaddr)
|
|
{
|
|
uint32_t key[3];
|
|
uint32_t hash;
|
|
uint64_t hostid;
|
|
|
|
EPAIR_LOCK();
|
|
#ifdef SMP
|
|
/* Get an approximate distribution. */
|
|
hash = next_index % mp_ncpus;
|
|
#else
|
|
hash = 0;
|
|
#endif
|
|
EPAIR_UNLOCK();
|
|
|
|
/*
|
|
* Calculate the etheraddr hashing the hostid and the
|
|
* interface index. The result would be hopefully unique.
|
|
* Note that the "a" component of an epair instance may get moved
|
|
* to a different VNET after creation. In that case its index
|
|
* will be freed and the index can get reused by new epair instance.
|
|
* Make sure we do not create same etheraddr again.
|
|
*/
|
|
getcredhostid(curthread->td_ucred, (unsigned long *)&hostid);
|
|
if (hostid == 0)
|
|
arc4rand(&hostid, sizeof(hostid), 0);
|
|
|
|
struct ifnet *ifp = sc->ifp;
|
|
EPAIR_LOCK();
|
|
if (ifp->if_index > next_index)
|
|
next_index = ifp->if_index;
|
|
else
|
|
next_index++;
|
|
|
|
key[0] = (uint32_t)next_index;
|
|
EPAIR_UNLOCK();
|
|
key[1] = (uint32_t)(hostid & 0xffffffff);
|
|
key[2] = (uint32_t)((hostid >> 32) & 0xfffffffff);
|
|
hash = jenkins_hash32(key, 3, 0);
|
|
|
|
eaddr[0] = 0x02;
|
|
memcpy(&eaddr[1], &hash, 4);
|
|
eaddr[5] = 0x0a;
|
|
}
|
|
|
|
static void
|
|
epair_free_sc(struct epair_softc *sc)
|
|
{
|
|
|
|
if_free(sc->ifp);
|
|
ifmedia_removeall(&sc->media);
|
|
for (int i = 0; i < sc->num_queues; i++) {
|
|
struct epair_queue *q = &sc->queues[i];
|
|
mtx_destroy(&q->mtx);
|
|
}
|
|
free(sc->queues, M_EPAIR);
|
|
free(sc, M_EPAIR);
|
|
}
|
|
|
|
static void
|
|
epair_set_state(struct ifnet *ifp, bool running)
|
|
{
|
|
if (running) {
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
if_link_state_change(ifp, LINK_STATE_UP);
|
|
} else {
|
|
if_link_state_change(ifp, LINK_STATE_DOWN);
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
}
|
|
}
|
|
|
|
static int
|
|
epair_handle_unit(struct if_clone *ifc, char *name, size_t len, int *punit)
|
|
{
|
|
int error = 0, unit, wildcard;
|
|
char *dp;
|
|
|
|
/* Try to see if a special unit was requested. */
|
|
error = ifc_name2unit(name, &unit);
|
|
if (error != 0)
|
|
return (error);
|
|
wildcard = (unit < 0);
|
|
|
|
error = ifc_alloc_unit(ifc, &unit);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/*
|
|
* If no unit had been given, we need to adjust the ifName.
|
|
* Also make sure there is space for our extra [ab] suffix.
|
|
*/
|
|
for (dp = name; *dp != '\0'; dp++);
|
|
if (wildcard) {
|
|
int slen = snprintf(dp, len - (dp - name), "%d", unit);
|
|
if (slen > len - (dp - name) - 1) {
|
|
/* ifName too long. */
|
|
error = ENOSPC;
|
|
goto done;
|
|
}
|
|
dp += slen;
|
|
}
|
|
if (len - (dp - name) - 1 < 1) {
|
|
/* No space left for our [ab] suffix. */
|
|
error = ENOSPC;
|
|
goto done;
|
|
}
|
|
*dp = 'b';
|
|
/* Must not change dp so we can replace 'a' by 'b' later. */
|
|
*(dp+1) = '\0';
|
|
|
|
/* Check if 'a' and 'b' interfaces already exist. */
|
|
if (ifunit(name) != NULL) {
|
|
error = EEXIST;
|
|
goto done;
|
|
}
|
|
|
|
*dp = 'a';
|
|
if (ifunit(name) != NULL) {
|
|
error = EEXIST;
|
|
goto done;
|
|
}
|
|
*punit = unit;
|
|
done:
|
|
if (error != 0)
|
|
ifc_free_unit(ifc, unit);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
epair_clone_create(struct if_clone *ifc, char *name, size_t len,
|
|
struct ifc_data *ifd, struct ifnet **ifpp)
|
|
{
|
|
struct epair_softc *sca, *scb;
|
|
struct ifnet *ifp;
|
|
char *dp;
|
|
int error, unit;
|
|
uint8_t eaddr[ETHER_ADDR_LEN]; /* 00:00:00:00:00:00 */
|
|
|
|
error = epair_handle_unit(ifc, name, len, &unit);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/* Allocate memory for both [ab] interfaces */
|
|
sca = epair_alloc_sc(ifc);
|
|
scb = epair_alloc_sc(ifc);
|
|
|
|
/*
|
|
* Cross-reference the interfaces so we will be able to free both.
|
|
*/
|
|
sca->oifp = scb->ifp;
|
|
scb->oifp = sca->ifp;
|
|
|
|
/* Finish initialization of interface <n>a. */
|
|
ifp = sca->ifp;
|
|
epair_setup_ifp(sca, name, unit);
|
|
epair_generate_mac(sca, eaddr);
|
|
|
|
ether_ifattach(ifp, eaddr);
|
|
|
|
/* Swap the name and finish initialization of interface <n>b. */
|
|
dp = name + strlen(name) - 1;
|
|
*dp = 'b';
|
|
|
|
epair_setup_ifp(scb, name, unit);
|
|
|
|
ifp = scb->ifp;
|
|
/* We need to play some tricks here for the second interface. */
|
|
strlcpy(name, epairname, len);
|
|
/* Correctly set the name for the cloner list. */
|
|
strlcpy(name, scb->ifp->if_xname, len);
|
|
|
|
epair_clone_add(ifc, scb);
|
|
|
|
/*
|
|
* Restore name to <n>a as the ifp for this will go into the
|
|
* cloner list for the initial call.
|
|
*/
|
|
strlcpy(name, sca->ifp->if_xname, len);
|
|
|
|
/* Tell the world, that we are ready to rock. */
|
|
epair_set_state(sca->ifp, true);
|
|
epair_set_state(scb->ifp, true);
|
|
|
|
*ifpp = sca->ifp;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
epair_drain_rings(struct epair_softc *sc)
|
|
{
|
|
for (int i = 0; i < sc->num_queues; i++) {
|
|
struct epair_queue *q;
|
|
struct mbuf *m, *n;
|
|
|
|
q = &sc->queues[i];
|
|
mtx_lock(&q->mtx);
|
|
m = mbufq_flush(&q->q);
|
|
mtx_unlock(&q->mtx);
|
|
|
|
for (; m != NULL; m = n) {
|
|
n = m->m_nextpkt;
|
|
m_freem(m);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
epair_clone_destroy(struct if_clone *ifc, struct ifnet *ifp, uint32_t flags)
|
|
{
|
|
struct ifnet *oifp;
|
|
struct epair_softc *sca, *scb;
|
|
int unit, error;
|
|
|
|
/*
|
|
* In case we called into if_clone_destroyif() ourselves
|
|
* again to remove the second interface, the softc will be
|
|
* NULL. In that case so not do anything but return success.
|
|
*/
|
|
if (ifp->if_softc == NULL)
|
|
return (0);
|
|
|
|
unit = ifp->if_dunit;
|
|
sca = ifp->if_softc;
|
|
oifp = sca->oifp;
|
|
scb = oifp->if_softc;
|
|
|
|
/* Frist get the interfaces down and detached. */
|
|
epair_set_state(ifp, false);
|
|
epair_set_state(oifp, false);
|
|
|
|
ether_ifdetach(ifp);
|
|
ether_ifdetach(oifp);
|
|
|
|
/* Third free any queued packets and all the resources. */
|
|
CURVNET_SET_QUIET(oifp->if_vnet);
|
|
epair_drain_rings(scb);
|
|
oifp->if_softc = NULL;
|
|
error = if_clone_destroyif(ifc, oifp);
|
|
if (error)
|
|
panic("%s: if_clone_destroyif() for our 2nd iface failed: %d",
|
|
__func__, error);
|
|
epair_free_sc(scb);
|
|
CURVNET_RESTORE();
|
|
|
|
epair_drain_rings(sca);
|
|
epair_free_sc(sca);
|
|
|
|
/* Last free the cloner unit. */
|
|
ifc_free_unit(ifc, unit);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vnet_epair_init(const void *unused __unused)
|
|
{
|
|
struct if_clone_addreq req = {
|
|
.match_f = epair_clone_match,
|
|
.create_f = epair_clone_create,
|
|
.destroy_f = epair_clone_destroy,
|
|
};
|
|
V_epair_cloner = ifc_attach_cloner(epairname, &req);
|
|
}
|
|
VNET_SYSINIT(vnet_epair_init, SI_SUB_PSEUDO, SI_ORDER_ANY,
|
|
vnet_epair_init, NULL);
|
|
|
|
static void
|
|
vnet_epair_uninit(const void *unused __unused)
|
|
{
|
|
|
|
ifc_detach_cloner(V_epair_cloner);
|
|
}
|
|
VNET_SYSUNINIT(vnet_epair_uninit, SI_SUB_INIT_IF, SI_ORDER_ANY,
|
|
vnet_epair_uninit, NULL);
|
|
|
|
static int
|
|
epair_mod_init(void)
|
|
{
|
|
char name[32];
|
|
epair_tasks.tasks = 0;
|
|
|
|
#ifdef RSS
|
|
int cpu;
|
|
|
|
CPU_FOREACH(cpu) {
|
|
cpuset_t cpu_mask;
|
|
|
|
/* Pin to this CPU so we get appropriate NUMA allocations. */
|
|
thread_lock(curthread);
|
|
sched_bind(curthread, cpu);
|
|
thread_unlock(curthread);
|
|
|
|
snprintf(name, sizeof(name), "epair_task_%d", cpu);
|
|
|
|
epair_tasks.tq[cpu] = taskqueue_create(name, M_WAITOK,
|
|
taskqueue_thread_enqueue,
|
|
&epair_tasks.tq[cpu]);
|
|
CPU_SETOF(cpu, &cpu_mask);
|
|
taskqueue_start_threads_cpuset(&epair_tasks.tq[cpu], 1, PI_NET,
|
|
&cpu_mask, "%s", name);
|
|
|
|
epair_tasks.tasks++;
|
|
}
|
|
thread_lock(curthread);
|
|
sched_unbind(curthread);
|
|
thread_unlock(curthread);
|
|
#else
|
|
snprintf(name, sizeof(name), "epair_task");
|
|
|
|
epair_tasks.tq[0] = taskqueue_create(name, M_WAITOK,
|
|
taskqueue_thread_enqueue,
|
|
&epair_tasks.tq[0]);
|
|
taskqueue_start_threads(&epair_tasks.tq[0], 1, PI_NET, "%s", name);
|
|
|
|
epair_tasks.tasks = 1;
|
|
#endif
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
epair_mod_cleanup(void)
|
|
{
|
|
|
|
for (int i = 0; i < epair_tasks.tasks; i++) {
|
|
taskqueue_drain_all(epair_tasks.tq[i]);
|
|
taskqueue_free(epair_tasks.tq[i]);
|
|
}
|
|
}
|
|
|
|
static int
|
|
epair_modevent(module_t mod, int type, void *data)
|
|
{
|
|
int ret;
|
|
|
|
switch (type) {
|
|
case MOD_LOAD:
|
|
EPAIR_LOCK_INIT();
|
|
ret = epair_mod_init();
|
|
if (ret != 0)
|
|
return (ret);
|
|
if (bootverbose)
|
|
printf("%s: %s initialized.\n", __func__, epairname);
|
|
break;
|
|
case MOD_UNLOAD:
|
|
epair_mod_cleanup();
|
|
EPAIR_LOCK_DESTROY();
|
|
if (bootverbose)
|
|
printf("%s: %s unloaded.\n", __func__, epairname);
|
|
break;
|
|
default:
|
|
return (EOPNOTSUPP);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static moduledata_t epair_mod = {
|
|
"if_epair",
|
|
epair_modevent,
|
|
0
|
|
};
|
|
|
|
DECLARE_MODULE(if_epair, epair_mod, SI_SUB_PSEUDO, SI_ORDER_MIDDLE);
|
|
MODULE_VERSION(if_epair, 3);
|