mirror of
https://git.hardenedbsd.org/hardenedbsd/HardenedBSD.git
synced 2024-12-30 15:38:06 +01:00
a4cd5630b0
non-i386, non-unix, and generatable files have been trimmed, but can easily be added in later if needed. gcc-2.7.2.1 will follow shortly, it's a very small delta to this and it's handy to have both available for reference for such little cost. The freebsd-specific changes will then be committed, and once the dust has settled, the bmakefiles will be committed to use this code.
3449 lines
90 KiB
C
3449 lines
90 KiB
C
/* Emit RTL for the GNU C-Compiler expander.
|
||
Copyright (C) 1987, 88, 92, 93, 94, 1995 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
|
||
/* Middle-to-low level generation of rtx code and insns.
|
||
|
||
This file contains the functions `gen_rtx', `gen_reg_rtx'
|
||
and `gen_label_rtx' that are the usual ways of creating rtl
|
||
expressions for most purposes.
|
||
|
||
It also has the functions for creating insns and linking
|
||
them in the doubly-linked chain.
|
||
|
||
The patterns of the insns are created by machine-dependent
|
||
routines in insn-emit.c, which is generated automatically from
|
||
the machine description. These routines use `gen_rtx' to make
|
||
the individual rtx's of the pattern; what is machine dependent
|
||
is the kind of rtx's they make and what arguments they use. */
|
||
|
||
#include "config.h"
|
||
#ifdef __STDC__
|
||
#include <stdarg.h>
|
||
#else
|
||
#include <varargs.h>
|
||
#endif
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "flags.h"
|
||
#include "function.h"
|
||
#include "expr.h"
|
||
#include "regs.h"
|
||
#include "insn-config.h"
|
||
#include "real.h"
|
||
#include "obstack.h"
|
||
|
||
#include "bytecode.h"
|
||
#include "machmode.h"
|
||
#include "bc-opcode.h"
|
||
#include "bc-typecd.h"
|
||
#include "bc-optab.h"
|
||
#include "bc-emit.h"
|
||
|
||
#include <stdio.h>
|
||
|
||
|
||
/* Opcode names */
|
||
#ifdef BCDEBUG_PRINT_CODE
|
||
char *opcode_name[] =
|
||
{
|
||
#include "bc-opname.h"
|
||
|
||
"***END***"
|
||
};
|
||
#endif
|
||
|
||
|
||
/* Commonly used modes. */
|
||
|
||
enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
|
||
enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
|
||
enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
|
||
|
||
/* This is reset to LAST_VIRTUAL_REGISTER + 1 at the start of each function.
|
||
After rtl generation, it is 1 plus the largest register number used. */
|
||
|
||
int reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
|
||
|
||
/* This is *not* reset after each function. It gives each CODE_LABEL
|
||
in the entire compilation a unique label number. */
|
||
|
||
static int label_num = 1;
|
||
|
||
/* Lowest label number in current function. */
|
||
|
||
static int first_label_num;
|
||
|
||
/* Highest label number in current function.
|
||
Zero means use the value of label_num instead.
|
||
This is nonzero only when belatedly compiling an inline function. */
|
||
|
||
static int last_label_num;
|
||
|
||
/* Value label_num had when set_new_first_and_last_label_number was called.
|
||
If label_num has not changed since then, last_label_num is valid. */
|
||
|
||
static int base_label_num;
|
||
|
||
/* Nonzero means do not generate NOTEs for source line numbers. */
|
||
|
||
static int no_line_numbers;
|
||
|
||
/* Commonly used rtx's, so that we only need space for one copy.
|
||
These are initialized once for the entire compilation.
|
||
All of these except perhaps the floating-point CONST_DOUBLEs
|
||
are unique; no other rtx-object will be equal to any of these. */
|
||
|
||
rtx pc_rtx; /* (PC) */
|
||
rtx cc0_rtx; /* (CC0) */
|
||
rtx cc1_rtx; /* (CC1) (not actually used nowadays) */
|
||
rtx const0_rtx; /* (CONST_INT 0) */
|
||
rtx const1_rtx; /* (CONST_INT 1) */
|
||
rtx const2_rtx; /* (CONST_INT 2) */
|
||
rtx constm1_rtx; /* (CONST_INT -1) */
|
||
rtx const_true_rtx; /* (CONST_INT STORE_FLAG_VALUE) */
|
||
|
||
/* We record floating-point CONST_DOUBLEs in each floating-point mode for
|
||
the values of 0, 1, and 2. For the integer entries and VOIDmode, we
|
||
record a copy of const[012]_rtx. */
|
||
|
||
rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
|
||
|
||
REAL_VALUE_TYPE dconst0;
|
||
REAL_VALUE_TYPE dconst1;
|
||
REAL_VALUE_TYPE dconst2;
|
||
REAL_VALUE_TYPE dconstm1;
|
||
|
||
/* All references to the following fixed hard registers go through
|
||
these unique rtl objects. On machines where the frame-pointer and
|
||
arg-pointer are the same register, they use the same unique object.
|
||
|
||
After register allocation, other rtl objects which used to be pseudo-regs
|
||
may be clobbered to refer to the frame-pointer register.
|
||
But references that were originally to the frame-pointer can be
|
||
distinguished from the others because they contain frame_pointer_rtx.
|
||
|
||
When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
|
||
tricky: until register elimination has taken place hard_frame_pointer_rtx
|
||
should be used if it is being set, and frame_pointer_rtx otherwise. After
|
||
register elimination hard_frame_pointer_rtx should always be used.
|
||
On machines where the two registers are same (most) then these are the
|
||
same.
|
||
|
||
In an inline procedure, the stack and frame pointer rtxs may not be
|
||
used for anything else. */
|
||
rtx stack_pointer_rtx; /* (REG:Pmode STACK_POINTER_REGNUM) */
|
||
rtx frame_pointer_rtx; /* (REG:Pmode FRAME_POINTER_REGNUM) */
|
||
rtx hard_frame_pointer_rtx; /* (REG:Pmode HARD_FRAME_POINTER_REGNUM) */
|
||
rtx arg_pointer_rtx; /* (REG:Pmode ARG_POINTER_REGNUM) */
|
||
rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
|
||
rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
|
||
rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
|
||
rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
|
||
rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
|
||
|
||
rtx virtual_incoming_args_rtx; /* (REG:Pmode VIRTUAL_INCOMING_ARGS_REGNUM) */
|
||
rtx virtual_stack_vars_rtx; /* (REG:Pmode VIRTUAL_STACK_VARS_REGNUM) */
|
||
rtx virtual_stack_dynamic_rtx; /* (REG:Pmode VIRTUAL_STACK_DYNAMIC_REGNUM) */
|
||
rtx virtual_outgoing_args_rtx; /* (REG:Pmode VIRTUAL_OUTGOING_ARGS_REGNUM) */
|
||
|
||
/* We make one copy of (const_int C) where C is in
|
||
[- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
|
||
to save space during the compilation and simplify comparisons of
|
||
integers. */
|
||
|
||
#define MAX_SAVED_CONST_INT 64
|
||
|
||
static rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
|
||
|
||
/* The ends of the doubly-linked chain of rtl for the current function.
|
||
Both are reset to null at the start of rtl generation for the function.
|
||
|
||
start_sequence saves both of these on `sequence_stack' along with
|
||
`sequence_rtl_expr' and then starts a new, nested sequence of insns. */
|
||
|
||
static rtx first_insn = NULL;
|
||
static rtx last_insn = NULL;
|
||
|
||
/* RTL_EXPR within which the current sequence will be placed. Use to
|
||
prevent reuse of any temporaries within the sequence until after the
|
||
RTL_EXPR is emitted. */
|
||
|
||
tree sequence_rtl_expr = NULL;
|
||
|
||
/* INSN_UID for next insn emitted.
|
||
Reset to 1 for each function compiled. */
|
||
|
||
static int cur_insn_uid = 1;
|
||
|
||
/* Line number and source file of the last line-number NOTE emitted.
|
||
This is used to avoid generating duplicates. */
|
||
|
||
static int last_linenum = 0;
|
||
static char *last_filename = 0;
|
||
|
||
/* A vector indexed by pseudo reg number. The allocated length
|
||
of this vector is regno_pointer_flag_length. Since this
|
||
vector is needed during the expansion phase when the total
|
||
number of registers in the function is not yet known,
|
||
it is copied and made bigger when necessary. */
|
||
|
||
char *regno_pointer_flag;
|
||
int regno_pointer_flag_length;
|
||
|
||
/* Indexed by pseudo register number, gives the rtx for that pseudo.
|
||
Allocated in parallel with regno_pointer_flag. */
|
||
|
||
rtx *regno_reg_rtx;
|
||
|
||
/* Stack of pending (incomplete) sequences saved by `start_sequence'.
|
||
Each element describes one pending sequence.
|
||
The main insn-chain is saved in the last element of the chain,
|
||
unless the chain is empty. */
|
||
|
||
struct sequence_stack *sequence_stack;
|
||
|
||
/* start_sequence and gen_sequence can make a lot of rtx expressions which are
|
||
shortly thrown away. We use two mechanisms to prevent this waste:
|
||
|
||
First, we keep a list of the expressions used to represent the sequence
|
||
stack in sequence_element_free_list.
|
||
|
||
Second, for sizes up to 5 elements, we keep a SEQUENCE and its associated
|
||
rtvec for use by gen_sequence. One entry for each size is sufficient
|
||
because most cases are calls to gen_sequence followed by immediately
|
||
emitting the SEQUENCE. Reuse is safe since emitting a sequence is
|
||
destructive on the insn in it anyway and hence can't be redone.
|
||
|
||
We do not bother to save this cached data over nested function calls.
|
||
Instead, we just reinitialize them. */
|
||
|
||
#define SEQUENCE_RESULT_SIZE 5
|
||
|
||
static struct sequence_stack *sequence_element_free_list;
|
||
static rtx sequence_result[SEQUENCE_RESULT_SIZE];
|
||
|
||
extern int rtx_equal_function_value_matters;
|
||
|
||
/* Filename and line number of last line-number note,
|
||
whether we actually emitted it or not. */
|
||
extern char *emit_filename;
|
||
extern int emit_lineno;
|
||
|
||
rtx change_address ();
|
||
void init_emit ();
|
||
|
||
extern struct obstack *rtl_obstack;
|
||
|
||
extern int stack_depth;
|
||
extern int max_stack_depth;
|
||
|
||
/* rtx gen_rtx (code, mode, [element1, ..., elementn])
|
||
**
|
||
** This routine generates an RTX of the size specified by
|
||
** <code>, which is an RTX code. The RTX structure is initialized
|
||
** from the arguments <element1> through <elementn>, which are
|
||
** interpreted according to the specific RTX type's format. The
|
||
** special machine mode associated with the rtx (if any) is specified
|
||
** in <mode>.
|
||
**
|
||
** gen_rtx can be invoked in a way which resembles the lisp-like
|
||
** rtx it will generate. For example, the following rtx structure:
|
||
**
|
||
** (plus:QI (mem:QI (reg:SI 1))
|
||
** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
|
||
**
|
||
** ...would be generated by the following C code:
|
||
**
|
||
** gen_rtx (PLUS, QImode,
|
||
** gen_rtx (MEM, QImode,
|
||
** gen_rtx (REG, SImode, 1)),
|
||
** gen_rtx (MEM, QImode,
|
||
** gen_rtx (PLUS, SImode,
|
||
** gen_rtx (REG, SImode, 2),
|
||
** gen_rtx (REG, SImode, 3)))),
|
||
*/
|
||
|
||
/*VARARGS2*/
|
||
rtx
|
||
gen_rtx VPROTO((enum rtx_code code, enum machine_mode mode, ...))
|
||
{
|
||
#ifndef __STDC__
|
||
enum rtx_code code;
|
||
enum machine_mode mode;
|
||
#endif
|
||
va_list p;
|
||
register int i; /* Array indices... */
|
||
register char *fmt; /* Current rtx's format... */
|
||
register rtx rt_val; /* RTX to return to caller... */
|
||
|
||
VA_START (p, mode);
|
||
|
||
#ifndef __STDC__
|
||
code = va_arg (p, enum rtx_code);
|
||
mode = va_arg (p, enum machine_mode);
|
||
#endif
|
||
|
||
if (code == CONST_INT)
|
||
{
|
||
HOST_WIDE_INT arg = va_arg (p, HOST_WIDE_INT);
|
||
|
||
if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
|
||
return const_int_rtx[arg + MAX_SAVED_CONST_INT];
|
||
|
||
if (const_true_rtx && arg == STORE_FLAG_VALUE)
|
||
return const_true_rtx;
|
||
|
||
rt_val = rtx_alloc (code);
|
||
INTVAL (rt_val) = arg;
|
||
}
|
||
else if (code == REG)
|
||
{
|
||
int regno = va_arg (p, int);
|
||
|
||
/* In case the MD file explicitly references the frame pointer, have
|
||
all such references point to the same frame pointer. This is used
|
||
during frame pointer elimination to distinguish the explicit
|
||
references to these registers from pseudos that happened to be
|
||
assigned to them.
|
||
|
||
If we have eliminated the frame pointer or arg pointer, we will
|
||
be using it as a normal register, for example as a spill register.
|
||
In such cases, we might be accessing it in a mode that is not
|
||
Pmode and therefore cannot use the pre-allocated rtx.
|
||
|
||
Also don't do this when we are making new REGs in reload,
|
||
since we don't want to get confused with the real pointers. */
|
||
|
||
if (frame_pointer_rtx && regno == FRAME_POINTER_REGNUM && mode == Pmode
|
||
&& ! reload_in_progress)
|
||
return frame_pointer_rtx;
|
||
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
|
||
if (hard_frame_pointer_rtx && regno == HARD_FRAME_POINTER_REGNUM
|
||
&& mode == Pmode && ! reload_in_progress)
|
||
return hard_frame_pointer_rtx;
|
||
#endif
|
||
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|
||
if (arg_pointer_rtx && regno == ARG_POINTER_REGNUM && mode == Pmode
|
||
&& ! reload_in_progress)
|
||
return arg_pointer_rtx;
|
||
#endif
|
||
if (stack_pointer_rtx && regno == STACK_POINTER_REGNUM && mode == Pmode
|
||
&& ! reload_in_progress)
|
||
return stack_pointer_rtx;
|
||
else
|
||
{
|
||
rt_val = rtx_alloc (code);
|
||
rt_val->mode = mode;
|
||
REGNO (rt_val) = regno;
|
||
return rt_val;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
rt_val = rtx_alloc (code); /* Allocate the storage space. */
|
||
rt_val->mode = mode; /* Store the machine mode... */
|
||
|
||
fmt = GET_RTX_FORMAT (code); /* Find the right format... */
|
||
for (i = 0; i < GET_RTX_LENGTH (code); i++)
|
||
{
|
||
switch (*fmt++)
|
||
{
|
||
case '0': /* Unused field. */
|
||
break;
|
||
|
||
case 'i': /* An integer? */
|
||
XINT (rt_val, i) = va_arg (p, int);
|
||
break;
|
||
|
||
case 'w': /* A wide integer? */
|
||
XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
|
||
break;
|
||
|
||
case 's': /* A string? */
|
||
XSTR (rt_val, i) = va_arg (p, char *);
|
||
break;
|
||
|
||
case 'e': /* An expression? */
|
||
case 'u': /* An insn? Same except when printing. */
|
||
XEXP (rt_val, i) = va_arg (p, rtx);
|
||
break;
|
||
|
||
case 'E': /* An RTX vector? */
|
||
XVEC (rt_val, i) = va_arg (p, rtvec);
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
}
|
||
va_end (p);
|
||
return rt_val; /* Return the new RTX... */
|
||
}
|
||
|
||
/* gen_rtvec (n, [rt1, ..., rtn])
|
||
**
|
||
** This routine creates an rtvec and stores within it the
|
||
** pointers to rtx's which are its arguments.
|
||
*/
|
||
|
||
/*VARARGS1*/
|
||
rtvec
|
||
gen_rtvec VPROTO((int n, ...))
|
||
{
|
||
#ifndef __STDC__
|
||
int n;
|
||
#endif
|
||
int i;
|
||
va_list p;
|
||
rtx *vector;
|
||
|
||
VA_START (p, n);
|
||
|
||
#ifndef __STDC__
|
||
n = va_arg (p, int);
|
||
#endif
|
||
|
||
if (n == 0)
|
||
return NULL_RTVEC; /* Don't allocate an empty rtvec... */
|
||
|
||
vector = (rtx *) alloca (n * sizeof (rtx));
|
||
|
||
for (i = 0; i < n; i++)
|
||
vector[i] = va_arg (p, rtx);
|
||
va_end (p);
|
||
|
||
return gen_rtvec_v (n, vector);
|
||
}
|
||
|
||
rtvec
|
||
gen_rtvec_v (n, argp)
|
||
int n;
|
||
rtx *argp;
|
||
{
|
||
register int i;
|
||
register rtvec rt_val;
|
||
|
||
if (n == 0)
|
||
return NULL_RTVEC; /* Don't allocate an empty rtvec... */
|
||
|
||
rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
|
||
|
||
for (i = 0; i < n; i++)
|
||
rt_val->elem[i].rtx = *argp++;
|
||
|
||
return rt_val;
|
||
}
|
||
|
||
/* Generate a REG rtx for a new pseudo register of mode MODE.
|
||
This pseudo is assigned the next sequential register number. */
|
||
|
||
rtx
|
||
gen_reg_rtx (mode)
|
||
enum machine_mode mode;
|
||
{
|
||
register rtx val;
|
||
|
||
/* Don't let anything called by or after reload create new registers
|
||
(actually, registers can't be created after flow, but this is a good
|
||
approximation). */
|
||
|
||
if (reload_in_progress || reload_completed)
|
||
abort ();
|
||
|
||
if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
|
||
|| GET_MODE_CLASS (mode) == MODE_COMPLEX_INT)
|
||
{
|
||
/* For complex modes, don't make a single pseudo.
|
||
Instead, make a CONCAT of two pseudos.
|
||
This allows noncontiguous allocation of the real and imaginary parts,
|
||
which makes much better code. Besides, allocating DCmode
|
||
pseudos overstrains reload on some machines like the 386. */
|
||
rtx realpart, imagpart;
|
||
int size = GET_MODE_UNIT_SIZE (mode);
|
||
enum machine_mode partmode
|
||
= mode_for_size (size * BITS_PER_UNIT,
|
||
(GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
|
||
? MODE_FLOAT : MODE_INT),
|
||
0);
|
||
|
||
realpart = gen_reg_rtx (partmode);
|
||
imagpart = gen_reg_rtx (partmode);
|
||
return gen_rtx (CONCAT, mode, realpart, imagpart);
|
||
}
|
||
|
||
/* Make sure regno_pointer_flag and regno_reg_rtx are large
|
||
enough to have an element for this pseudo reg number. */
|
||
|
||
if (reg_rtx_no == regno_pointer_flag_length)
|
||
{
|
||
rtx *new1;
|
||
char *new =
|
||
(char *) oballoc (regno_pointer_flag_length * 2);
|
||
bcopy (regno_pointer_flag, new, regno_pointer_flag_length);
|
||
bzero (&new[regno_pointer_flag_length], regno_pointer_flag_length);
|
||
regno_pointer_flag = new;
|
||
|
||
new1 = (rtx *) oballoc (regno_pointer_flag_length * 2 * sizeof (rtx));
|
||
bcopy ((char *) regno_reg_rtx, (char *) new1,
|
||
regno_pointer_flag_length * sizeof (rtx));
|
||
bzero ((char *) &new1[regno_pointer_flag_length],
|
||
regno_pointer_flag_length * sizeof (rtx));
|
||
regno_reg_rtx = new1;
|
||
|
||
regno_pointer_flag_length *= 2;
|
||
}
|
||
|
||
val = gen_rtx (REG, mode, reg_rtx_no);
|
||
regno_reg_rtx[reg_rtx_no++] = val;
|
||
return val;
|
||
}
|
||
|
||
/* Identify REG as a probable pointer register. */
|
||
|
||
void
|
||
mark_reg_pointer (reg)
|
||
rtx reg;
|
||
{
|
||
REGNO_POINTER_FLAG (REGNO (reg)) = 1;
|
||
}
|
||
|
||
/* Return 1 plus largest pseudo reg number used in the current function. */
|
||
|
||
int
|
||
max_reg_num ()
|
||
{
|
||
return reg_rtx_no;
|
||
}
|
||
|
||
/* Return 1 + the largest label number used so far in the current function. */
|
||
|
||
int
|
||
max_label_num ()
|
||
{
|
||
if (last_label_num && label_num == base_label_num)
|
||
return last_label_num;
|
||
return label_num;
|
||
}
|
||
|
||
/* Return first label number used in this function (if any were used). */
|
||
|
||
int
|
||
get_first_label_num ()
|
||
{
|
||
return first_label_num;
|
||
}
|
||
|
||
/* Return a value representing some low-order bits of X, where the number
|
||
of low-order bits is given by MODE. Note that no conversion is done
|
||
between floating-point and fixed-point values, rather, the bit
|
||
representation is returned.
|
||
|
||
This function handles the cases in common between gen_lowpart, below,
|
||
and two variants in cse.c and combine.c. These are the cases that can
|
||
be safely handled at all points in the compilation.
|
||
|
||
If this is not a case we can handle, return 0. */
|
||
|
||
rtx
|
||
gen_lowpart_common (mode, x)
|
||
enum machine_mode mode;
|
||
register rtx x;
|
||
{
|
||
int word = 0;
|
||
|
||
if (GET_MODE (x) == mode)
|
||
return x;
|
||
|
||
/* MODE must occupy no more words than the mode of X. */
|
||
if (GET_MODE (x) != VOIDmode
|
||
&& ((GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
|
||
> ((GET_MODE_SIZE (GET_MODE (x)) + (UNITS_PER_WORD - 1))
|
||
/ UNITS_PER_WORD)))
|
||
return 0;
|
||
|
||
if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
|
||
word = ((GET_MODE_SIZE (GET_MODE (x))
|
||
- MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
|
||
/ UNITS_PER_WORD);
|
||
|
||
if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
|
||
&& (GET_MODE_CLASS (mode) == MODE_INT
|
||
|| GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
|
||
{
|
||
/* If we are getting the low-order part of something that has been
|
||
sign- or zero-extended, we can either just use the object being
|
||
extended or make a narrower extension. If we want an even smaller
|
||
piece than the size of the object being extended, call ourselves
|
||
recursively.
|
||
|
||
This case is used mostly by combine and cse. */
|
||
|
||
if (GET_MODE (XEXP (x, 0)) == mode)
|
||
return XEXP (x, 0);
|
||
else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
|
||
return gen_lowpart_common (mode, XEXP (x, 0));
|
||
else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
|
||
return gen_rtx (GET_CODE (x), mode, XEXP (x, 0));
|
||
}
|
||
else if (GET_CODE (x) == SUBREG
|
||
&& (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
|
||
|| GET_MODE_SIZE (mode) == GET_MODE_UNIT_SIZE (GET_MODE (x))))
|
||
return (GET_MODE (SUBREG_REG (x)) == mode && SUBREG_WORD (x) == 0
|
||
? SUBREG_REG (x)
|
||
: gen_rtx (SUBREG, mode, SUBREG_REG (x), SUBREG_WORD (x)));
|
||
else if (GET_CODE (x) == REG)
|
||
{
|
||
/* If the register is not valid for MODE, return 0. If we don't
|
||
do this, there is no way to fix up the resulting REG later.
|
||
But we do do this if the current REG is not valid for its
|
||
mode. This latter is a kludge, but is required due to the
|
||
way that parameters are passed on some machines, most
|
||
notably Sparc. */
|
||
if (REGNO (x) < FIRST_PSEUDO_REGISTER
|
||
&& ! HARD_REGNO_MODE_OK (REGNO (x) + word, mode)
|
||
&& HARD_REGNO_MODE_OK (REGNO (x), GET_MODE (x)))
|
||
return 0;
|
||
else if (REGNO (x) < FIRST_PSEUDO_REGISTER
|
||
/* integrate.c can't handle parts of a return value register. */
|
||
&& (! REG_FUNCTION_VALUE_P (x)
|
||
|| ! rtx_equal_function_value_matters)
|
||
/* We want to keep the stack, frame, and arg pointers
|
||
special. */
|
||
&& x != frame_pointer_rtx
|
||
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|
||
&& x != arg_pointer_rtx
|
||
#endif
|
||
&& x != stack_pointer_rtx)
|
||
return gen_rtx (REG, mode, REGNO (x) + word);
|
||
else
|
||
return gen_rtx (SUBREG, mode, x, word);
|
||
}
|
||
/* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
|
||
from the low-order part of the constant. */
|
||
else if ((GET_MODE_CLASS (mode) == MODE_INT
|
||
|| GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
|
||
&& GET_MODE (x) == VOIDmode
|
||
&& (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
|
||
{
|
||
/* If MODE is twice the host word size, X is already the desired
|
||
representation. Otherwise, if MODE is wider than a word, we can't
|
||
do this. If MODE is exactly a word, return just one CONST_INT.
|
||
If MODE is smaller than a word, clear the bits that don't belong
|
||
in our mode, unless they and our sign bit are all one. So we get
|
||
either a reasonable negative value or a reasonable unsigned value
|
||
for this mode. */
|
||
|
||
if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
|
||
return x;
|
||
else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
|
||
return 0;
|
||
else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
|
||
return (GET_CODE (x) == CONST_INT ? x
|
||
: GEN_INT (CONST_DOUBLE_LOW (x)));
|
||
else
|
||
{
|
||
/* MODE must be narrower than HOST_BITS_PER_INT. */
|
||
int width = GET_MODE_BITSIZE (mode);
|
||
HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
|
||
: CONST_DOUBLE_LOW (x));
|
||
|
||
if (((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
|
||
!= ((HOST_WIDE_INT) (-1) << (width - 1))))
|
||
val &= ((HOST_WIDE_INT) 1 << width) - 1;
|
||
|
||
return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
|
||
: GEN_INT (val));
|
||
}
|
||
}
|
||
|
||
/* If X is an integral constant but we want it in floating-point, it
|
||
must be the case that we have a union of an integer and a floating-point
|
||
value. If the machine-parameters allow it, simulate that union here
|
||
and return the result. The two-word and single-word cases are
|
||
different. */
|
||
|
||
else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
|
||
&& HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
|
||
|| flag_pretend_float)
|
||
&& GET_MODE_CLASS (mode) == MODE_FLOAT
|
||
&& GET_MODE_SIZE (mode) == UNITS_PER_WORD
|
||
&& GET_CODE (x) == CONST_INT
|
||
&& sizeof (float) * HOST_BITS_PER_CHAR == HOST_BITS_PER_WIDE_INT)
|
||
#ifdef REAL_ARITHMETIC
|
||
{
|
||
REAL_VALUE_TYPE r;
|
||
HOST_WIDE_INT i;
|
||
|
||
i = INTVAL (x);
|
||
r = REAL_VALUE_FROM_TARGET_SINGLE (i);
|
||
return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
|
||
}
|
||
#else
|
||
{
|
||
union {HOST_WIDE_INT i; float d; } u;
|
||
|
||
u.i = INTVAL (x);
|
||
return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
|
||
}
|
||
#endif
|
||
else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
|
||
&& HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
|
||
|| flag_pretend_float)
|
||
&& GET_MODE_CLASS (mode) == MODE_FLOAT
|
||
&& GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
|
||
&& (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
|
||
&& GET_MODE (x) == VOIDmode
|
||
&& (sizeof (double) * HOST_BITS_PER_CHAR
|
||
== 2 * HOST_BITS_PER_WIDE_INT))
|
||
#ifdef REAL_ARITHMETIC
|
||
{
|
||
REAL_VALUE_TYPE r;
|
||
HOST_WIDE_INT i[2];
|
||
HOST_WIDE_INT low, high;
|
||
|
||
if (GET_CODE (x) == CONST_INT)
|
||
low = INTVAL (x), high = low >> (HOST_BITS_PER_WIDE_INT -1);
|
||
else
|
||
low = CONST_DOUBLE_LOW (x), high = CONST_DOUBLE_HIGH (x);
|
||
|
||
/* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
|
||
target machine. */
|
||
if (WORDS_BIG_ENDIAN)
|
||
i[0] = high, i[1] = low;
|
||
else
|
||
i[0] = low, i[1] = high;
|
||
|
||
r = REAL_VALUE_FROM_TARGET_DOUBLE (i);
|
||
return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
|
||
}
|
||
#else
|
||
{
|
||
union {HOST_WIDE_INT i[2]; double d; } u;
|
||
HOST_WIDE_INT low, high;
|
||
|
||
if (GET_CODE (x) == CONST_INT)
|
||
low = INTVAL (x), high = low >> (HOST_BITS_PER_WIDE_INT -1);
|
||
else
|
||
low = CONST_DOUBLE_LOW (x), high = CONST_DOUBLE_HIGH (x);
|
||
|
||
#ifdef HOST_WORDS_BIG_ENDIAN
|
||
u.i[0] = high, u.i[1] = low;
|
||
#else
|
||
u.i[0] = low, u.i[1] = high;
|
||
#endif
|
||
|
||
return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
|
||
}
|
||
#endif
|
||
/* Similarly, if this is converting a floating-point value into a
|
||
single-word integer. Only do this is the host and target parameters are
|
||
compatible. */
|
||
|
||
else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
|
||
&& HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
|
||
|| flag_pretend_float)
|
||
&& (GET_MODE_CLASS (mode) == MODE_INT
|
||
|| GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
|
||
&& GET_CODE (x) == CONST_DOUBLE
|
||
&& GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
|
||
&& GET_MODE_BITSIZE (mode) == BITS_PER_WORD)
|
||
return operand_subword (x, 0, 0, GET_MODE (x));
|
||
|
||
/* Similarly, if this is converting a floating-point value into a
|
||
two-word integer, we can do this one word at a time and make an
|
||
integer. Only do this is the host and target parameters are
|
||
compatible. */
|
||
|
||
else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
|
||
&& HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
|
||
|| flag_pretend_float)
|
||
&& (GET_MODE_CLASS (mode) == MODE_INT
|
||
|| GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
|
||
&& GET_CODE (x) == CONST_DOUBLE
|
||
&& GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
|
||
&& GET_MODE_BITSIZE (mode) == 2 * BITS_PER_WORD)
|
||
{
|
||
rtx lowpart = operand_subword (x, WORDS_BIG_ENDIAN, 0, GET_MODE (x));
|
||
rtx highpart = operand_subword (x, ! WORDS_BIG_ENDIAN, 0, GET_MODE (x));
|
||
|
||
if (lowpart && GET_CODE (lowpart) == CONST_INT
|
||
&& highpart && GET_CODE (highpart) == CONST_INT)
|
||
return immed_double_const (INTVAL (lowpart), INTVAL (highpart), mode);
|
||
}
|
||
|
||
/* Otherwise, we can't do this. */
|
||
return 0;
|
||
}
|
||
|
||
/* Return the real part (which has mode MODE) of a complex value X.
|
||
This always comes at the low address in memory. */
|
||
|
||
rtx
|
||
gen_realpart (mode, x)
|
||
enum machine_mode mode;
|
||
register rtx x;
|
||
{
|
||
if (GET_CODE (x) == CONCAT && GET_MODE (XEXP (x, 0)) == mode)
|
||
return XEXP (x, 0);
|
||
else if (WORDS_BIG_ENDIAN)
|
||
return gen_highpart (mode, x);
|
||
else
|
||
return gen_lowpart (mode, x);
|
||
}
|
||
|
||
/* Return the imaginary part (which has mode MODE) of a complex value X.
|
||
This always comes at the high address in memory. */
|
||
|
||
rtx
|
||
gen_imagpart (mode, x)
|
||
enum machine_mode mode;
|
||
register rtx x;
|
||
{
|
||
if (GET_CODE (x) == CONCAT && GET_MODE (XEXP (x, 0)) == mode)
|
||
return XEXP (x, 1);
|
||
else if (WORDS_BIG_ENDIAN)
|
||
return gen_lowpart (mode, x);
|
||
else
|
||
return gen_highpart (mode, x);
|
||
}
|
||
|
||
/* Return 1 iff X, assumed to be a SUBREG,
|
||
refers to the real part of the complex value in its containing reg.
|
||
Complex values are always stored with the real part in the first word,
|
||
regardless of WORDS_BIG_ENDIAN. */
|
||
|
||
int
|
||
subreg_realpart_p (x)
|
||
rtx x;
|
||
{
|
||
if (GET_CODE (x) != SUBREG)
|
||
abort ();
|
||
|
||
return SUBREG_WORD (x) == 0;
|
||
}
|
||
|
||
/* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
|
||
return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
|
||
least-significant part of X.
|
||
MODE specifies how big a part of X to return;
|
||
it usually should not be larger than a word.
|
||
If X is a MEM whose address is a QUEUED, the value may be so also. */
|
||
|
||
rtx
|
||
gen_lowpart (mode, x)
|
||
enum machine_mode mode;
|
||
register rtx x;
|
||
{
|
||
rtx result = gen_lowpart_common (mode, x);
|
||
|
||
if (result)
|
||
return result;
|
||
else if (GET_CODE (x) == REG)
|
||
{
|
||
/* Must be a hard reg that's not valid in MODE. */
|
||
result = gen_lowpart_common (mode, copy_to_reg (x));
|
||
if (result == 0)
|
||
abort ();
|
||
}
|
||
else if (GET_CODE (x) == MEM)
|
||
{
|
||
/* The only additional case we can do is MEM. */
|
||
register int offset = 0;
|
||
if (WORDS_BIG_ENDIAN)
|
||
offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
|
||
- MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
|
||
|
||
if (BYTES_BIG_ENDIAN)
|
||
/* Adjust the address so that the address-after-the-data
|
||
is unchanged. */
|
||
offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
|
||
- MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
|
||
|
||
return change_address (x, mode, plus_constant (XEXP (x, 0), offset));
|
||
}
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
/* Like `gen_lowpart', but refer to the most significant part.
|
||
This is used to access the imaginary part of a complex number. */
|
||
|
||
rtx
|
||
gen_highpart (mode, x)
|
||
enum machine_mode mode;
|
||
register rtx x;
|
||
{
|
||
/* This case loses if X is a subreg. To catch bugs early,
|
||
complain if an invalid MODE is used even in other cases. */
|
||
if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
|
||
&& GET_MODE_SIZE (mode) != GET_MODE_UNIT_SIZE (GET_MODE (x)))
|
||
abort ();
|
||
if (GET_CODE (x) == CONST_DOUBLE
|
||
#if !(TARGET_FLOAT_FORMAT != HOST_FLOAT_FORMAT || defined (REAL_IS_NOT_DOUBLE))
|
||
&& GET_MODE_CLASS (GET_MODE (x)) != MODE_FLOAT
|
||
#endif
|
||
)
|
||
return gen_rtx (CONST_INT, VOIDmode,
|
||
CONST_DOUBLE_HIGH (x) & GET_MODE_MASK (mode));
|
||
else if (GET_CODE (x) == CONST_INT)
|
||
return const0_rtx;
|
||
else if (GET_CODE (x) == MEM)
|
||
{
|
||
register int offset = 0;
|
||
if (! WORDS_BIG_ENDIAN)
|
||
offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
|
||
- MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
|
||
|
||
if (! BYTES_BIG_ENDIAN
|
||
&& GET_MODE_SIZE (mode) < UNITS_PER_WORD)
|
||
offset -= (GET_MODE_SIZE (mode)
|
||
- MIN (UNITS_PER_WORD,
|
||
GET_MODE_SIZE (GET_MODE (x))));
|
||
|
||
return change_address (x, mode, plus_constant (XEXP (x, 0), offset));
|
||
}
|
||
else if (GET_CODE (x) == SUBREG)
|
||
{
|
||
/* The only time this should occur is when we are looking at a
|
||
multi-word item with a SUBREG whose mode is the same as that of the
|
||
item. It isn't clear what we would do if it wasn't. */
|
||
if (SUBREG_WORD (x) != 0)
|
||
abort ();
|
||
return gen_highpart (mode, SUBREG_REG (x));
|
||
}
|
||
else if (GET_CODE (x) == REG)
|
||
{
|
||
int word = 0;
|
||
|
||
if (! WORDS_BIG_ENDIAN
|
||
&& GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
|
||
word = ((GET_MODE_SIZE (GET_MODE (x))
|
||
- MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
|
||
/ UNITS_PER_WORD);
|
||
|
||
/*
|
||
* ??? This fails miserably for complex values being passed in registers
|
||
* where the sizeof the real and imaginary part are not equal to the
|
||
* sizeof SImode. FIXME
|
||
*/
|
||
|
||
if (REGNO (x) < FIRST_PSEUDO_REGISTER
|
||
/* integrate.c can't handle parts of a return value register. */
|
||
&& (! REG_FUNCTION_VALUE_P (x)
|
||
|| ! rtx_equal_function_value_matters)
|
||
/* We want to keep the stack, frame, and arg pointers special. */
|
||
&& x != frame_pointer_rtx
|
||
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|
||
&& x != arg_pointer_rtx
|
||
#endif
|
||
&& x != stack_pointer_rtx)
|
||
return gen_rtx (REG, mode, REGNO (x) + word);
|
||
else
|
||
return gen_rtx (SUBREG, mode, x, word);
|
||
}
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
/* Return 1 iff X, assumed to be a SUBREG,
|
||
refers to the least significant part of its containing reg.
|
||
If X is not a SUBREG, always return 1 (it is its own low part!). */
|
||
|
||
int
|
||
subreg_lowpart_p (x)
|
||
rtx x;
|
||
{
|
||
if (GET_CODE (x) != SUBREG)
|
||
return 1;
|
||
|
||
if (WORDS_BIG_ENDIAN
|
||
&& GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) > UNITS_PER_WORD)
|
||
return (SUBREG_WORD (x)
|
||
== ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
|
||
- MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD))
|
||
/ UNITS_PER_WORD));
|
||
|
||
return SUBREG_WORD (x) == 0;
|
||
}
|
||
|
||
/* Return subword I of operand OP.
|
||
The word number, I, is interpreted as the word number starting at the
|
||
low-order address. Word 0 is the low-order word if not WORDS_BIG_ENDIAN,
|
||
otherwise it is the high-order word.
|
||
|
||
If we cannot extract the required word, we return zero. Otherwise, an
|
||
rtx corresponding to the requested word will be returned.
|
||
|
||
VALIDATE_ADDRESS is nonzero if the address should be validated. Before
|
||
reload has completed, a valid address will always be returned. After
|
||
reload, if a valid address cannot be returned, we return zero.
|
||
|
||
If VALIDATE_ADDRESS is zero, we simply form the required address; validating
|
||
it is the responsibility of the caller.
|
||
|
||
MODE is the mode of OP in case it is a CONST_INT. */
|
||
|
||
rtx
|
||
operand_subword (op, i, validate_address, mode)
|
||
rtx op;
|
||
int i;
|
||
int validate_address;
|
||
enum machine_mode mode;
|
||
{
|
||
HOST_WIDE_INT val;
|
||
int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
|
||
|
||
if (mode == VOIDmode)
|
||
mode = GET_MODE (op);
|
||
|
||
if (mode == VOIDmode)
|
||
abort ();
|
||
|
||
/* If OP is narrower than a word or if we want a word outside OP, fail. */
|
||
if (mode != BLKmode
|
||
&& (GET_MODE_SIZE (mode) < UNITS_PER_WORD
|
||
|| (i + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode)))
|
||
return 0;
|
||
|
||
/* If OP is already an integer word, return it. */
|
||
if (GET_MODE_CLASS (mode) == MODE_INT
|
||
&& GET_MODE_SIZE (mode) == UNITS_PER_WORD)
|
||
return op;
|
||
|
||
/* If OP is a REG or SUBREG, we can handle it very simply. */
|
||
if (GET_CODE (op) == REG)
|
||
{
|
||
/* If the register is not valid for MODE, return 0. If we don't
|
||
do this, there is no way to fix up the resulting REG later. */
|
||
if (REGNO (op) < FIRST_PSEUDO_REGISTER
|
||
&& ! HARD_REGNO_MODE_OK (REGNO (op) + i, word_mode))
|
||
return 0;
|
||
else if (REGNO (op) >= FIRST_PSEUDO_REGISTER
|
||
|| (REG_FUNCTION_VALUE_P (op)
|
||
&& rtx_equal_function_value_matters)
|
||
/* We want to keep the stack, frame, and arg pointers
|
||
special. */
|
||
|| op == frame_pointer_rtx
|
||
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|
||
|| op == arg_pointer_rtx
|
||
#endif
|
||
|| op == stack_pointer_rtx)
|
||
return gen_rtx (SUBREG, word_mode, op, i);
|
||
else
|
||
return gen_rtx (REG, word_mode, REGNO (op) + i);
|
||
}
|
||
else if (GET_CODE (op) == SUBREG)
|
||
return gen_rtx (SUBREG, word_mode, SUBREG_REG (op), i + SUBREG_WORD (op));
|
||
else if (GET_CODE (op) == CONCAT)
|
||
{
|
||
int partwords = GET_MODE_UNIT_SIZE (GET_MODE (op)) / UNITS_PER_WORD;
|
||
if (i < partwords)
|
||
return operand_subword (XEXP (op, 0), i, validate_address, mode);
|
||
return operand_subword (XEXP (op, 1), i - partwords,
|
||
validate_address, mode);
|
||
}
|
||
|
||
/* Form a new MEM at the requested address. */
|
||
if (GET_CODE (op) == MEM)
|
||
{
|
||
rtx addr = plus_constant (XEXP (op, 0), i * UNITS_PER_WORD);
|
||
rtx new;
|
||
|
||
if (validate_address)
|
||
{
|
||
if (reload_completed)
|
||
{
|
||
if (! strict_memory_address_p (word_mode, addr))
|
||
return 0;
|
||
}
|
||
else
|
||
addr = memory_address (word_mode, addr);
|
||
}
|
||
|
||
new = gen_rtx (MEM, word_mode, addr);
|
||
|
||
MEM_VOLATILE_P (new) = MEM_VOLATILE_P (op);
|
||
MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (op);
|
||
RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (op);
|
||
|
||
return new;
|
||
}
|
||
|
||
/* The only remaining cases are when OP is a constant. If the host and
|
||
target floating formats are the same, handling two-word floating
|
||
constants are easy. Note that REAL_VALUE_TO_TARGET_{SINGLE,DOUBLE}
|
||
are defined as returning one or two 32 bit values, respectively,
|
||
and not values of BITS_PER_WORD bits. */
|
||
#ifdef REAL_ARITHMETIC
|
||
/* The output is some bits, the width of the target machine's word.
|
||
A wider-word host can surely hold them in a CONST_INT. A narrower-word
|
||
host can't. */
|
||
if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
|
||
&& GET_MODE_CLASS (mode) == MODE_FLOAT
|
||
&& GET_MODE_BITSIZE (mode) == 64
|
||
&& GET_CODE (op) == CONST_DOUBLE)
|
||
{
|
||
long k[2];
|
||
REAL_VALUE_TYPE rv;
|
||
|
||
REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
|
||
REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
|
||
|
||
/* We handle 32-bit and >= 64-bit words here. Note that the order in
|
||
which the words are written depends on the word endianness.
|
||
|
||
??? This is a potential portability problem and should
|
||
be fixed at some point. */
|
||
if (BITS_PER_WORD == 32)
|
||
return GEN_INT ((HOST_WIDE_INT) k[i]);
|
||
#if HOST_BITS_PER_WIDE_INT > 32
|
||
else if (BITS_PER_WORD >= 64 && i == 0)
|
||
return GEN_INT ((((HOST_WIDE_INT) k[! WORDS_BIG_ENDIAN]) << 32)
|
||
| (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN]);
|
||
#endif
|
||
else if (BITS_PER_WORD == 16)
|
||
{
|
||
long value;
|
||
value = k[i >> 1];
|
||
if ((i & 0x1) == 0)
|
||
value >>= 16;
|
||
value &= 0xffff;
|
||
return GEN_INT ((HOST_WIDE_INT) value);
|
||
}
|
||
else
|
||
abort ();
|
||
}
|
||
#else /* no REAL_ARITHMETIC */
|
||
if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
|
||
&& HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
|
||
|| flag_pretend_float)
|
||
&& GET_MODE_CLASS (mode) == MODE_FLOAT
|
||
&& GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
|
||
&& GET_CODE (op) == CONST_DOUBLE)
|
||
{
|
||
/* The constant is stored in the host's word-ordering,
|
||
but we want to access it in the target's word-ordering. Some
|
||
compilers don't like a conditional inside macro args, so we have two
|
||
copies of the return. */
|
||
#ifdef HOST_WORDS_BIG_ENDIAN
|
||
return GEN_INT (i == WORDS_BIG_ENDIAN
|
||
? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
|
||
#else
|
||
return GEN_INT (i != WORDS_BIG_ENDIAN
|
||
? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
|
||
#endif
|
||
}
|
||
#endif /* no REAL_ARITHMETIC */
|
||
|
||
/* Single word float is a little harder, since single- and double-word
|
||
values often do not have the same high-order bits. We have already
|
||
verified that we want the only defined word of the single-word value. */
|
||
#ifdef REAL_ARITHMETIC
|
||
if (GET_MODE_CLASS (mode) == MODE_FLOAT
|
||
&& GET_MODE_BITSIZE (mode) == 32
|
||
&& GET_CODE (op) == CONST_DOUBLE)
|
||
{
|
||
long l;
|
||
REAL_VALUE_TYPE rv;
|
||
|
||
REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
|
||
REAL_VALUE_TO_TARGET_SINGLE (rv, l);
|
||
return GEN_INT ((HOST_WIDE_INT) l);
|
||
}
|
||
#else
|
||
if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
|
||
&& HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
|
||
|| flag_pretend_float)
|
||
&& GET_MODE_CLASS (mode) == MODE_FLOAT
|
||
&& GET_MODE_SIZE (mode) == UNITS_PER_WORD
|
||
&& GET_CODE (op) == CONST_DOUBLE)
|
||
{
|
||
double d;
|
||
union {float f; HOST_WIDE_INT i; } u;
|
||
|
||
REAL_VALUE_FROM_CONST_DOUBLE (d, op);
|
||
|
||
u.f = d;
|
||
return GEN_INT (u.i);
|
||
}
|
||
#endif /* no REAL_ARITHMETIC */
|
||
|
||
/* The only remaining cases that we can handle are integers.
|
||
Convert to proper endianness now since these cases need it.
|
||
At this point, i == 0 means the low-order word.
|
||
|
||
We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
|
||
in general. However, if OP is (const_int 0), we can just return
|
||
it for any word. */
|
||
|
||
if (op == const0_rtx)
|
||
return op;
|
||
|
||
if (GET_MODE_CLASS (mode) != MODE_INT
|
||
|| (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
|
||
|| BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
|
||
return 0;
|
||
|
||
if (WORDS_BIG_ENDIAN)
|
||
i = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - i;
|
||
|
||
/* Find out which word on the host machine this value is in and get
|
||
it from the constant. */
|
||
val = (i / size_ratio == 0
|
||
? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
|
||
: (GET_CODE (op) == CONST_INT
|
||
? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
|
||
|
||
/* If BITS_PER_WORD is smaller than an int, get the appropriate bits. */
|
||
if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
|
||
val = ((val >> ((i % size_ratio) * BITS_PER_WORD))
|
||
& (((HOST_WIDE_INT) 1
|
||
<< (BITS_PER_WORD % HOST_BITS_PER_WIDE_INT)) - 1));
|
||
|
||
return GEN_INT (val);
|
||
}
|
||
|
||
/* Similar to `operand_subword', but never return 0. If we can't extract
|
||
the required subword, put OP into a register and try again. If that fails,
|
||
abort. We always validate the address in this case. It is not valid
|
||
to call this function after reload; it is mostly meant for RTL
|
||
generation.
|
||
|
||
MODE is the mode of OP, in case it is CONST_INT. */
|
||
|
||
rtx
|
||
operand_subword_force (op, i, mode)
|
||
rtx op;
|
||
int i;
|
||
enum machine_mode mode;
|
||
{
|
||
rtx result = operand_subword (op, i, 1, mode);
|
||
|
||
if (result)
|
||
return result;
|
||
|
||
if (mode != BLKmode && mode != VOIDmode)
|
||
op = force_reg (mode, op);
|
||
|
||
result = operand_subword (op, i, 1, mode);
|
||
if (result == 0)
|
||
abort ();
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Given a compare instruction, swap the operands.
|
||
A test instruction is changed into a compare of 0 against the operand. */
|
||
|
||
void
|
||
reverse_comparison (insn)
|
||
rtx insn;
|
||
{
|
||
rtx body = PATTERN (insn);
|
||
rtx comp;
|
||
|
||
if (GET_CODE (body) == SET)
|
||
comp = SET_SRC (body);
|
||
else
|
||
comp = SET_SRC (XVECEXP (body, 0, 0));
|
||
|
||
if (GET_CODE (comp) == COMPARE)
|
||
{
|
||
rtx op0 = XEXP (comp, 0);
|
||
rtx op1 = XEXP (comp, 1);
|
||
XEXP (comp, 0) = op1;
|
||
XEXP (comp, 1) = op0;
|
||
}
|
||
else
|
||
{
|
||
rtx new = gen_rtx (COMPARE, VOIDmode,
|
||
CONST0_RTX (GET_MODE (comp)), comp);
|
||
if (GET_CODE (body) == SET)
|
||
SET_SRC (body) = new;
|
||
else
|
||
SET_SRC (XVECEXP (body, 0, 0)) = new;
|
||
}
|
||
}
|
||
|
||
/* Return a memory reference like MEMREF, but with its mode changed
|
||
to MODE and its address changed to ADDR.
|
||
(VOIDmode means don't change the mode.
|
||
NULL for ADDR means don't change the address.) */
|
||
|
||
rtx
|
||
change_address (memref, mode, addr)
|
||
rtx memref;
|
||
enum machine_mode mode;
|
||
rtx addr;
|
||
{
|
||
rtx new;
|
||
|
||
if (GET_CODE (memref) != MEM)
|
||
abort ();
|
||
if (mode == VOIDmode)
|
||
mode = GET_MODE (memref);
|
||
if (addr == 0)
|
||
addr = XEXP (memref, 0);
|
||
|
||
/* If reload is in progress or has completed, ADDR must be valid.
|
||
Otherwise, we can call memory_address to make it valid. */
|
||
if (reload_completed || reload_in_progress)
|
||
{
|
||
if (! memory_address_p (mode, addr))
|
||
abort ();
|
||
}
|
||
else
|
||
addr = memory_address (mode, addr);
|
||
|
||
new = gen_rtx (MEM, mode, addr);
|
||
MEM_VOLATILE_P (new) = MEM_VOLATILE_P (memref);
|
||
RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (memref);
|
||
MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (memref);
|
||
return new;
|
||
}
|
||
|
||
/* Return a newly created CODE_LABEL rtx with a unique label number. */
|
||
|
||
rtx
|
||
gen_label_rtx ()
|
||
{
|
||
register rtx label;
|
||
|
||
label = (output_bytecode
|
||
? gen_rtx (CODE_LABEL, VOIDmode, NULL, bc_get_bytecode_label ())
|
||
: gen_rtx (CODE_LABEL, VOIDmode, 0, 0, 0, label_num++, NULL_PTR));
|
||
|
||
LABEL_NUSES (label) = 0;
|
||
return label;
|
||
}
|
||
|
||
/* For procedure integration. */
|
||
|
||
/* Return a newly created INLINE_HEADER rtx. Should allocate this
|
||
from a permanent obstack when the opportunity arises. */
|
||
|
||
rtx
|
||
gen_inline_header_rtx (first_insn, first_parm_insn, first_labelno,
|
||
last_labelno, max_parm_regnum, max_regnum, args_size,
|
||
pops_args, stack_slots, forced_labels, function_flags,
|
||
outgoing_args_size, original_arg_vector,
|
||
original_decl_initial)
|
||
rtx first_insn, first_parm_insn;
|
||
int first_labelno, last_labelno, max_parm_regnum, max_regnum, args_size;
|
||
int pops_args;
|
||
rtx stack_slots;
|
||
rtx forced_labels;
|
||
int function_flags;
|
||
int outgoing_args_size;
|
||
rtvec original_arg_vector;
|
||
rtx original_decl_initial;
|
||
{
|
||
rtx header = gen_rtx (INLINE_HEADER, VOIDmode,
|
||
cur_insn_uid++, NULL_RTX,
|
||
first_insn, first_parm_insn,
|
||
first_labelno, last_labelno,
|
||
max_parm_regnum, max_regnum, args_size, pops_args,
|
||
stack_slots, forced_labels, function_flags,
|
||
outgoing_args_size,
|
||
original_arg_vector, original_decl_initial);
|
||
return header;
|
||
}
|
||
|
||
/* Install new pointers to the first and last insns in the chain.
|
||
Used for an inline-procedure after copying the insn chain. */
|
||
|
||
void
|
||
set_new_first_and_last_insn (first, last)
|
||
rtx first, last;
|
||
{
|
||
first_insn = first;
|
||
last_insn = last;
|
||
}
|
||
|
||
/* Set the range of label numbers found in the current function.
|
||
This is used when belatedly compiling an inline function. */
|
||
|
||
void
|
||
set_new_first_and_last_label_num (first, last)
|
||
int first, last;
|
||
{
|
||
base_label_num = label_num;
|
||
first_label_num = first;
|
||
last_label_num = last;
|
||
}
|
||
|
||
/* Save all variables describing the current status into the structure *P.
|
||
This is used before starting a nested function. */
|
||
|
||
void
|
||
save_emit_status (p)
|
||
struct function *p;
|
||
{
|
||
p->reg_rtx_no = reg_rtx_no;
|
||
p->first_label_num = first_label_num;
|
||
p->first_insn = first_insn;
|
||
p->last_insn = last_insn;
|
||
p->sequence_rtl_expr = sequence_rtl_expr;
|
||
p->sequence_stack = sequence_stack;
|
||
p->cur_insn_uid = cur_insn_uid;
|
||
p->last_linenum = last_linenum;
|
||
p->last_filename = last_filename;
|
||
p->regno_pointer_flag = regno_pointer_flag;
|
||
p->regno_pointer_flag_length = regno_pointer_flag_length;
|
||
p->regno_reg_rtx = regno_reg_rtx;
|
||
}
|
||
|
||
/* Restore all variables describing the current status from the structure *P.
|
||
This is used after a nested function. */
|
||
|
||
void
|
||
restore_emit_status (p)
|
||
struct function *p;
|
||
{
|
||
int i;
|
||
|
||
reg_rtx_no = p->reg_rtx_no;
|
||
first_label_num = p->first_label_num;
|
||
last_label_num = 0;
|
||
first_insn = p->first_insn;
|
||
last_insn = p->last_insn;
|
||
sequence_rtl_expr = p->sequence_rtl_expr;
|
||
sequence_stack = p->sequence_stack;
|
||
cur_insn_uid = p->cur_insn_uid;
|
||
last_linenum = p->last_linenum;
|
||
last_filename = p->last_filename;
|
||
regno_pointer_flag = p->regno_pointer_flag;
|
||
regno_pointer_flag_length = p->regno_pointer_flag_length;
|
||
regno_reg_rtx = p->regno_reg_rtx;
|
||
|
||
/* Clear our cache of rtx expressions for start_sequence and gen_sequence. */
|
||
sequence_element_free_list = 0;
|
||
for (i = 0; i < SEQUENCE_RESULT_SIZE; i++)
|
||
sequence_result[i] = 0;
|
||
}
|
||
|
||
/* Go through all the RTL insn bodies and copy any invalid shared structure.
|
||
It does not work to do this twice, because the mark bits set here
|
||
are not cleared afterwards. */
|
||
|
||
void
|
||
unshare_all_rtl (insn)
|
||
register rtx insn;
|
||
{
|
||
for (; insn; insn = NEXT_INSN (insn))
|
||
if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
|
||
|| GET_CODE (insn) == CALL_INSN)
|
||
{
|
||
PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
|
||
REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
|
||
LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
|
||
}
|
||
|
||
/* Make sure the addresses of stack slots found outside the insn chain
|
||
(such as, in DECL_RTL of a variable) are not shared
|
||
with the insn chain.
|
||
|
||
This special care is necessary when the stack slot MEM does not
|
||
actually appear in the insn chain. If it does appear, its address
|
||
is unshared from all else at that point. */
|
||
|
||
copy_rtx_if_shared (stack_slot_list);
|
||
}
|
||
|
||
/* Mark ORIG as in use, and return a copy of it if it was already in use.
|
||
Recursively does the same for subexpressions. */
|
||
|
||
rtx
|
||
copy_rtx_if_shared (orig)
|
||
rtx orig;
|
||
{
|
||
register rtx x = orig;
|
||
register int i;
|
||
register enum rtx_code code;
|
||
register char *format_ptr;
|
||
int copied = 0;
|
||
|
||
if (x == 0)
|
||
return 0;
|
||
|
||
code = GET_CODE (x);
|
||
|
||
/* These types may be freely shared. */
|
||
|
||
switch (code)
|
||
{
|
||
case REG:
|
||
case QUEUED:
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case SYMBOL_REF:
|
||
case CODE_LABEL:
|
||
case PC:
|
||
case CC0:
|
||
case SCRATCH:
|
||
/* SCRATCH must be shared because they represent distinct values. */
|
||
return x;
|
||
|
||
case CONST:
|
||
/* CONST can be shared if it contains a SYMBOL_REF. If it contains
|
||
a LABEL_REF, it isn't sharable. */
|
||
if (GET_CODE (XEXP (x, 0)) == PLUS
|
||
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
|
||
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
|
||
return x;
|
||
break;
|
||
|
||
case INSN:
|
||
case JUMP_INSN:
|
||
case CALL_INSN:
|
||
case NOTE:
|
||
case BARRIER:
|
||
/* The chain of insns is not being copied. */
|
||
return x;
|
||
|
||
case MEM:
|
||
/* A MEM is allowed to be shared if its address is constant
|
||
or is a constant plus one of the special registers. */
|
||
if (CONSTANT_ADDRESS_P (XEXP (x, 0))
|
||
|| XEXP (x, 0) == virtual_stack_vars_rtx
|
||
|| XEXP (x, 0) == virtual_incoming_args_rtx)
|
||
return x;
|
||
|
||
if (GET_CODE (XEXP (x, 0)) == PLUS
|
||
&& (XEXP (XEXP (x, 0), 0) == virtual_stack_vars_rtx
|
||
|| XEXP (XEXP (x, 0), 0) == virtual_incoming_args_rtx)
|
||
&& CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
|
||
{
|
||
/* This MEM can appear in more than one place,
|
||
but its address better not be shared with anything else. */
|
||
if (! x->used)
|
||
XEXP (x, 0) = copy_rtx_if_shared (XEXP (x, 0));
|
||
x->used = 1;
|
||
return x;
|
||
}
|
||
}
|
||
|
||
/* This rtx may not be shared. If it has already been seen,
|
||
replace it with a copy of itself. */
|
||
|
||
if (x->used)
|
||
{
|
||
register rtx copy;
|
||
|
||
copy = rtx_alloc (code);
|
||
bcopy ((char *) x, (char *) copy,
|
||
(sizeof (*copy) - sizeof (copy->fld)
|
||
+ sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
|
||
x = copy;
|
||
copied = 1;
|
||
}
|
||
x->used = 1;
|
||
|
||
/* Now scan the subexpressions recursively.
|
||
We can store any replaced subexpressions directly into X
|
||
since we know X is not shared! Any vectors in X
|
||
must be copied if X was copied. */
|
||
|
||
format_ptr = GET_RTX_FORMAT (code);
|
||
|
||
for (i = 0; i < GET_RTX_LENGTH (code); i++)
|
||
{
|
||
switch (*format_ptr++)
|
||
{
|
||
case 'e':
|
||
XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
|
||
break;
|
||
|
||
case 'E':
|
||
if (XVEC (x, i) != NULL)
|
||
{
|
||
register int j;
|
||
int len = XVECLEN (x, i);
|
||
|
||
if (copied && len > 0)
|
||
XVEC (x, i) = gen_rtvec_v (len, &XVECEXP (x, i, 0));
|
||
for (j = 0; j < len; j++)
|
||
XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
return x;
|
||
}
|
||
|
||
/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
|
||
to look for shared sub-parts. */
|
||
|
||
void
|
||
reset_used_flags (x)
|
||
rtx x;
|
||
{
|
||
register int i, j;
|
||
register enum rtx_code code;
|
||
register char *format_ptr;
|
||
|
||
if (x == 0)
|
||
return;
|
||
|
||
code = GET_CODE (x);
|
||
|
||
/* These types may be freely shared so we needn't do any resetting
|
||
for them. */
|
||
|
||
switch (code)
|
||
{
|
||
case REG:
|
||
case QUEUED:
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case SYMBOL_REF:
|
||
case CODE_LABEL:
|
||
case PC:
|
||
case CC0:
|
||
return;
|
||
|
||
case INSN:
|
||
case JUMP_INSN:
|
||
case CALL_INSN:
|
||
case NOTE:
|
||
case LABEL_REF:
|
||
case BARRIER:
|
||
/* The chain of insns is not being copied. */
|
||
return;
|
||
}
|
||
|
||
x->used = 0;
|
||
|
||
format_ptr = GET_RTX_FORMAT (code);
|
||
for (i = 0; i < GET_RTX_LENGTH (code); i++)
|
||
{
|
||
switch (*format_ptr++)
|
||
{
|
||
case 'e':
|
||
reset_used_flags (XEXP (x, i));
|
||
break;
|
||
|
||
case 'E':
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
reset_used_flags (XVECEXP (x, i, j));
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Copy X if necessary so that it won't be altered by changes in OTHER.
|
||
Return X or the rtx for the pseudo reg the value of X was copied into.
|
||
OTHER must be valid as a SET_DEST. */
|
||
|
||
rtx
|
||
make_safe_from (x, other)
|
||
rtx x, other;
|
||
{
|
||
while (1)
|
||
switch (GET_CODE (other))
|
||
{
|
||
case SUBREG:
|
||
other = SUBREG_REG (other);
|
||
break;
|
||
case STRICT_LOW_PART:
|
||
case SIGN_EXTEND:
|
||
case ZERO_EXTEND:
|
||
other = XEXP (other, 0);
|
||
break;
|
||
default:
|
||
goto done;
|
||
}
|
||
done:
|
||
if ((GET_CODE (other) == MEM
|
||
&& ! CONSTANT_P (x)
|
||
&& GET_CODE (x) != REG
|
||
&& GET_CODE (x) != SUBREG)
|
||
|| (GET_CODE (other) == REG
|
||
&& (REGNO (other) < FIRST_PSEUDO_REGISTER
|
||
|| reg_mentioned_p (other, x))))
|
||
{
|
||
rtx temp = gen_reg_rtx (GET_MODE (x));
|
||
emit_move_insn (temp, x);
|
||
return temp;
|
||
}
|
||
return x;
|
||
}
|
||
|
||
/* Emission of insns (adding them to the doubly-linked list). */
|
||
|
||
/* Return the first insn of the current sequence or current function. */
|
||
|
||
rtx
|
||
get_insns ()
|
||
{
|
||
return first_insn;
|
||
}
|
||
|
||
/* Return the last insn emitted in current sequence or current function. */
|
||
|
||
rtx
|
||
get_last_insn ()
|
||
{
|
||
return last_insn;
|
||
}
|
||
|
||
/* Specify a new insn as the last in the chain. */
|
||
|
||
void
|
||
set_last_insn (insn)
|
||
rtx insn;
|
||
{
|
||
if (NEXT_INSN (insn) != 0)
|
||
abort ();
|
||
last_insn = insn;
|
||
}
|
||
|
||
/* Return the last insn emitted, even if it is in a sequence now pushed. */
|
||
|
||
rtx
|
||
get_last_insn_anywhere ()
|
||
{
|
||
struct sequence_stack *stack;
|
||
if (last_insn)
|
||
return last_insn;
|
||
for (stack = sequence_stack; stack; stack = stack->next)
|
||
if (stack->last != 0)
|
||
return stack->last;
|
||
return 0;
|
||
}
|
||
|
||
/* Return a number larger than any instruction's uid in this function. */
|
||
|
||
int
|
||
get_max_uid ()
|
||
{
|
||
return cur_insn_uid;
|
||
}
|
||
|
||
/* Return the next insn. If it is a SEQUENCE, return the first insn
|
||
of the sequence. */
|
||
|
||
rtx
|
||
next_insn (insn)
|
||
rtx insn;
|
||
{
|
||
if (insn)
|
||
{
|
||
insn = NEXT_INSN (insn);
|
||
if (insn && GET_CODE (insn) == INSN
|
||
&& GET_CODE (PATTERN (insn)) == SEQUENCE)
|
||
insn = XVECEXP (PATTERN (insn), 0, 0);
|
||
}
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Return the previous insn. If it is a SEQUENCE, return the last insn
|
||
of the sequence. */
|
||
|
||
rtx
|
||
previous_insn (insn)
|
||
rtx insn;
|
||
{
|
||
if (insn)
|
||
{
|
||
insn = PREV_INSN (insn);
|
||
if (insn && GET_CODE (insn) == INSN
|
||
&& GET_CODE (PATTERN (insn)) == SEQUENCE)
|
||
insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
|
||
}
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Return the next insn after INSN that is not a NOTE. This routine does not
|
||
look inside SEQUENCEs. */
|
||
|
||
rtx
|
||
next_nonnote_insn (insn)
|
||
rtx insn;
|
||
{
|
||
while (insn)
|
||
{
|
||
insn = NEXT_INSN (insn);
|
||
if (insn == 0 || GET_CODE (insn) != NOTE)
|
||
break;
|
||
}
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Return the previous insn before INSN that is not a NOTE. This routine does
|
||
not look inside SEQUENCEs. */
|
||
|
||
rtx
|
||
prev_nonnote_insn (insn)
|
||
rtx insn;
|
||
{
|
||
while (insn)
|
||
{
|
||
insn = PREV_INSN (insn);
|
||
if (insn == 0 || GET_CODE (insn) != NOTE)
|
||
break;
|
||
}
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
|
||
or 0, if there is none. This routine does not look inside
|
||
SEQUENCEs. */
|
||
|
||
rtx
|
||
next_real_insn (insn)
|
||
rtx insn;
|
||
{
|
||
while (insn)
|
||
{
|
||
insn = NEXT_INSN (insn);
|
||
if (insn == 0 || GET_CODE (insn) == INSN
|
||
|| GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
|
||
break;
|
||
}
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
|
||
or 0, if there is none. This routine does not look inside
|
||
SEQUENCEs. */
|
||
|
||
rtx
|
||
prev_real_insn (insn)
|
||
rtx insn;
|
||
{
|
||
while (insn)
|
||
{
|
||
insn = PREV_INSN (insn);
|
||
if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
|
||
|| GET_CODE (insn) == JUMP_INSN)
|
||
break;
|
||
}
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Find the next insn after INSN that really does something. This routine
|
||
does not look inside SEQUENCEs. Until reload has completed, this is the
|
||
same as next_real_insn. */
|
||
|
||
rtx
|
||
next_active_insn (insn)
|
||
rtx insn;
|
||
{
|
||
while (insn)
|
||
{
|
||
insn = NEXT_INSN (insn);
|
||
if (insn == 0
|
||
|| GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
|
||
|| (GET_CODE (insn) == INSN
|
||
&& (! reload_completed
|
||
|| (GET_CODE (PATTERN (insn)) != USE
|
||
&& GET_CODE (PATTERN (insn)) != CLOBBER))))
|
||
break;
|
||
}
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Find the last insn before INSN that really does something. This routine
|
||
does not look inside SEQUENCEs. Until reload has completed, this is the
|
||
same as prev_real_insn. */
|
||
|
||
rtx
|
||
prev_active_insn (insn)
|
||
rtx insn;
|
||
{
|
||
while (insn)
|
||
{
|
||
insn = PREV_INSN (insn);
|
||
if (insn == 0
|
||
|| GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
|
||
|| (GET_CODE (insn) == INSN
|
||
&& (! reload_completed
|
||
|| (GET_CODE (PATTERN (insn)) != USE
|
||
&& GET_CODE (PATTERN (insn)) != CLOBBER))))
|
||
break;
|
||
}
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
|
||
|
||
rtx
|
||
next_label (insn)
|
||
rtx insn;
|
||
{
|
||
while (insn)
|
||
{
|
||
insn = NEXT_INSN (insn);
|
||
if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
|
||
break;
|
||
}
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
|
||
|
||
rtx
|
||
prev_label (insn)
|
||
rtx insn;
|
||
{
|
||
while (insn)
|
||
{
|
||
insn = PREV_INSN (insn);
|
||
if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
|
||
break;
|
||
}
|
||
|
||
return insn;
|
||
}
|
||
|
||
#ifdef HAVE_cc0
|
||
/* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
|
||
and REG_CC_USER notes so we can find it. */
|
||
|
||
void
|
||
link_cc0_insns (insn)
|
||
rtx insn;
|
||
{
|
||
rtx user = next_nonnote_insn (insn);
|
||
|
||
if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
|
||
user = XVECEXP (PATTERN (user), 0, 0);
|
||
|
||
REG_NOTES (user) = gen_rtx (INSN_LIST, REG_CC_SETTER, insn,
|
||
REG_NOTES (user));
|
||
REG_NOTES (insn) = gen_rtx (INSN_LIST, REG_CC_USER, user, REG_NOTES (insn));
|
||
}
|
||
|
||
/* Return the next insn that uses CC0 after INSN, which is assumed to
|
||
set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
|
||
applied to the result of this function should yield INSN).
|
||
|
||
Normally, this is simply the next insn. However, if a REG_CC_USER note
|
||
is present, it contains the insn that uses CC0.
|
||
|
||
Return 0 if we can't find the insn. */
|
||
|
||
rtx
|
||
next_cc0_user (insn)
|
||
rtx insn;
|
||
{
|
||
rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
|
||
|
||
if (note)
|
||
return XEXP (note, 0);
|
||
|
||
insn = next_nonnote_insn (insn);
|
||
if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
|
||
insn = XVECEXP (PATTERN (insn), 0, 0);
|
||
|
||
if (insn && GET_RTX_CLASS (GET_CODE (insn)) == 'i'
|
||
&& reg_mentioned_p (cc0_rtx, PATTERN (insn)))
|
||
return insn;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
|
||
note, it is the previous insn. */
|
||
|
||
rtx
|
||
prev_cc0_setter (insn)
|
||
rtx insn;
|
||
{
|
||
rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
|
||
rtx link;
|
||
|
||
if (note)
|
||
return XEXP (note, 0);
|
||
|
||
insn = prev_nonnote_insn (insn);
|
||
if (! sets_cc0_p (PATTERN (insn)))
|
||
abort ();
|
||
|
||
return insn;
|
||
}
|
||
#endif
|
||
|
||
/* Try splitting insns that can be split for better scheduling.
|
||
PAT is the pattern which might split.
|
||
TRIAL is the insn providing PAT.
|
||
LAST is non-zero if we should return the last insn of the sequence produced.
|
||
|
||
If this routine succeeds in splitting, it returns the first or last
|
||
replacement insn depending on the value of LAST. Otherwise, it
|
||
returns TRIAL. If the insn to be returned can be split, it will be. */
|
||
|
||
rtx
|
||
try_split (pat, trial, last)
|
||
rtx pat, trial;
|
||
int last;
|
||
{
|
||
rtx before = PREV_INSN (trial);
|
||
rtx after = NEXT_INSN (trial);
|
||
rtx seq = split_insns (pat, trial);
|
||
int has_barrier = 0;
|
||
rtx tem;
|
||
|
||
/* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
|
||
We may need to handle this specially. */
|
||
if (after && GET_CODE (after) == BARRIER)
|
||
{
|
||
has_barrier = 1;
|
||
after = NEXT_INSN (after);
|
||
}
|
||
|
||
if (seq)
|
||
{
|
||
/* SEQ can either be a SEQUENCE or the pattern of a single insn.
|
||
The latter case will normally arise only when being done so that
|
||
it, in turn, will be split (SFmode on the 29k is an example). */
|
||
if (GET_CODE (seq) == SEQUENCE)
|
||
{
|
||
/* If we are splitting a JUMP_INSN, look for the JUMP_INSN in
|
||
SEQ and copy our JUMP_LABEL to it. If JUMP_LABEL is non-zero,
|
||
increment the usage count so we don't delete the label. */
|
||
int i;
|
||
|
||
if (GET_CODE (trial) == JUMP_INSN)
|
||
for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
|
||
if (GET_CODE (XVECEXP (seq, 0, i)) == JUMP_INSN)
|
||
{
|
||
JUMP_LABEL (XVECEXP (seq, 0, i)) = JUMP_LABEL (trial);
|
||
|
||
if (JUMP_LABEL (trial))
|
||
LABEL_NUSES (JUMP_LABEL (trial))++;
|
||
}
|
||
|
||
tem = emit_insn_after (seq, before);
|
||
|
||
delete_insn (trial);
|
||
if (has_barrier)
|
||
emit_barrier_after (tem);
|
||
|
||
/* Recursively call try_split for each new insn created; by the
|
||
time control returns here that insn will be fully split, so
|
||
set LAST and continue from the insn after the one returned.
|
||
We can't use next_active_insn here since AFTER may be a note.
|
||
Ignore deleted insns, which can be occur if not optimizing. */
|
||
for (tem = NEXT_INSN (before); tem != after;
|
||
tem = NEXT_INSN (tem))
|
||
if (! INSN_DELETED_P (tem))
|
||
tem = try_split (PATTERN (tem), tem, 1);
|
||
}
|
||
/* Avoid infinite loop if the result matches the original pattern. */
|
||
else if (rtx_equal_p (seq, pat))
|
||
return trial;
|
||
else
|
||
{
|
||
PATTERN (trial) = seq;
|
||
INSN_CODE (trial) = -1;
|
||
try_split (seq, trial, last);
|
||
}
|
||
|
||
/* Return either the first or the last insn, depending on which was
|
||
requested. */
|
||
return last ? prev_active_insn (after) : next_active_insn (before);
|
||
}
|
||
|
||
return trial;
|
||
}
|
||
|
||
/* Make and return an INSN rtx, initializing all its slots.
|
||
Store PATTERN in the pattern slots. */
|
||
|
||
rtx
|
||
make_insn_raw (pattern)
|
||
rtx pattern;
|
||
{
|
||
register rtx insn;
|
||
|
||
insn = rtx_alloc (INSN);
|
||
INSN_UID (insn) = cur_insn_uid++;
|
||
|
||
PATTERN (insn) = pattern;
|
||
INSN_CODE (insn) = -1;
|
||
LOG_LINKS (insn) = NULL;
|
||
REG_NOTES (insn) = NULL;
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Like `make_insn' but make a JUMP_INSN instead of an insn. */
|
||
|
||
static rtx
|
||
make_jump_insn_raw (pattern)
|
||
rtx pattern;
|
||
{
|
||
register rtx insn;
|
||
|
||
insn = rtx_alloc (JUMP_INSN);
|
||
INSN_UID (insn) = cur_insn_uid++;
|
||
|
||
PATTERN (insn) = pattern;
|
||
INSN_CODE (insn) = -1;
|
||
LOG_LINKS (insn) = NULL;
|
||
REG_NOTES (insn) = NULL;
|
||
JUMP_LABEL (insn) = NULL;
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Like `make_insn' but make a CALL_INSN instead of an insn. */
|
||
|
||
static rtx
|
||
make_call_insn_raw (pattern)
|
||
rtx pattern;
|
||
{
|
||
register rtx insn;
|
||
|
||
insn = rtx_alloc (CALL_INSN);
|
||
INSN_UID (insn) = cur_insn_uid++;
|
||
|
||
PATTERN (insn) = pattern;
|
||
INSN_CODE (insn) = -1;
|
||
LOG_LINKS (insn) = NULL;
|
||
REG_NOTES (insn) = NULL;
|
||
CALL_INSN_FUNCTION_USAGE (insn) = NULL;
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Add INSN to the end of the doubly-linked list.
|
||
INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
|
||
|
||
void
|
||
add_insn (insn)
|
||
register rtx insn;
|
||
{
|
||
PREV_INSN (insn) = last_insn;
|
||
NEXT_INSN (insn) = 0;
|
||
|
||
if (NULL != last_insn)
|
||
NEXT_INSN (last_insn) = insn;
|
||
|
||
if (NULL == first_insn)
|
||
first_insn = insn;
|
||
|
||
last_insn = insn;
|
||
}
|
||
|
||
/* Add INSN into the doubly-linked list after insn AFTER. This and
|
||
the next should be the only functions called to insert an insn once
|
||
delay slots have been filled since only they know how to update a
|
||
SEQUENCE. */
|
||
|
||
void
|
||
add_insn_after (insn, after)
|
||
rtx insn, after;
|
||
{
|
||
rtx next = NEXT_INSN (after);
|
||
|
||
if (optimize && INSN_DELETED_P (after))
|
||
abort ();
|
||
|
||
NEXT_INSN (insn) = next;
|
||
PREV_INSN (insn) = after;
|
||
|
||
if (next)
|
||
{
|
||
PREV_INSN (next) = insn;
|
||
if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
|
||
PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
|
||
}
|
||
else if (last_insn == after)
|
||
last_insn = insn;
|
||
else
|
||
{
|
||
struct sequence_stack *stack = sequence_stack;
|
||
/* Scan all pending sequences too. */
|
||
for (; stack; stack = stack->next)
|
||
if (after == stack->last)
|
||
{
|
||
stack->last = insn;
|
||
break;
|
||
}
|
||
|
||
if (stack == 0)
|
||
abort ();
|
||
}
|
||
|
||
NEXT_INSN (after) = insn;
|
||
if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
|
||
{
|
||
rtx sequence = PATTERN (after);
|
||
NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
|
||
}
|
||
}
|
||
|
||
/* Add INSN into the doubly-linked list before insn BEFORE. This and
|
||
the previous should be the only functions called to insert an insn once
|
||
delay slots have been filled since only they know how to update a
|
||
SEQUENCE. */
|
||
|
||
void
|
||
add_insn_before (insn, before)
|
||
rtx insn, before;
|
||
{
|
||
rtx prev = PREV_INSN (before);
|
||
|
||
if (optimize && INSN_DELETED_P (before))
|
||
abort ();
|
||
|
||
PREV_INSN (insn) = prev;
|
||
NEXT_INSN (insn) = before;
|
||
|
||
if (prev)
|
||
{
|
||
NEXT_INSN (prev) = insn;
|
||
if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
|
||
{
|
||
rtx sequence = PATTERN (prev);
|
||
NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
|
||
}
|
||
}
|
||
else if (first_insn == before)
|
||
first_insn = insn;
|
||
else
|
||
{
|
||
struct sequence_stack *stack = sequence_stack;
|
||
/* Scan all pending sequences too. */
|
||
for (; stack; stack = stack->next)
|
||
if (before == stack->first)
|
||
{
|
||
stack->first = insn;
|
||
break;
|
||
}
|
||
|
||
if (stack == 0)
|
||
abort ();
|
||
}
|
||
|
||
PREV_INSN (before) = insn;
|
||
if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
|
||
PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
|
||
}
|
||
|
||
/* Delete all insns made since FROM.
|
||
FROM becomes the new last instruction. */
|
||
|
||
void
|
||
delete_insns_since (from)
|
||
rtx from;
|
||
{
|
||
if (from == 0)
|
||
first_insn = 0;
|
||
else
|
||
NEXT_INSN (from) = 0;
|
||
last_insn = from;
|
||
}
|
||
|
||
/* This function is deprecated, please use sequences instead.
|
||
|
||
Move a consecutive bunch of insns to a different place in the chain.
|
||
The insns to be moved are those between FROM and TO.
|
||
They are moved to a new position after the insn AFTER.
|
||
AFTER must not be FROM or TO or any insn in between.
|
||
|
||
This function does not know about SEQUENCEs and hence should not be
|
||
called after delay-slot filling has been done. */
|
||
|
||
void
|
||
reorder_insns (from, to, after)
|
||
rtx from, to, after;
|
||
{
|
||
/* Splice this bunch out of where it is now. */
|
||
if (PREV_INSN (from))
|
||
NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
|
||
if (NEXT_INSN (to))
|
||
PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
|
||
if (last_insn == to)
|
||
last_insn = PREV_INSN (from);
|
||
if (first_insn == from)
|
||
first_insn = NEXT_INSN (to);
|
||
|
||
/* Make the new neighbors point to it and it to them. */
|
||
if (NEXT_INSN (after))
|
||
PREV_INSN (NEXT_INSN (after)) = to;
|
||
|
||
NEXT_INSN (to) = NEXT_INSN (after);
|
||
PREV_INSN (from) = after;
|
||
NEXT_INSN (after) = from;
|
||
if (after == last_insn)
|
||
last_insn = to;
|
||
}
|
||
|
||
/* Return the line note insn preceding INSN. */
|
||
|
||
static rtx
|
||
find_line_note (insn)
|
||
rtx insn;
|
||
{
|
||
if (no_line_numbers)
|
||
return 0;
|
||
|
||
for (; insn; insn = PREV_INSN (insn))
|
||
if (GET_CODE (insn) == NOTE
|
||
&& NOTE_LINE_NUMBER (insn) >= 0)
|
||
break;
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Like reorder_insns, but inserts line notes to preserve the line numbers
|
||
of the moved insns when debugging. This may insert a note between AFTER
|
||
and FROM, and another one after TO. */
|
||
|
||
void
|
||
reorder_insns_with_line_notes (from, to, after)
|
||
rtx from, to, after;
|
||
{
|
||
rtx from_line = find_line_note (from);
|
||
rtx after_line = find_line_note (after);
|
||
|
||
reorder_insns (from, to, after);
|
||
|
||
if (from_line == after_line)
|
||
return;
|
||
|
||
if (from_line)
|
||
emit_line_note_after (NOTE_SOURCE_FILE (from_line),
|
||
NOTE_LINE_NUMBER (from_line),
|
||
after);
|
||
if (after_line)
|
||
emit_line_note_after (NOTE_SOURCE_FILE (after_line),
|
||
NOTE_LINE_NUMBER (after_line),
|
||
to);
|
||
}
|
||
|
||
/* Emit an insn of given code and pattern
|
||
at a specified place within the doubly-linked list. */
|
||
|
||
/* Make an instruction with body PATTERN
|
||
and output it before the instruction BEFORE. */
|
||
|
||
rtx
|
||
emit_insn_before (pattern, before)
|
||
register rtx pattern, before;
|
||
{
|
||
register rtx insn = before;
|
||
|
||
if (GET_CODE (pattern) == SEQUENCE)
|
||
{
|
||
register int i;
|
||
|
||
for (i = 0; i < XVECLEN (pattern, 0); i++)
|
||
{
|
||
insn = XVECEXP (pattern, 0, i);
|
||
add_insn_before (insn, before);
|
||
}
|
||
if (XVECLEN (pattern, 0) < SEQUENCE_RESULT_SIZE)
|
||
sequence_result[XVECLEN (pattern, 0)] = pattern;
|
||
}
|
||
else
|
||
{
|
||
insn = make_insn_raw (pattern);
|
||
add_insn_before (insn, before);
|
||
}
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Make an instruction with body PATTERN and code JUMP_INSN
|
||
and output it before the instruction BEFORE. */
|
||
|
||
rtx
|
||
emit_jump_insn_before (pattern, before)
|
||
register rtx pattern, before;
|
||
{
|
||
register rtx insn;
|
||
|
||
if (GET_CODE (pattern) == SEQUENCE)
|
||
insn = emit_insn_before (pattern, before);
|
||
else
|
||
{
|
||
insn = make_jump_insn_raw (pattern);
|
||
add_insn_before (insn, before);
|
||
}
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Make an instruction with body PATTERN and code CALL_INSN
|
||
and output it before the instruction BEFORE. */
|
||
|
||
rtx
|
||
emit_call_insn_before (pattern, before)
|
||
register rtx pattern, before;
|
||
{
|
||
register rtx insn;
|
||
|
||
if (GET_CODE (pattern) == SEQUENCE)
|
||
insn = emit_insn_before (pattern, before);
|
||
else
|
||
{
|
||
insn = make_call_insn_raw (pattern);
|
||
add_insn_before (insn, before);
|
||
PUT_CODE (insn, CALL_INSN);
|
||
}
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Make an insn of code BARRIER
|
||
and output it before the insn AFTER. */
|
||
|
||
rtx
|
||
emit_barrier_before (before)
|
||
register rtx before;
|
||
{
|
||
register rtx insn = rtx_alloc (BARRIER);
|
||
|
||
INSN_UID (insn) = cur_insn_uid++;
|
||
|
||
add_insn_before (insn, before);
|
||
return insn;
|
||
}
|
||
|
||
/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
|
||
|
||
rtx
|
||
emit_note_before (subtype, before)
|
||
int subtype;
|
||
rtx before;
|
||
{
|
||
register rtx note = rtx_alloc (NOTE);
|
||
INSN_UID (note) = cur_insn_uid++;
|
||
NOTE_SOURCE_FILE (note) = 0;
|
||
NOTE_LINE_NUMBER (note) = subtype;
|
||
|
||
add_insn_before (note, before);
|
||
return note;
|
||
}
|
||
|
||
/* Make an insn of code INSN with body PATTERN
|
||
and output it after the insn AFTER. */
|
||
|
||
rtx
|
||
emit_insn_after (pattern, after)
|
||
register rtx pattern, after;
|
||
{
|
||
register rtx insn = after;
|
||
|
||
if (GET_CODE (pattern) == SEQUENCE)
|
||
{
|
||
register int i;
|
||
|
||
for (i = 0; i < XVECLEN (pattern, 0); i++)
|
||
{
|
||
insn = XVECEXP (pattern, 0, i);
|
||
add_insn_after (insn, after);
|
||
after = insn;
|
||
}
|
||
if (XVECLEN (pattern, 0) < SEQUENCE_RESULT_SIZE)
|
||
sequence_result[XVECLEN (pattern, 0)] = pattern;
|
||
}
|
||
else
|
||
{
|
||
insn = make_insn_raw (pattern);
|
||
add_insn_after (insn, after);
|
||
}
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Similar to emit_insn_after, except that line notes are to be inserted so
|
||
as to act as if this insn were at FROM. */
|
||
|
||
void
|
||
emit_insn_after_with_line_notes (pattern, after, from)
|
||
rtx pattern, after, from;
|
||
{
|
||
rtx from_line = find_line_note (from);
|
||
rtx after_line = find_line_note (after);
|
||
rtx insn = emit_insn_after (pattern, after);
|
||
|
||
if (from_line)
|
||
emit_line_note_after (NOTE_SOURCE_FILE (from_line),
|
||
NOTE_LINE_NUMBER (from_line),
|
||
after);
|
||
|
||
if (after_line)
|
||
emit_line_note_after (NOTE_SOURCE_FILE (after_line),
|
||
NOTE_LINE_NUMBER (after_line),
|
||
insn);
|
||
}
|
||
|
||
/* Make an insn of code JUMP_INSN with body PATTERN
|
||
and output it after the insn AFTER. */
|
||
|
||
rtx
|
||
emit_jump_insn_after (pattern, after)
|
||
register rtx pattern, after;
|
||
{
|
||
register rtx insn;
|
||
|
||
if (GET_CODE (pattern) == SEQUENCE)
|
||
insn = emit_insn_after (pattern, after);
|
||
else
|
||
{
|
||
insn = make_jump_insn_raw (pattern);
|
||
add_insn_after (insn, after);
|
||
}
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Make an insn of code BARRIER
|
||
and output it after the insn AFTER. */
|
||
|
||
rtx
|
||
emit_barrier_after (after)
|
||
register rtx after;
|
||
{
|
||
register rtx insn = rtx_alloc (BARRIER);
|
||
|
||
INSN_UID (insn) = cur_insn_uid++;
|
||
|
||
add_insn_after (insn, after);
|
||
return insn;
|
||
}
|
||
|
||
/* Emit the label LABEL after the insn AFTER. */
|
||
|
||
rtx
|
||
emit_label_after (label, after)
|
||
rtx label, after;
|
||
{
|
||
/* This can be called twice for the same label
|
||
as a result of the confusion that follows a syntax error!
|
||
So make it harmless. */
|
||
if (INSN_UID (label) == 0)
|
||
{
|
||
INSN_UID (label) = cur_insn_uid++;
|
||
add_insn_after (label, after);
|
||
}
|
||
|
||
return label;
|
||
}
|
||
|
||
/* Emit a note of subtype SUBTYPE after the insn AFTER. */
|
||
|
||
rtx
|
||
emit_note_after (subtype, after)
|
||
int subtype;
|
||
rtx after;
|
||
{
|
||
register rtx note = rtx_alloc (NOTE);
|
||
INSN_UID (note) = cur_insn_uid++;
|
||
NOTE_SOURCE_FILE (note) = 0;
|
||
NOTE_LINE_NUMBER (note) = subtype;
|
||
add_insn_after (note, after);
|
||
return note;
|
||
}
|
||
|
||
/* Emit a line note for FILE and LINE after the insn AFTER. */
|
||
|
||
rtx
|
||
emit_line_note_after (file, line, after)
|
||
char *file;
|
||
int line;
|
||
rtx after;
|
||
{
|
||
register rtx note;
|
||
|
||
if (no_line_numbers && line > 0)
|
||
{
|
||
cur_insn_uid++;
|
||
return 0;
|
||
}
|
||
|
||
note = rtx_alloc (NOTE);
|
||
INSN_UID (note) = cur_insn_uid++;
|
||
NOTE_SOURCE_FILE (note) = file;
|
||
NOTE_LINE_NUMBER (note) = line;
|
||
add_insn_after (note, after);
|
||
return note;
|
||
}
|
||
|
||
/* Make an insn of code INSN with pattern PATTERN
|
||
and add it to the end of the doubly-linked list.
|
||
If PATTERN is a SEQUENCE, take the elements of it
|
||
and emit an insn for each element.
|
||
|
||
Returns the last insn emitted. */
|
||
|
||
rtx
|
||
emit_insn (pattern)
|
||
rtx pattern;
|
||
{
|
||
rtx insn = last_insn;
|
||
|
||
if (GET_CODE (pattern) == SEQUENCE)
|
||
{
|
||
register int i;
|
||
|
||
for (i = 0; i < XVECLEN (pattern, 0); i++)
|
||
{
|
||
insn = XVECEXP (pattern, 0, i);
|
||
add_insn (insn);
|
||
}
|
||
if (XVECLEN (pattern, 0) < SEQUENCE_RESULT_SIZE)
|
||
sequence_result[XVECLEN (pattern, 0)] = pattern;
|
||
}
|
||
else
|
||
{
|
||
insn = make_insn_raw (pattern);
|
||
add_insn (insn);
|
||
}
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Emit the insns in a chain starting with INSN.
|
||
Return the last insn emitted. */
|
||
|
||
rtx
|
||
emit_insns (insn)
|
||
rtx insn;
|
||
{
|
||
rtx last = 0;
|
||
|
||
while (insn)
|
||
{
|
||
rtx next = NEXT_INSN (insn);
|
||
add_insn (insn);
|
||
last = insn;
|
||
insn = next;
|
||
}
|
||
|
||
return last;
|
||
}
|
||
|
||
/* Emit the insns in a chain starting with INSN and place them in front of
|
||
the insn BEFORE. Return the last insn emitted. */
|
||
|
||
rtx
|
||
emit_insns_before (insn, before)
|
||
rtx insn;
|
||
rtx before;
|
||
{
|
||
rtx last = 0;
|
||
|
||
while (insn)
|
||
{
|
||
rtx next = NEXT_INSN (insn);
|
||
add_insn_before (insn, before);
|
||
last = insn;
|
||
insn = next;
|
||
}
|
||
|
||
return last;
|
||
}
|
||
|
||
/* Emit the insns in a chain starting with FIRST and place them in back of
|
||
the insn AFTER. Return the last insn emitted. */
|
||
|
||
rtx
|
||
emit_insns_after (first, after)
|
||
register rtx first;
|
||
register rtx after;
|
||
{
|
||
register rtx last;
|
||
register rtx after_after;
|
||
|
||
if (!after)
|
||
abort ();
|
||
|
||
if (!first)
|
||
return first;
|
||
|
||
for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
|
||
continue;
|
||
|
||
after_after = NEXT_INSN (after);
|
||
|
||
NEXT_INSN (after) = first;
|
||
PREV_INSN (first) = after;
|
||
NEXT_INSN (last) = after_after;
|
||
if (after_after)
|
||
PREV_INSN (after_after) = last;
|
||
|
||
if (after == last_insn)
|
||
last_insn = last;
|
||
return last;
|
||
}
|
||
|
||
/* Make an insn of code JUMP_INSN with pattern PATTERN
|
||
and add it to the end of the doubly-linked list. */
|
||
|
||
rtx
|
||
emit_jump_insn (pattern)
|
||
rtx pattern;
|
||
{
|
||
if (GET_CODE (pattern) == SEQUENCE)
|
||
return emit_insn (pattern);
|
||
else
|
||
{
|
||
register rtx insn = make_jump_insn_raw (pattern);
|
||
add_insn (insn);
|
||
return insn;
|
||
}
|
||
}
|
||
|
||
/* Make an insn of code CALL_INSN with pattern PATTERN
|
||
and add it to the end of the doubly-linked list. */
|
||
|
||
rtx
|
||
emit_call_insn (pattern)
|
||
rtx pattern;
|
||
{
|
||
if (GET_CODE (pattern) == SEQUENCE)
|
||
return emit_insn (pattern);
|
||
else
|
||
{
|
||
register rtx insn = make_call_insn_raw (pattern);
|
||
add_insn (insn);
|
||
PUT_CODE (insn, CALL_INSN);
|
||
return insn;
|
||
}
|
||
}
|
||
|
||
/* Add the label LABEL to the end of the doubly-linked list. */
|
||
|
||
rtx
|
||
emit_label (label)
|
||
rtx label;
|
||
{
|
||
/* This can be called twice for the same label
|
||
as a result of the confusion that follows a syntax error!
|
||
So make it harmless. */
|
||
if (INSN_UID (label) == 0)
|
||
{
|
||
INSN_UID (label) = cur_insn_uid++;
|
||
add_insn (label);
|
||
}
|
||
return label;
|
||
}
|
||
|
||
/* Make an insn of code BARRIER
|
||
and add it to the end of the doubly-linked list. */
|
||
|
||
rtx
|
||
emit_barrier ()
|
||
{
|
||
register rtx barrier = rtx_alloc (BARRIER);
|
||
INSN_UID (barrier) = cur_insn_uid++;
|
||
add_insn (barrier);
|
||
return barrier;
|
||
}
|
||
|
||
/* Make an insn of code NOTE
|
||
with data-fields specified by FILE and LINE
|
||
and add it to the end of the doubly-linked list,
|
||
but only if line-numbers are desired for debugging info. */
|
||
|
||
rtx
|
||
emit_line_note (file, line)
|
||
char *file;
|
||
int line;
|
||
{
|
||
if (output_bytecode)
|
||
{
|
||
/* FIXME: for now we do nothing, but eventually we will have to deal with
|
||
debugging information. */
|
||
return 0;
|
||
}
|
||
|
||
emit_filename = file;
|
||
emit_lineno = line;
|
||
|
||
#if 0
|
||
if (no_line_numbers)
|
||
return 0;
|
||
#endif
|
||
|
||
return emit_note (file, line);
|
||
}
|
||
|
||
/* Make an insn of code NOTE
|
||
with data-fields specified by FILE and LINE
|
||
and add it to the end of the doubly-linked list.
|
||
If it is a line-number NOTE, omit it if it matches the previous one. */
|
||
|
||
rtx
|
||
emit_note (file, line)
|
||
char *file;
|
||
int line;
|
||
{
|
||
register rtx note;
|
||
|
||
if (line > 0)
|
||
{
|
||
if (file && last_filename && !strcmp (file, last_filename)
|
||
&& line == last_linenum)
|
||
return 0;
|
||
last_filename = file;
|
||
last_linenum = line;
|
||
}
|
||
|
||
if (no_line_numbers && line > 0)
|
||
{
|
||
cur_insn_uid++;
|
||
return 0;
|
||
}
|
||
|
||
note = rtx_alloc (NOTE);
|
||
INSN_UID (note) = cur_insn_uid++;
|
||
NOTE_SOURCE_FILE (note) = file;
|
||
NOTE_LINE_NUMBER (note) = line;
|
||
add_insn (note);
|
||
return note;
|
||
}
|
||
|
||
/* Emit a NOTE, and don't omit it even if LINE it the previous note. */
|
||
|
||
rtx
|
||
emit_line_note_force (file, line)
|
||
char *file;
|
||
int line;
|
||
{
|
||
last_linenum = -1;
|
||
return emit_line_note (file, line);
|
||
}
|
||
|
||
/* Cause next statement to emit a line note even if the line number
|
||
has not changed. This is used at the beginning of a function. */
|
||
|
||
void
|
||
force_next_line_note ()
|
||
{
|
||
last_linenum = -1;
|
||
}
|
||
|
||
/* Return an indication of which type of insn should have X as a body.
|
||
The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
|
||
|
||
enum rtx_code
|
||
classify_insn (x)
|
||
rtx x;
|
||
{
|
||
if (GET_CODE (x) == CODE_LABEL)
|
||
return CODE_LABEL;
|
||
if (GET_CODE (x) == CALL)
|
||
return CALL_INSN;
|
||
if (GET_CODE (x) == RETURN)
|
||
return JUMP_INSN;
|
||
if (GET_CODE (x) == SET)
|
||
{
|
||
if (SET_DEST (x) == pc_rtx)
|
||
return JUMP_INSN;
|
||
else if (GET_CODE (SET_SRC (x)) == CALL)
|
||
return CALL_INSN;
|
||
else
|
||
return INSN;
|
||
}
|
||
if (GET_CODE (x) == PARALLEL)
|
||
{
|
||
register int j;
|
||
for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
|
||
if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
|
||
return CALL_INSN;
|
||
else if (GET_CODE (XVECEXP (x, 0, j)) == SET
|
||
&& SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
|
||
return JUMP_INSN;
|
||
else if (GET_CODE (XVECEXP (x, 0, j)) == SET
|
||
&& GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
|
||
return CALL_INSN;
|
||
}
|
||
return INSN;
|
||
}
|
||
|
||
/* Emit the rtl pattern X as an appropriate kind of insn.
|
||
If X is a label, it is simply added into the insn chain. */
|
||
|
||
rtx
|
||
emit (x)
|
||
rtx x;
|
||
{
|
||
enum rtx_code code = classify_insn (x);
|
||
|
||
if (code == CODE_LABEL)
|
||
return emit_label (x);
|
||
else if (code == INSN)
|
||
return emit_insn (x);
|
||
else if (code == JUMP_INSN)
|
||
{
|
||
register rtx insn = emit_jump_insn (x);
|
||
if (simplejump_p (insn) || GET_CODE (x) == RETURN)
|
||
return emit_barrier ();
|
||
return insn;
|
||
}
|
||
else if (code == CALL_INSN)
|
||
return emit_call_insn (x);
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
/* Begin emitting insns to a sequence which can be packaged in an RTL_EXPR. */
|
||
|
||
void
|
||
start_sequence ()
|
||
{
|
||
struct sequence_stack *tem;
|
||
|
||
if (sequence_element_free_list)
|
||
{
|
||
/* Reuse a previously-saved struct sequence_stack. */
|
||
tem = sequence_element_free_list;
|
||
sequence_element_free_list = tem->next;
|
||
}
|
||
else
|
||
tem = (struct sequence_stack *) permalloc (sizeof (struct sequence_stack));
|
||
|
||
tem->next = sequence_stack;
|
||
tem->first = first_insn;
|
||
tem->last = last_insn;
|
||
tem->sequence_rtl_expr = sequence_rtl_expr;
|
||
|
||
sequence_stack = tem;
|
||
|
||
first_insn = 0;
|
||
last_insn = 0;
|
||
}
|
||
|
||
/* Similarly, but indicate that this sequence will be placed in
|
||
T, an RTL_EXPR. */
|
||
|
||
void
|
||
start_sequence_for_rtl_expr (t)
|
||
tree t;
|
||
{
|
||
start_sequence ();
|
||
|
||
sequence_rtl_expr = t;
|
||
}
|
||
|
||
/* Set up the insn chain starting with FIRST
|
||
as the current sequence, saving the previously current one. */
|
||
|
||
void
|
||
push_to_sequence (first)
|
||
rtx first;
|
||
{
|
||
rtx last;
|
||
|
||
start_sequence ();
|
||
|
||
for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
|
||
|
||
first_insn = first;
|
||
last_insn = last;
|
||
}
|
||
|
||
/* Set up the outer-level insn chain
|
||
as the current sequence, saving the previously current one. */
|
||
|
||
void
|
||
push_topmost_sequence ()
|
||
{
|
||
struct sequence_stack *stack, *top;
|
||
|
||
start_sequence ();
|
||
|
||
for (stack = sequence_stack; stack; stack = stack->next)
|
||
top = stack;
|
||
|
||
first_insn = top->first;
|
||
last_insn = top->last;
|
||
sequence_rtl_expr = top->sequence_rtl_expr;
|
||
}
|
||
|
||
/* After emitting to the outer-level insn chain, update the outer-level
|
||
insn chain, and restore the previous saved state. */
|
||
|
||
void
|
||
pop_topmost_sequence ()
|
||
{
|
||
struct sequence_stack *stack, *top;
|
||
|
||
for (stack = sequence_stack; stack; stack = stack->next)
|
||
top = stack;
|
||
|
||
top->first = first_insn;
|
||
top->last = last_insn;
|
||
/* ??? Why don't we save sequence_rtl_expr here? */
|
||
|
||
end_sequence ();
|
||
}
|
||
|
||
/* After emitting to a sequence, restore previous saved state.
|
||
|
||
To get the contents of the sequence just made,
|
||
you must call `gen_sequence' *before* calling here. */
|
||
|
||
void
|
||
end_sequence ()
|
||
{
|
||
struct sequence_stack *tem = sequence_stack;
|
||
|
||
first_insn = tem->first;
|
||
last_insn = tem->last;
|
||
sequence_rtl_expr = tem->sequence_rtl_expr;
|
||
sequence_stack = tem->next;
|
||
|
||
tem->next = sequence_element_free_list;
|
||
sequence_element_free_list = tem;
|
||
}
|
||
|
||
/* Return 1 if currently emitting into a sequence. */
|
||
|
||
int
|
||
in_sequence_p ()
|
||
{
|
||
return sequence_stack != 0;
|
||
}
|
||
|
||
/* Generate a SEQUENCE rtx containing the insns already emitted
|
||
to the current sequence.
|
||
|
||
This is how the gen_... function from a DEFINE_EXPAND
|
||
constructs the SEQUENCE that it returns. */
|
||
|
||
rtx
|
||
gen_sequence ()
|
||
{
|
||
rtx result;
|
||
rtx tem;
|
||
int i;
|
||
int len;
|
||
|
||
/* Count the insns in the chain. */
|
||
len = 0;
|
||
for (tem = first_insn; tem; tem = NEXT_INSN (tem))
|
||
len++;
|
||
|
||
/* If only one insn, return its pattern rather than a SEQUENCE.
|
||
(Now that we cache SEQUENCE expressions, it isn't worth special-casing
|
||
the case of an empty list.) */
|
||
if (len == 1
|
||
&& (GET_CODE (first_insn) == INSN
|
||
|| GET_CODE (first_insn) == JUMP_INSN
|
||
/* Don't discard the call usage field. */
|
||
|| (GET_CODE (first_insn) == CALL_INSN
|
||
&& CALL_INSN_FUNCTION_USAGE (first_insn) == NULL_RTX)))
|
||
return PATTERN (first_insn);
|
||
|
||
/* Put them in a vector. See if we already have a SEQUENCE of the
|
||
appropriate length around. */
|
||
if (len < SEQUENCE_RESULT_SIZE && (result = sequence_result[len]) != 0)
|
||
sequence_result[len] = 0;
|
||
else
|
||
{
|
||
/* Ensure that this rtl goes in saveable_obstack, since we may
|
||
cache it. */
|
||
push_obstacks_nochange ();
|
||
rtl_in_saveable_obstack ();
|
||
result = gen_rtx (SEQUENCE, VOIDmode, rtvec_alloc (len));
|
||
pop_obstacks ();
|
||
}
|
||
|
||
for (i = 0, tem = first_insn; tem; tem = NEXT_INSN (tem), i++)
|
||
XVECEXP (result, 0, i) = tem;
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Set up regno_reg_rtx, reg_rtx_no and regno_pointer_flag
|
||
according to the chain of insns starting with FIRST.
|
||
|
||
Also set cur_insn_uid to exceed the largest uid in that chain.
|
||
|
||
This is used when an inline function's rtl is saved
|
||
and passed to rest_of_compilation later. */
|
||
|
||
static void restore_reg_data_1 ();
|
||
|
||
void
|
||
restore_reg_data (first)
|
||
rtx first;
|
||
{
|
||
register rtx insn;
|
||
int i;
|
||
register int max_uid = 0;
|
||
|
||
for (insn = first; insn; insn = NEXT_INSN (insn))
|
||
{
|
||
if (INSN_UID (insn) >= max_uid)
|
||
max_uid = INSN_UID (insn);
|
||
|
||
switch (GET_CODE (insn))
|
||
{
|
||
case NOTE:
|
||
case CODE_LABEL:
|
||
case BARRIER:
|
||
break;
|
||
|
||
case JUMP_INSN:
|
||
case CALL_INSN:
|
||
case INSN:
|
||
restore_reg_data_1 (PATTERN (insn));
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Don't duplicate the uids already in use. */
|
||
cur_insn_uid = max_uid + 1;
|
||
|
||
/* If any regs are missing, make them up.
|
||
|
||
??? word_mode is not necessarily the right mode. Most likely these REGs
|
||
are never used. At some point this should be checked. */
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER; i < reg_rtx_no; i++)
|
||
if (regno_reg_rtx[i] == 0)
|
||
regno_reg_rtx[i] = gen_rtx (REG, word_mode, i);
|
||
}
|
||
|
||
static void
|
||
restore_reg_data_1 (orig)
|
||
rtx orig;
|
||
{
|
||
register rtx x = orig;
|
||
register int i;
|
||
register enum rtx_code code;
|
||
register char *format_ptr;
|
||
|
||
code = GET_CODE (x);
|
||
|
||
switch (code)
|
||
{
|
||
case QUEUED:
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case SYMBOL_REF:
|
||
case CODE_LABEL:
|
||
case PC:
|
||
case CC0:
|
||
case LABEL_REF:
|
||
return;
|
||
|
||
case REG:
|
||
if (REGNO (x) >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
/* Make sure regno_pointer_flag and regno_reg_rtx are large
|
||
enough to have an element for this pseudo reg number. */
|
||
if (REGNO (x) >= reg_rtx_no)
|
||
{
|
||
reg_rtx_no = REGNO (x);
|
||
|
||
if (reg_rtx_no >= regno_pointer_flag_length)
|
||
{
|
||
int newlen = MAX (regno_pointer_flag_length * 2,
|
||
reg_rtx_no + 30);
|
||
rtx *new1;
|
||
char *new = (char *) oballoc (newlen);
|
||
bzero (new, newlen);
|
||
bcopy (regno_pointer_flag, new, regno_pointer_flag_length);
|
||
|
||
new1 = (rtx *) oballoc (newlen * sizeof (rtx));
|
||
bzero ((char *) new1, newlen * sizeof (rtx));
|
||
bcopy ((char *) regno_reg_rtx, (char *) new1,
|
||
regno_pointer_flag_length * sizeof (rtx));
|
||
|
||
regno_pointer_flag = new;
|
||
regno_reg_rtx = new1;
|
||
regno_pointer_flag_length = newlen;
|
||
}
|
||
reg_rtx_no ++;
|
||
}
|
||
regno_reg_rtx[REGNO (x)] = x;
|
||
}
|
||
return;
|
||
|
||
case MEM:
|
||
if (GET_CODE (XEXP (x, 0)) == REG)
|
||
mark_reg_pointer (XEXP (x, 0));
|
||
restore_reg_data_1 (XEXP (x, 0));
|
||
return;
|
||
}
|
||
|
||
/* Now scan the subexpressions recursively. */
|
||
|
||
format_ptr = GET_RTX_FORMAT (code);
|
||
|
||
for (i = 0; i < GET_RTX_LENGTH (code); i++)
|
||
{
|
||
switch (*format_ptr++)
|
||
{
|
||
case 'e':
|
||
restore_reg_data_1 (XEXP (x, i));
|
||
break;
|
||
|
||
case 'E':
|
||
if (XVEC (x, i) != NULL)
|
||
{
|
||
register int j;
|
||
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
restore_reg_data_1 (XVECEXP (x, i, j));
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Initialize data structures and variables in this file
|
||
before generating rtl for each function. */
|
||
|
||
void
|
||
init_emit ()
|
||
{
|
||
int i;
|
||
|
||
first_insn = NULL;
|
||
last_insn = NULL;
|
||
sequence_rtl_expr = NULL;
|
||
cur_insn_uid = 1;
|
||
reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
|
||
last_linenum = 0;
|
||
last_filename = 0;
|
||
first_label_num = label_num;
|
||
last_label_num = 0;
|
||
sequence_stack = NULL;
|
||
|
||
/* Clear the start_sequence/gen_sequence cache. */
|
||
sequence_element_free_list = 0;
|
||
for (i = 0; i < SEQUENCE_RESULT_SIZE; i++)
|
||
sequence_result[i] = 0;
|
||
|
||
/* Init the tables that describe all the pseudo regs. */
|
||
|
||
regno_pointer_flag_length = LAST_VIRTUAL_REGISTER + 101;
|
||
|
||
regno_pointer_flag
|
||
= (char *) oballoc (regno_pointer_flag_length);
|
||
bzero (regno_pointer_flag, regno_pointer_flag_length);
|
||
|
||
regno_reg_rtx
|
||
= (rtx *) oballoc (regno_pointer_flag_length * sizeof (rtx));
|
||
bzero ((char *) regno_reg_rtx, regno_pointer_flag_length * sizeof (rtx));
|
||
|
||
/* Put copies of all the virtual register rtx into regno_reg_rtx. */
|
||
regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
|
||
regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
|
||
regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
|
||
regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
|
||
|
||
/* Indicate that the virtual registers and stack locations are
|
||
all pointers. */
|
||
REGNO_POINTER_FLAG (STACK_POINTER_REGNUM) = 1;
|
||
REGNO_POINTER_FLAG (FRAME_POINTER_REGNUM) = 1;
|
||
REGNO_POINTER_FLAG (HARD_FRAME_POINTER_REGNUM) = 1;
|
||
REGNO_POINTER_FLAG (ARG_POINTER_REGNUM) = 1;
|
||
|
||
REGNO_POINTER_FLAG (VIRTUAL_INCOMING_ARGS_REGNUM) = 1;
|
||
REGNO_POINTER_FLAG (VIRTUAL_STACK_VARS_REGNUM) = 1;
|
||
REGNO_POINTER_FLAG (VIRTUAL_STACK_DYNAMIC_REGNUM) = 1;
|
||
REGNO_POINTER_FLAG (VIRTUAL_OUTGOING_ARGS_REGNUM) = 1;
|
||
|
||
#ifdef INIT_EXPANDERS
|
||
INIT_EXPANDERS;
|
||
#endif
|
||
}
|
||
|
||
/* Create some permanent unique rtl objects shared between all functions.
|
||
LINE_NUMBERS is nonzero if line numbers are to be generated. */
|
||
|
||
void
|
||
init_emit_once (line_numbers)
|
||
int line_numbers;
|
||
{
|
||
int i;
|
||
enum machine_mode mode;
|
||
|
||
no_line_numbers = ! line_numbers;
|
||
|
||
sequence_stack = NULL;
|
||
|
||
/* Compute the word and byte modes. */
|
||
|
||
byte_mode = VOIDmode;
|
||
word_mode = VOIDmode;
|
||
|
||
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
|
||
mode = GET_MODE_WIDER_MODE (mode))
|
||
{
|
||
if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
|
||
&& byte_mode == VOIDmode)
|
||
byte_mode = mode;
|
||
|
||
if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
|
||
&& word_mode == VOIDmode)
|
||
word_mode = mode;
|
||
}
|
||
|
||
ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
|
||
|
||
/* Create the unique rtx's for certain rtx codes and operand values. */
|
||
|
||
pc_rtx = gen_rtx (PC, VOIDmode);
|
||
cc0_rtx = gen_rtx (CC0, VOIDmode);
|
||
|
||
/* Don't use gen_rtx here since gen_rtx in this case
|
||
tries to use these variables. */
|
||
for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
|
||
{
|
||
const_int_rtx[i + MAX_SAVED_CONST_INT] = rtx_alloc (CONST_INT);
|
||
PUT_MODE (const_int_rtx[i + MAX_SAVED_CONST_INT], VOIDmode);
|
||
INTVAL (const_int_rtx[i + MAX_SAVED_CONST_INT]) = i;
|
||
}
|
||
|
||
/* These four calls obtain some of the rtx expressions made above. */
|
||
const0_rtx = GEN_INT (0);
|
||
const1_rtx = GEN_INT (1);
|
||
const2_rtx = GEN_INT (2);
|
||
constm1_rtx = GEN_INT (-1);
|
||
|
||
/* This will usually be one of the above constants, but may be a new rtx. */
|
||
const_true_rtx = GEN_INT (STORE_FLAG_VALUE);
|
||
|
||
dconst0 = REAL_VALUE_ATOF ("0", DFmode);
|
||
dconst1 = REAL_VALUE_ATOF ("1", DFmode);
|
||
dconst2 = REAL_VALUE_ATOF ("2", DFmode);
|
||
dconstm1 = REAL_VALUE_ATOF ("-1", DFmode);
|
||
|
||
for (i = 0; i <= 2; i++)
|
||
{
|
||
for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
|
||
mode = GET_MODE_WIDER_MODE (mode))
|
||
{
|
||
rtx tem = rtx_alloc (CONST_DOUBLE);
|
||
union real_extract u;
|
||
|
||
bzero ((char *) &u, sizeof u); /* Zero any holes in a structure. */
|
||
u.d = i == 0 ? dconst0 : i == 1 ? dconst1 : dconst2;
|
||
|
||
bcopy ((char *) &u, (char *) &CONST_DOUBLE_LOW (tem), sizeof u);
|
||
CONST_DOUBLE_MEM (tem) = cc0_rtx;
|
||
PUT_MODE (tem, mode);
|
||
|
||
const_tiny_rtx[i][(int) mode] = tem;
|
||
}
|
||
|
||
const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
|
||
|
||
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
|
||
mode = GET_MODE_WIDER_MODE (mode))
|
||
const_tiny_rtx[i][(int) mode] = GEN_INT (i);
|
||
|
||
for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
|
||
mode != VOIDmode;
|
||
mode = GET_MODE_WIDER_MODE (mode))
|
||
const_tiny_rtx[i][(int) mode] = GEN_INT (i);
|
||
}
|
||
|
||
for (mode = GET_CLASS_NARROWEST_MODE (MODE_CC); mode != VOIDmode;
|
||
mode = GET_MODE_WIDER_MODE (mode))
|
||
const_tiny_rtx[0][(int) mode] = const0_rtx;
|
||
|
||
stack_pointer_rtx = gen_rtx (REG, Pmode, STACK_POINTER_REGNUM);
|
||
frame_pointer_rtx = gen_rtx (REG, Pmode, FRAME_POINTER_REGNUM);
|
||
|
||
if (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
|
||
hard_frame_pointer_rtx = frame_pointer_rtx;
|
||
else
|
||
hard_frame_pointer_rtx = gen_rtx (REG, Pmode, HARD_FRAME_POINTER_REGNUM);
|
||
|
||
if (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
|
||
arg_pointer_rtx = frame_pointer_rtx;
|
||
else if (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
|
||
arg_pointer_rtx = hard_frame_pointer_rtx;
|
||
else if (STACK_POINTER_REGNUM == ARG_POINTER_REGNUM)
|
||
arg_pointer_rtx = stack_pointer_rtx;
|
||
else
|
||
arg_pointer_rtx = gen_rtx (REG, Pmode, ARG_POINTER_REGNUM);
|
||
|
||
/* Create the virtual registers. Do so here since the following objects
|
||
might reference them. */
|
||
|
||
virtual_incoming_args_rtx = gen_rtx (REG, Pmode,
|
||
VIRTUAL_INCOMING_ARGS_REGNUM);
|
||
virtual_stack_vars_rtx = gen_rtx (REG, Pmode,
|
||
VIRTUAL_STACK_VARS_REGNUM);
|
||
virtual_stack_dynamic_rtx = gen_rtx (REG, Pmode,
|
||
VIRTUAL_STACK_DYNAMIC_REGNUM);
|
||
virtual_outgoing_args_rtx = gen_rtx (REG, Pmode,
|
||
VIRTUAL_OUTGOING_ARGS_REGNUM);
|
||
|
||
#ifdef STRUCT_VALUE
|
||
struct_value_rtx = STRUCT_VALUE;
|
||
#else
|
||
struct_value_rtx = gen_rtx (REG, Pmode, STRUCT_VALUE_REGNUM);
|
||
#endif
|
||
|
||
#ifdef STRUCT_VALUE_INCOMING
|
||
struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
|
||
#else
|
||
#ifdef STRUCT_VALUE_INCOMING_REGNUM
|
||
struct_value_incoming_rtx
|
||
= gen_rtx (REG, Pmode, STRUCT_VALUE_INCOMING_REGNUM);
|
||
#else
|
||
struct_value_incoming_rtx = struct_value_rtx;
|
||
#endif
|
||
#endif
|
||
|
||
#ifdef STATIC_CHAIN_REGNUM
|
||
static_chain_rtx = gen_rtx (REG, Pmode, STATIC_CHAIN_REGNUM);
|
||
|
||
#ifdef STATIC_CHAIN_INCOMING_REGNUM
|
||
if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
|
||
static_chain_incoming_rtx = gen_rtx (REG, Pmode, STATIC_CHAIN_INCOMING_REGNUM);
|
||
else
|
||
#endif
|
||
static_chain_incoming_rtx = static_chain_rtx;
|
||
#endif
|
||
|
||
#ifdef STATIC_CHAIN
|
||
static_chain_rtx = STATIC_CHAIN;
|
||
|
||
#ifdef STATIC_CHAIN_INCOMING
|
||
static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
|
||
#else
|
||
static_chain_incoming_rtx = static_chain_rtx;
|
||
#endif
|
||
#endif
|
||
|
||
#ifdef PIC_OFFSET_TABLE_REGNUM
|
||
pic_offset_table_rtx = gen_rtx (REG, Pmode, PIC_OFFSET_TABLE_REGNUM);
|
||
#endif
|
||
}
|