mirror of
https://git.hardenedbsd.org/hardenedbsd/HardenedBSD.git
synced 2024-12-30 15:38:06 +01:00
a4cd5630b0
non-i386, non-unix, and generatable files have been trimmed, but can easily be added in later if needed. gcc-2.7.2.1 will follow shortly, it's a very small delta to this and it's handy to have both available for reference for such little cost. The freebsd-specific changes will then be committed, and once the dust has settled, the bmakefiles will be committed to use this code.
4224 lines
132 KiB
C
4224 lines
132 KiB
C
/* Medium-level subroutines: convert bit-field store and extract
|
||
and shifts, multiplies and divides to rtl instructions.
|
||
Copyright (C) 1987, 88, 89, 92, 93, 94, 1995 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
|
||
#include "config.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "flags.h"
|
||
#include "insn-flags.h"
|
||
#include "insn-codes.h"
|
||
#include "insn-config.h"
|
||
#include "expr.h"
|
||
#include "real.h"
|
||
#include "recog.h"
|
||
|
||
static void store_fixed_bit_field PROTO((rtx, int, int, int, rtx, int));
|
||
static void store_split_bit_field PROTO((rtx, int, int, rtx, int));
|
||
static rtx extract_fixed_bit_field PROTO((enum machine_mode, rtx, int,
|
||
int, int, rtx, int, int));
|
||
static rtx mask_rtx PROTO((enum machine_mode, int,
|
||
int, int));
|
||
static rtx lshift_value PROTO((enum machine_mode, rtx,
|
||
int, int));
|
||
static rtx extract_split_bit_field PROTO((rtx, int, int, int, int));
|
||
|
||
#define CEIL(x,y) (((x) + (y) - 1) / (y))
|
||
|
||
/* Non-zero means divides or modulus operations are relatively cheap for
|
||
powers of two, so don't use branches; emit the operation instead.
|
||
Usually, this will mean that the MD file will emit non-branch
|
||
sequences. */
|
||
|
||
static int sdiv_pow2_cheap, smod_pow2_cheap;
|
||
|
||
#ifndef SLOW_UNALIGNED_ACCESS
|
||
#define SLOW_UNALIGNED_ACCESS STRICT_ALIGNMENT
|
||
#endif
|
||
|
||
/* For compilers that support multiple targets with different word sizes,
|
||
MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
|
||
is the H8/300(H) compiler. */
|
||
|
||
#ifndef MAX_BITS_PER_WORD
|
||
#define MAX_BITS_PER_WORD BITS_PER_WORD
|
||
#endif
|
||
|
||
/* Cost of various pieces of RTL. Note that some of these are indexed by shift count,
|
||
and some by mode. */
|
||
static int add_cost, negate_cost, zero_cost;
|
||
static int shift_cost[MAX_BITS_PER_WORD];
|
||
static int shiftadd_cost[MAX_BITS_PER_WORD];
|
||
static int shiftsub_cost[MAX_BITS_PER_WORD];
|
||
static int mul_cost[NUM_MACHINE_MODES];
|
||
static int div_cost[NUM_MACHINE_MODES];
|
||
static int mul_widen_cost[NUM_MACHINE_MODES];
|
||
static int mul_highpart_cost[NUM_MACHINE_MODES];
|
||
|
||
void
|
||
init_expmed ()
|
||
{
|
||
char *free_point;
|
||
/* This is "some random pseudo register" for purposes of calling recog
|
||
to see what insns exist. */
|
||
rtx reg = gen_rtx (REG, word_mode, 10000);
|
||
rtx shift_insn, shiftadd_insn, shiftsub_insn;
|
||
int dummy;
|
||
int m;
|
||
enum machine_mode mode, wider_mode;
|
||
|
||
start_sequence ();
|
||
|
||
/* Since we are on the permanent obstack, we must be sure we save this
|
||
spot AFTER we call start_sequence, since it will reuse the rtl it
|
||
makes. */
|
||
|
||
free_point = (char *) oballoc (0);
|
||
|
||
zero_cost = rtx_cost (const0_rtx, 0);
|
||
add_cost = rtx_cost (gen_rtx (PLUS, word_mode, reg, reg), SET);
|
||
|
||
shift_insn = emit_insn (gen_rtx (SET, VOIDmode, reg,
|
||
gen_rtx (ASHIFT, word_mode, reg,
|
||
const0_rtx)));
|
||
|
||
shiftadd_insn = emit_insn (gen_rtx (SET, VOIDmode, reg,
|
||
gen_rtx (PLUS, word_mode,
|
||
gen_rtx (MULT, word_mode,
|
||
reg, const0_rtx),
|
||
reg)));
|
||
|
||
shiftsub_insn = emit_insn (gen_rtx (SET, VOIDmode, reg,
|
||
gen_rtx (MINUS, word_mode,
|
||
gen_rtx (MULT, word_mode,
|
||
reg, const0_rtx),
|
||
reg)));
|
||
|
||
init_recog ();
|
||
|
||
shift_cost[0] = 0;
|
||
shiftadd_cost[0] = shiftsub_cost[0] = add_cost;
|
||
|
||
for (m = 1; m < BITS_PER_WORD; m++)
|
||
{
|
||
shift_cost[m] = shiftadd_cost[m] = shiftsub_cost[m] = 32000;
|
||
|
||
XEXP (SET_SRC (PATTERN (shift_insn)), 1) = GEN_INT (m);
|
||
if (recog (PATTERN (shift_insn), shift_insn, &dummy) >= 0)
|
||
shift_cost[m] = rtx_cost (SET_SRC (PATTERN (shift_insn)), SET);
|
||
|
||
XEXP (XEXP (SET_SRC (PATTERN (shiftadd_insn)), 0), 1)
|
||
= GEN_INT ((HOST_WIDE_INT) 1 << m);
|
||
if (recog (PATTERN (shiftadd_insn), shiftadd_insn, &dummy) >= 0)
|
||
shiftadd_cost[m] = rtx_cost (SET_SRC (PATTERN (shiftadd_insn)), SET);
|
||
|
||
XEXP (XEXP (SET_SRC (PATTERN (shiftsub_insn)), 0), 1)
|
||
= GEN_INT ((HOST_WIDE_INT) 1 << m);
|
||
if (recog (PATTERN (shiftsub_insn), shiftsub_insn, &dummy) >= 0)
|
||
shiftsub_cost[m] = rtx_cost (SET_SRC (PATTERN (shiftsub_insn)), SET);
|
||
}
|
||
|
||
negate_cost = rtx_cost (gen_rtx (NEG, word_mode, reg), SET);
|
||
|
||
sdiv_pow2_cheap
|
||
= (rtx_cost (gen_rtx (DIV, word_mode, reg, GEN_INT (32)), SET)
|
||
<= 2 * add_cost);
|
||
smod_pow2_cheap
|
||
= (rtx_cost (gen_rtx (MOD, word_mode, reg, GEN_INT (32)), SET)
|
||
<= 2 * add_cost);
|
||
|
||
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
|
||
mode != VOIDmode;
|
||
mode = GET_MODE_WIDER_MODE (mode))
|
||
{
|
||
reg = gen_rtx (REG, mode, 10000);
|
||
div_cost[(int) mode] = rtx_cost (gen_rtx (UDIV, mode, reg, reg), SET);
|
||
mul_cost[(int) mode] = rtx_cost (gen_rtx (MULT, mode, reg, reg), SET);
|
||
wider_mode = GET_MODE_WIDER_MODE (mode);
|
||
if (wider_mode != VOIDmode)
|
||
{
|
||
mul_widen_cost[(int) wider_mode]
|
||
= rtx_cost (gen_rtx (MULT, wider_mode,
|
||
gen_rtx (ZERO_EXTEND, wider_mode, reg),
|
||
gen_rtx (ZERO_EXTEND, wider_mode, reg)),
|
||
SET);
|
||
mul_highpart_cost[(int) mode]
|
||
= rtx_cost (gen_rtx (TRUNCATE, mode,
|
||
gen_rtx (LSHIFTRT, wider_mode,
|
||
gen_rtx (MULT, wider_mode,
|
||
gen_rtx (ZERO_EXTEND, wider_mode, reg),
|
||
gen_rtx (ZERO_EXTEND, wider_mode, reg)),
|
||
GEN_INT (GET_MODE_BITSIZE (mode)))),
|
||
SET);
|
||
}
|
||
}
|
||
|
||
/* Free the objects we just allocated. */
|
||
end_sequence ();
|
||
obfree (free_point);
|
||
}
|
||
|
||
/* Return an rtx representing minus the value of X.
|
||
MODE is the intended mode of the result,
|
||
useful if X is a CONST_INT. */
|
||
|
||
rtx
|
||
negate_rtx (mode, x)
|
||
enum machine_mode mode;
|
||
rtx x;
|
||
{
|
||
if (GET_CODE (x) == CONST_INT)
|
||
{
|
||
HOST_WIDE_INT val = - INTVAL (x);
|
||
if (GET_MODE_BITSIZE (mode) < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
/* Sign extend the value from the bits that are significant. */
|
||
if (val & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
|
||
val |= (HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (mode);
|
||
else
|
||
val &= ((HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (mode)) - 1;
|
||
}
|
||
return GEN_INT (val);
|
||
}
|
||
else
|
||
return expand_unop (GET_MODE (x), neg_optab, x, NULL_RTX, 0);
|
||
}
|
||
|
||
/* Generate code to store value from rtx VALUE
|
||
into a bit-field within structure STR_RTX
|
||
containing BITSIZE bits starting at bit BITNUM.
|
||
FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
|
||
ALIGN is the alignment that STR_RTX is known to have, measured in bytes.
|
||
TOTAL_SIZE is the size of the structure in bytes, or -1 if varying. */
|
||
|
||
/* ??? Note that there are two different ideas here for how
|
||
to determine the size to count bits within, for a register.
|
||
One is BITS_PER_WORD, and the other is the size of operand 3
|
||
of the insv pattern. (The latter assumes that an n-bit machine
|
||
will be able to insert bit fields up to n bits wide.)
|
||
It isn't certain that either of these is right.
|
||
extract_bit_field has the same quandary. */
|
||
|
||
rtx
|
||
store_bit_field (str_rtx, bitsize, bitnum, fieldmode, value, align, total_size)
|
||
rtx str_rtx;
|
||
register int bitsize;
|
||
int bitnum;
|
||
enum machine_mode fieldmode;
|
||
rtx value;
|
||
int align;
|
||
int total_size;
|
||
{
|
||
int unit = (GET_CODE (str_rtx) == MEM) ? BITS_PER_UNIT : BITS_PER_WORD;
|
||
register int offset = bitnum / unit;
|
||
register int bitpos = bitnum % unit;
|
||
register rtx op0 = str_rtx;
|
||
|
||
if (GET_CODE (str_rtx) == MEM && ! MEM_IN_STRUCT_P (str_rtx))
|
||
abort ();
|
||
|
||
/* Discount the part of the structure before the desired byte.
|
||
We need to know how many bytes are safe to reference after it. */
|
||
if (total_size >= 0)
|
||
total_size -= (bitpos / BIGGEST_ALIGNMENT
|
||
* (BIGGEST_ALIGNMENT / BITS_PER_UNIT));
|
||
|
||
while (GET_CODE (op0) == SUBREG)
|
||
{
|
||
/* The following line once was done only if WORDS_BIG_ENDIAN,
|
||
but I think that is a mistake. WORDS_BIG_ENDIAN is
|
||
meaningful at a much higher level; when structures are copied
|
||
between memory and regs, the higher-numbered regs
|
||
always get higher addresses. */
|
||
offset += SUBREG_WORD (op0);
|
||
/* We used to adjust BITPOS here, but now we do the whole adjustment
|
||
right after the loop. */
|
||
op0 = SUBREG_REG (op0);
|
||
}
|
||
|
||
/* If OP0 is a register, BITPOS must count within a word.
|
||
But as we have it, it counts within whatever size OP0 now has.
|
||
On a bigendian machine, these are not the same, so convert. */
|
||
if (BYTES_BIG_ENDIAN
|
||
&& GET_CODE (op0) != MEM
|
||
&& unit > GET_MODE_BITSIZE (GET_MODE (op0)))
|
||
bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
|
||
|
||
value = protect_from_queue (value, 0);
|
||
|
||
if (flag_force_mem)
|
||
value = force_not_mem (value);
|
||
|
||
/* Note that the adjustment of BITPOS above has no effect on whether
|
||
BITPOS is 0 in a REG bigger than a word. */
|
||
if (GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
|
||
&& (GET_CODE (op0) != MEM
|
||
|| ! SLOW_UNALIGNED_ACCESS
|
||
|| (offset * BITS_PER_UNIT % bitsize == 0
|
||
&& align % GET_MODE_SIZE (fieldmode) == 0))
|
||
&& bitpos == 0 && bitsize == GET_MODE_BITSIZE (fieldmode))
|
||
{
|
||
/* Storing in a full-word or multi-word field in a register
|
||
can be done with just SUBREG. */
|
||
if (GET_MODE (op0) != fieldmode)
|
||
{
|
||
if (GET_CODE (op0) == REG)
|
||
op0 = gen_rtx (SUBREG, fieldmode, op0, offset);
|
||
else
|
||
op0 = change_address (op0, fieldmode,
|
||
plus_constant (XEXP (op0, 0), offset));
|
||
}
|
||
emit_move_insn (op0, value);
|
||
return value;
|
||
}
|
||
|
||
/* Storing an lsb-aligned field in a register
|
||
can be done with a movestrict instruction. */
|
||
|
||
if (GET_CODE (op0) != MEM
|
||
&& (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
|
||
&& bitsize == GET_MODE_BITSIZE (fieldmode)
|
||
&& (GET_MODE (op0) == fieldmode
|
||
|| (movstrict_optab->handlers[(int) fieldmode].insn_code
|
||
!= CODE_FOR_nothing)))
|
||
{
|
||
/* Get appropriate low part of the value being stored. */
|
||
if (GET_CODE (value) == CONST_INT || GET_CODE (value) == REG)
|
||
value = gen_lowpart (fieldmode, value);
|
||
else if (!(GET_CODE (value) == SYMBOL_REF
|
||
|| GET_CODE (value) == LABEL_REF
|
||
|| GET_CODE (value) == CONST))
|
||
value = convert_to_mode (fieldmode, value, 0);
|
||
|
||
if (GET_MODE (op0) == fieldmode)
|
||
emit_move_insn (op0, value);
|
||
else
|
||
{
|
||
int icode = movstrict_optab->handlers[(int) fieldmode].insn_code;
|
||
if(! (*insn_operand_predicate[icode][1]) (value, fieldmode))
|
||
value = copy_to_mode_reg (fieldmode, value);
|
||
emit_insn (GEN_FCN (icode)
|
||
(gen_rtx (SUBREG, fieldmode, op0, offset), value));
|
||
}
|
||
return value;
|
||
}
|
||
|
||
/* Handle fields bigger than a word. */
|
||
|
||
if (bitsize > BITS_PER_WORD)
|
||
{
|
||
/* Here we transfer the words of the field
|
||
in the order least significant first.
|
||
This is because the most significant word is the one which may
|
||
be less than full.
|
||
However, only do that if the value is not BLKmode. */
|
||
|
||
int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
|
||
|
||
int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
|
||
int i;
|
||
|
||
/* This is the mode we must force value to, so that there will be enough
|
||
subwords to extract. Note that fieldmode will often (always?) be
|
||
VOIDmode, because that is what store_field uses to indicate that this
|
||
is a bit field, but passing VOIDmode to operand_subword_force will
|
||
result in an abort. */
|
||
fieldmode = mode_for_size (nwords * BITS_PER_WORD, MODE_INT, 0);
|
||
|
||
for (i = 0; i < nwords; i++)
|
||
{
|
||
/* If I is 0, use the low-order word in both field and target;
|
||
if I is 1, use the next to lowest word; and so on. */
|
||
int wordnum = (backwards ? nwords - i - 1 : i);
|
||
int bit_offset = (backwards
|
||
? MAX (bitsize - (i + 1) * BITS_PER_WORD, 0)
|
||
: i * BITS_PER_WORD);
|
||
store_bit_field (op0, MIN (BITS_PER_WORD,
|
||
bitsize - i * BITS_PER_WORD),
|
||
bitnum + bit_offset, word_mode,
|
||
operand_subword_force (value, wordnum,
|
||
(GET_MODE (value) == VOIDmode
|
||
? fieldmode
|
||
: GET_MODE (value))),
|
||
align, total_size);
|
||
}
|
||
return value;
|
||
}
|
||
|
||
/* From here on we can assume that the field to be stored in is
|
||
a full-word (whatever type that is), since it is shorter than a word. */
|
||
|
||
/* OFFSET is the number of words or bytes (UNIT says which)
|
||
from STR_RTX to the first word or byte containing part of the field. */
|
||
|
||
if (GET_CODE (op0) == REG)
|
||
{
|
||
if (offset != 0
|
||
|| GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
|
||
op0 = gen_rtx (SUBREG, TYPE_MODE (type_for_size (BITS_PER_WORD, 0)),
|
||
op0, offset);
|
||
offset = 0;
|
||
}
|
||
else
|
||
{
|
||
op0 = protect_from_queue (op0, 1);
|
||
}
|
||
|
||
/* If VALUE is a floating-point mode, access it as an integer of the
|
||
corresponding size. This can occur on a machine with 64 bit registers
|
||
that uses SFmode for float. This can also occur for unaligned float
|
||
structure fields. */
|
||
if (GET_MODE_CLASS (GET_MODE (value)) == MODE_FLOAT)
|
||
{
|
||
if (GET_CODE (value) != REG)
|
||
value = copy_to_reg (value);
|
||
value = gen_rtx (SUBREG, word_mode, value, 0);
|
||
}
|
||
|
||
/* Now OFFSET is nonzero only if OP0 is memory
|
||
and is therefore always measured in bytes. */
|
||
|
||
#ifdef HAVE_insv
|
||
if (HAVE_insv
|
||
&& !(bitsize == 1 && GET_CODE (value) == CONST_INT)
|
||
/* Ensure insv's size is wide enough for this field. */
|
||
&& (GET_MODE_BITSIZE (insn_operand_mode[(int) CODE_FOR_insv][3])
|
||
>= bitsize)
|
||
&& ! ((GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG)
|
||
&& (bitsize + bitpos
|
||
> GET_MODE_BITSIZE (insn_operand_mode[(int) CODE_FOR_insv][3]))))
|
||
{
|
||
int xbitpos = bitpos;
|
||
rtx value1;
|
||
rtx xop0 = op0;
|
||
rtx last = get_last_insn ();
|
||
rtx pat;
|
||
enum machine_mode maxmode
|
||
= insn_operand_mode[(int) CODE_FOR_insv][3];
|
||
|
||
int save_volatile_ok = volatile_ok;
|
||
volatile_ok = 1;
|
||
|
||
/* If this machine's insv can only insert into a register, or if we
|
||
are to force MEMs into a register, copy OP0 into a register and
|
||
save it back later. */
|
||
if (GET_CODE (op0) == MEM
|
||
&& (flag_force_mem
|
||
|| ! ((*insn_operand_predicate[(int) CODE_FOR_insv][0])
|
||
(op0, VOIDmode))))
|
||
{
|
||
rtx tempreg;
|
||
enum machine_mode bestmode;
|
||
|
||
/* Get the mode to use for inserting into this field. If OP0 is
|
||
BLKmode, get the smallest mode consistent with the alignment. If
|
||
OP0 is a non-BLKmode object that is no wider than MAXMODE, use its
|
||
mode. Otherwise, use the smallest mode containing the field. */
|
||
|
||
if (GET_MODE (op0) == BLKmode
|
||
|| GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (maxmode))
|
||
bestmode
|
||
= get_best_mode (bitsize, bitnum, align * BITS_PER_UNIT, maxmode,
|
||
MEM_VOLATILE_P (op0));
|
||
else
|
||
bestmode = GET_MODE (op0);
|
||
|
||
if (bestmode == VOIDmode
|
||
|| (SLOW_UNALIGNED_ACCESS && GET_MODE_SIZE (bestmode) > align))
|
||
goto insv_loses;
|
||
|
||
/* Adjust address to point to the containing unit of that mode. */
|
||
unit = GET_MODE_BITSIZE (bestmode);
|
||
/* Compute offset as multiple of this unit, counting in bytes. */
|
||
offset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
|
||
bitpos = bitnum % unit;
|
||
op0 = change_address (op0, bestmode,
|
||
plus_constant (XEXP (op0, 0), offset));
|
||
|
||
/* Fetch that unit, store the bitfield in it, then store the unit. */
|
||
tempreg = copy_to_reg (op0);
|
||
store_bit_field (tempreg, bitsize, bitpos, fieldmode, value,
|
||
align, total_size);
|
||
emit_move_insn (op0, tempreg);
|
||
return value;
|
||
}
|
||
volatile_ok = save_volatile_ok;
|
||
|
||
/* Add OFFSET into OP0's address. */
|
||
if (GET_CODE (xop0) == MEM)
|
||
xop0 = change_address (xop0, byte_mode,
|
||
plus_constant (XEXP (xop0, 0), offset));
|
||
|
||
/* If xop0 is a register, we need it in MAXMODE
|
||
to make it acceptable to the format of insv. */
|
||
if (GET_CODE (xop0) == SUBREG)
|
||
/* We can't just change the mode, because this might clobber op0,
|
||
and we will need the original value of op0 if insv fails. */
|
||
xop0 = gen_rtx (SUBREG, maxmode, SUBREG_REG (xop0), SUBREG_WORD (xop0));
|
||
if (GET_CODE (xop0) == REG && GET_MODE (xop0) != maxmode)
|
||
xop0 = gen_rtx (SUBREG, maxmode, xop0, 0);
|
||
|
||
/* On big-endian machines, we count bits from the most significant.
|
||
If the bit field insn does not, we must invert. */
|
||
|
||
if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
|
||
xbitpos = unit - bitsize - xbitpos;
|
||
|
||
/* We have been counting XBITPOS within UNIT.
|
||
Count instead within the size of the register. */
|
||
if (BITS_BIG_ENDIAN && GET_CODE (xop0) != MEM)
|
||
xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
|
||
|
||
unit = GET_MODE_BITSIZE (maxmode);
|
||
|
||
/* Convert VALUE to maxmode (which insv insn wants) in VALUE1. */
|
||
value1 = value;
|
||
if (GET_MODE (value) != maxmode)
|
||
{
|
||
if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
|
||
{
|
||
/* Optimization: Don't bother really extending VALUE
|
||
if it has all the bits we will actually use. However,
|
||
if we must narrow it, be sure we do it correctly. */
|
||
|
||
if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (maxmode))
|
||
{
|
||
/* Avoid making subreg of a subreg, or of a mem. */
|
||
if (GET_CODE (value1) != REG)
|
||
value1 = copy_to_reg (value1);
|
||
value1 = gen_rtx (SUBREG, maxmode, value1, 0);
|
||
}
|
||
else
|
||
value1 = gen_lowpart (maxmode, value1);
|
||
}
|
||
else if (!CONSTANT_P (value))
|
||
/* Parse phase is supposed to make VALUE's data type
|
||
match that of the component reference, which is a type
|
||
at least as wide as the field; so VALUE should have
|
||
a mode that corresponds to that type. */
|
||
abort ();
|
||
}
|
||
|
||
/* If this machine's insv insists on a register,
|
||
get VALUE1 into a register. */
|
||
if (! ((*insn_operand_predicate[(int) CODE_FOR_insv][3])
|
||
(value1, maxmode)))
|
||
value1 = force_reg (maxmode, value1);
|
||
|
||
pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
|
||
if (pat)
|
||
emit_insn (pat);
|
||
else
|
||
{
|
||
delete_insns_since (last);
|
||
store_fixed_bit_field (op0, offset, bitsize, bitpos, value, align);
|
||
}
|
||
}
|
||
else
|
||
insv_loses:
|
||
#endif
|
||
/* Insv is not available; store using shifts and boolean ops. */
|
||
store_fixed_bit_field (op0, offset, bitsize, bitpos, value, align);
|
||
return value;
|
||
}
|
||
|
||
/* Use shifts and boolean operations to store VALUE
|
||
into a bit field of width BITSIZE
|
||
in a memory location specified by OP0 except offset by OFFSET bytes.
|
||
(OFFSET must be 0 if OP0 is a register.)
|
||
The field starts at position BITPOS within the byte.
|
||
(If OP0 is a register, it may be a full word or a narrower mode,
|
||
but BITPOS still counts within a full word,
|
||
which is significant on bigendian machines.)
|
||
STRUCT_ALIGN is the alignment the structure is known to have (in bytes).
|
||
|
||
Note that protect_from_queue has already been done on OP0 and VALUE. */
|
||
|
||
static void
|
||
store_fixed_bit_field (op0, offset, bitsize, bitpos, value, struct_align)
|
||
register rtx op0;
|
||
register int offset, bitsize, bitpos;
|
||
register rtx value;
|
||
int struct_align;
|
||
{
|
||
register enum machine_mode mode;
|
||
int total_bits = BITS_PER_WORD;
|
||
rtx subtarget, temp;
|
||
int all_zero = 0;
|
||
int all_one = 0;
|
||
|
||
/* There is a case not handled here:
|
||
a structure with a known alignment of just a halfword
|
||
and a field split across two aligned halfwords within the structure.
|
||
Or likewise a structure with a known alignment of just a byte
|
||
and a field split across two bytes.
|
||
Such cases are not supposed to be able to occur. */
|
||
|
||
if (GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG)
|
||
{
|
||
if (offset != 0)
|
||
abort ();
|
||
/* Special treatment for a bit field split across two registers. */
|
||
if (bitsize + bitpos > BITS_PER_WORD)
|
||
{
|
||
store_split_bit_field (op0, bitsize, bitpos,
|
||
value, BITS_PER_WORD);
|
||
return;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Get the proper mode to use for this field. We want a mode that
|
||
includes the entire field. If such a mode would be larger than
|
||
a word, we won't be doing the extraction the normal way. */
|
||
|
||
mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
|
||
struct_align * BITS_PER_UNIT, word_mode,
|
||
GET_CODE (op0) == MEM && MEM_VOLATILE_P (op0));
|
||
|
||
if (mode == VOIDmode)
|
||
{
|
||
/* The only way this should occur is if the field spans word
|
||
boundaries. */
|
||
store_split_bit_field (op0,
|
||
bitsize, bitpos + offset * BITS_PER_UNIT,
|
||
value, struct_align);
|
||
return;
|
||
}
|
||
|
||
total_bits = GET_MODE_BITSIZE (mode);
|
||
|
||
/* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
|
||
be be in the range 0 to total_bits-1, and put any excess bytes in
|
||
OFFSET. */
|
||
if (bitpos >= total_bits)
|
||
{
|
||
offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
|
||
bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
|
||
* BITS_PER_UNIT);
|
||
}
|
||
|
||
/* Get ref to an aligned byte, halfword, or word containing the field.
|
||
Adjust BITPOS to be position within a word,
|
||
and OFFSET to be the offset of that word.
|
||
Then alter OP0 to refer to that word. */
|
||
bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
|
||
offset -= (offset % (total_bits / BITS_PER_UNIT));
|
||
op0 = change_address (op0, mode,
|
||
plus_constant (XEXP (op0, 0), offset));
|
||
}
|
||
|
||
mode = GET_MODE (op0);
|
||
|
||
/* Now MODE is either some integral mode for a MEM as OP0,
|
||
or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
|
||
The bit field is contained entirely within OP0.
|
||
BITPOS is the starting bit number within OP0.
|
||
(OP0's mode may actually be narrower than MODE.) */
|
||
|
||
if (BYTES_BIG_ENDIAN)
|
||
/* BITPOS is the distance between our msb
|
||
and that of the containing datum.
|
||
Convert it to the distance from the lsb. */
|
||
bitpos = total_bits - bitsize - bitpos;
|
||
|
||
/* Now BITPOS is always the distance between our lsb
|
||
and that of OP0. */
|
||
|
||
/* Shift VALUE left by BITPOS bits. If VALUE is not constant,
|
||
we must first convert its mode to MODE. */
|
||
|
||
if (GET_CODE (value) == CONST_INT)
|
||
{
|
||
register HOST_WIDE_INT v = INTVAL (value);
|
||
|
||
if (bitsize < HOST_BITS_PER_WIDE_INT)
|
||
v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
|
||
|
||
if (v == 0)
|
||
all_zero = 1;
|
||
else if ((bitsize < HOST_BITS_PER_WIDE_INT
|
||
&& v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
|
||
|| (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
|
||
all_one = 1;
|
||
|
||
value = lshift_value (mode, value, bitpos, bitsize);
|
||
}
|
||
else
|
||
{
|
||
int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
|
||
&& bitpos + bitsize != GET_MODE_BITSIZE (mode));
|
||
|
||
if (GET_MODE (value) != mode)
|
||
{
|
||
if ((GET_CODE (value) == REG || GET_CODE (value) == SUBREG)
|
||
&& GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (value)))
|
||
value = gen_lowpart (mode, value);
|
||
else
|
||
value = convert_to_mode (mode, value, 1);
|
||
}
|
||
|
||
if (must_and)
|
||
value = expand_binop (mode, and_optab, value,
|
||
mask_rtx (mode, 0, bitsize, 0),
|
||
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
||
if (bitpos > 0)
|
||
value = expand_shift (LSHIFT_EXPR, mode, value,
|
||
build_int_2 (bitpos, 0), NULL_RTX, 1);
|
||
}
|
||
|
||
/* Now clear the chosen bits in OP0,
|
||
except that if VALUE is -1 we need not bother. */
|
||
|
||
subtarget = (GET_CODE (op0) == REG || ! flag_force_mem) ? op0 : 0;
|
||
|
||
if (! all_one)
|
||
{
|
||
temp = expand_binop (mode, and_optab, op0,
|
||
mask_rtx (mode, bitpos, bitsize, 1),
|
||
subtarget, 1, OPTAB_LIB_WIDEN);
|
||
subtarget = temp;
|
||
}
|
||
else
|
||
temp = op0;
|
||
|
||
/* Now logical-or VALUE into OP0, unless it is zero. */
|
||
|
||
if (! all_zero)
|
||
temp = expand_binop (mode, ior_optab, temp, value,
|
||
subtarget, 1, OPTAB_LIB_WIDEN);
|
||
if (op0 != temp)
|
||
emit_move_insn (op0, temp);
|
||
}
|
||
|
||
/* Store a bit field that is split across multiple accessible memory objects.
|
||
|
||
OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
|
||
BITSIZE is the field width; BITPOS the position of its first bit
|
||
(within the word).
|
||
VALUE is the value to store.
|
||
ALIGN is the known alignment of OP0, measured in bytes.
|
||
This is also the size of the memory objects to be used.
|
||
|
||
This does not yet handle fields wider than BITS_PER_WORD. */
|
||
|
||
static void
|
||
store_split_bit_field (op0, bitsize, bitpos, value, align)
|
||
rtx op0;
|
||
int bitsize, bitpos;
|
||
rtx value;
|
||
int align;
|
||
{
|
||
int unit;
|
||
int bitsdone = 0;
|
||
|
||
/* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
|
||
much at a time. */
|
||
if (GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG)
|
||
unit = BITS_PER_WORD;
|
||
else
|
||
unit = MIN (align * BITS_PER_UNIT, BITS_PER_WORD);
|
||
|
||
/* If VALUE is a constant other than a CONST_INT, get it into a register in
|
||
WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
|
||
that VALUE might be a floating-point constant. */
|
||
if (CONSTANT_P (value) && GET_CODE (value) != CONST_INT)
|
||
{
|
||
rtx word = gen_lowpart_common (word_mode, value);
|
||
|
||
if (word && (value != word))
|
||
value = word;
|
||
else
|
||
value = gen_lowpart_common (word_mode,
|
||
force_reg (GET_MODE (value) != VOIDmode
|
||
? GET_MODE (value)
|
||
: word_mode, value));
|
||
}
|
||
|
||
while (bitsdone < bitsize)
|
||
{
|
||
int thissize;
|
||
rtx part, word;
|
||
int thispos;
|
||
int offset;
|
||
|
||
offset = (bitpos + bitsdone) / unit;
|
||
thispos = (bitpos + bitsdone) % unit;
|
||
|
||
/* THISSIZE must not overrun a word boundary. Otherwise,
|
||
store_fixed_bit_field will call us again, and we will mutually
|
||
recurse forever. */
|
||
thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
|
||
thissize = MIN (thissize, unit - thispos);
|
||
|
||
if (BYTES_BIG_ENDIAN)
|
||
{
|
||
int total_bits;
|
||
|
||
/* We must do an endian conversion exactly the same way as it is
|
||
done in extract_bit_field, so that the two calls to
|
||
extract_fixed_bit_field will have comparable arguments. */
|
||
if (GET_CODE (value) != MEM)
|
||
total_bits = BITS_PER_WORD;
|
||
else
|
||
total_bits = GET_MODE_BITSIZE (GET_MODE (value));
|
||
|
||
/* Fetch successively less significant portions. */
|
||
if (GET_CODE (value) == CONST_INT)
|
||
part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
|
||
>> (bitsize - bitsdone - thissize))
|
||
& (((HOST_WIDE_INT) 1 << thissize) - 1));
|
||
else
|
||
/* The args are chosen so that the last part includes the
|
||
lsb. Give extract_bit_field the value it needs (with
|
||
endianness compensation) to fetch the piece we want. */
|
||
part = extract_fixed_bit_field (word_mode, value, 0, thissize,
|
||
total_bits - bitsize + bitsdone,
|
||
NULL_RTX, 1, align);
|
||
}
|
||
else
|
||
{
|
||
/* Fetch successively more significant portions. */
|
||
if (GET_CODE (value) == CONST_INT)
|
||
part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
|
||
>> bitsdone)
|
||
& (((HOST_WIDE_INT) 1 << thissize) - 1));
|
||
else
|
||
part = extract_fixed_bit_field (word_mode, value, 0, thissize,
|
||
bitsdone, NULL_RTX, 1, align);
|
||
}
|
||
|
||
/* If OP0 is a register, then handle OFFSET here.
|
||
|
||
When handling multiword bitfields, extract_bit_field may pass
|
||
down a word_mode SUBREG of a larger REG for a bitfield that actually
|
||
crosses a word boundary. Thus, for a SUBREG, we must find
|
||
the current word starting from the base register. */
|
||
if (GET_CODE (op0) == SUBREG)
|
||
{
|
||
word = operand_subword_force (SUBREG_REG (op0),
|
||
SUBREG_WORD (op0) + offset,
|
||
GET_MODE (SUBREG_REG (op0)));
|
||
offset = 0;
|
||
}
|
||
else if (GET_CODE (op0) == REG)
|
||
{
|
||
word = operand_subword_force (op0, offset, GET_MODE (op0));
|
||
offset = 0;
|
||
}
|
||
else
|
||
word = op0;
|
||
|
||
/* OFFSET is in UNITs, and UNIT is in bits.
|
||
store_fixed_bit_field wants offset in bytes. */
|
||
store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT,
|
||
thissize, thispos, part, align);
|
||
bitsdone += thissize;
|
||
}
|
||
}
|
||
|
||
/* Generate code to extract a byte-field from STR_RTX
|
||
containing BITSIZE bits, starting at BITNUM,
|
||
and put it in TARGET if possible (if TARGET is nonzero).
|
||
Regardless of TARGET, we return the rtx for where the value is placed.
|
||
It may be a QUEUED.
|
||
|
||
STR_RTX is the structure containing the byte (a REG or MEM).
|
||
UNSIGNEDP is nonzero if this is an unsigned bit field.
|
||
MODE is the natural mode of the field value once extracted.
|
||
TMODE is the mode the caller would like the value to have;
|
||
but the value may be returned with type MODE instead.
|
||
|
||
ALIGN is the alignment that STR_RTX is known to have, measured in bytes.
|
||
TOTAL_SIZE is the size in bytes of the containing structure,
|
||
or -1 if varying.
|
||
|
||
If a TARGET is specified and we can store in it at no extra cost,
|
||
we do so, and return TARGET.
|
||
Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
|
||
if they are equally easy. */
|
||
|
||
rtx
|
||
extract_bit_field (str_rtx, bitsize, bitnum, unsignedp,
|
||
target, mode, tmode, align, total_size)
|
||
rtx str_rtx;
|
||
register int bitsize;
|
||
int bitnum;
|
||
int unsignedp;
|
||
rtx target;
|
||
enum machine_mode mode, tmode;
|
||
int align;
|
||
int total_size;
|
||
{
|
||
int unit = (GET_CODE (str_rtx) == MEM) ? BITS_PER_UNIT : BITS_PER_WORD;
|
||
register int offset = bitnum / unit;
|
||
register int bitpos = bitnum % unit;
|
||
register rtx op0 = str_rtx;
|
||
rtx spec_target = target;
|
||
rtx spec_target_subreg = 0;
|
||
|
||
if (GET_CODE (str_rtx) == MEM && ! MEM_IN_STRUCT_P (str_rtx))
|
||
abort ();
|
||
|
||
/* Discount the part of the structure before the desired byte.
|
||
We need to know how many bytes are safe to reference after it. */
|
||
if (total_size >= 0)
|
||
total_size -= (bitpos / BIGGEST_ALIGNMENT
|
||
* (BIGGEST_ALIGNMENT / BITS_PER_UNIT));
|
||
|
||
if (tmode == VOIDmode)
|
||
tmode = mode;
|
||
while (GET_CODE (op0) == SUBREG)
|
||
{
|
||
int outer_size = GET_MODE_BITSIZE (GET_MODE (op0));
|
||
int inner_size = GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)));
|
||
|
||
offset += SUBREG_WORD (op0);
|
||
|
||
if (BYTES_BIG_ENDIAN && (outer_size < inner_size))
|
||
{
|
||
bitpos += inner_size - outer_size;
|
||
if (bitpos > unit)
|
||
{
|
||
offset += (bitpos / unit);
|
||
bitpos %= unit;
|
||
}
|
||
}
|
||
|
||
op0 = SUBREG_REG (op0);
|
||
}
|
||
|
||
/* ??? We currently assume TARGET is at least as big as BITSIZE.
|
||
If that's wrong, the solution is to test for it and set TARGET to 0
|
||
if needed. */
|
||
|
||
/* If OP0 is a register, BITPOS must count within a word.
|
||
But as we have it, it counts within whatever size OP0 now has.
|
||
On a bigendian machine, these are not the same, so convert. */
|
||
if (BYTES_BIG_ENDIAN &&
|
||
GET_CODE (op0) != MEM
|
||
&& unit > GET_MODE_BITSIZE (GET_MODE (op0)))
|
||
bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
|
||
|
||
/* Extracting a full-word or multi-word value
|
||
from a structure in a register or aligned memory.
|
||
This can be done with just SUBREG.
|
||
So too extracting a subword value in
|
||
the least significant part of the register. */
|
||
|
||
if ((GET_CODE (op0) == REG
|
||
|| (GET_CODE (op0) == MEM
|
||
&& (! SLOW_UNALIGNED_ACCESS
|
||
|| (offset * BITS_PER_UNIT % bitsize == 0
|
||
&& align * BITS_PER_UNIT % bitsize == 0))))
|
||
&& ((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
|
||
&& bitpos % BITS_PER_WORD == 0)
|
||
|| (mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0) != BLKmode
|
||
&& (BYTES_BIG_ENDIAN
|
||
? bitpos + bitsize == BITS_PER_WORD
|
||
: bitpos == 0))))
|
||
{
|
||
enum machine_mode mode1
|
||
= mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0);
|
||
|
||
if (mode1 != GET_MODE (op0))
|
||
{
|
||
if (GET_CODE (op0) == REG)
|
||
op0 = gen_rtx (SUBREG, mode1, op0, offset);
|
||
else
|
||
op0 = change_address (op0, mode1,
|
||
plus_constant (XEXP (op0, 0), offset));
|
||
}
|
||
if (mode1 != mode)
|
||
return convert_to_mode (tmode, op0, unsignedp);
|
||
return op0;
|
||
}
|
||
|
||
/* Handle fields bigger than a word. */
|
||
|
||
if (bitsize > BITS_PER_WORD)
|
||
{
|
||
/* Here we transfer the words of the field
|
||
in the order least significant first.
|
||
This is because the most significant word is the one which may
|
||
be less than full. */
|
||
|
||
int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
|
||
int i;
|
||
|
||
if (target == 0 || GET_CODE (target) != REG)
|
||
target = gen_reg_rtx (mode);
|
||
|
||
for (i = 0; i < nwords; i++)
|
||
{
|
||
/* If I is 0, use the low-order word in both field and target;
|
||
if I is 1, use the next to lowest word; and so on. */
|
||
/* Word number in TARGET to use. */
|
||
int wordnum = (WORDS_BIG_ENDIAN
|
||
? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
|
||
: i);
|
||
/* Offset from start of field in OP0. */
|
||
int bit_offset = (WORDS_BIG_ENDIAN
|
||
? MAX (0, bitsize - (i + 1) * BITS_PER_WORD)
|
||
: i * BITS_PER_WORD);
|
||
rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
|
||
rtx result_part
|
||
= extract_bit_field (op0, MIN (BITS_PER_WORD,
|
||
bitsize - i * BITS_PER_WORD),
|
||
bitnum + bit_offset,
|
||
1, target_part, mode, word_mode,
|
||
align, total_size);
|
||
|
||
if (target_part == 0)
|
||
abort ();
|
||
|
||
if (result_part != target_part)
|
||
emit_move_insn (target_part, result_part);
|
||
}
|
||
|
||
if (unsignedp)
|
||
{
|
||
/* Unless we've filled TARGET, the upper regs in a multi-reg value
|
||
need to be zero'd out. */
|
||
if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
|
||
{
|
||
int i,total_words;
|
||
|
||
total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
|
||
for (i = nwords; i < total_words; i++)
|
||
{
|
||
int wordnum = WORDS_BIG_ENDIAN ? total_words - i - 1 : i;
|
||
rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
|
||
emit_move_insn (target_part, const0_rtx);
|
||
}
|
||
}
|
||
return target;
|
||
}
|
||
|
||
/* Signed bit field: sign-extend with two arithmetic shifts. */
|
||
target = expand_shift (LSHIFT_EXPR, mode, target,
|
||
build_int_2 (GET_MODE_BITSIZE (mode) - bitsize, 0),
|
||
NULL_RTX, 0);
|
||
return expand_shift (RSHIFT_EXPR, mode, target,
|
||
build_int_2 (GET_MODE_BITSIZE (mode) - bitsize, 0),
|
||
NULL_RTX, 0);
|
||
}
|
||
|
||
/* From here on we know the desired field is smaller than a word
|
||
so we can assume it is an integer. So we can safely extract it as one
|
||
size of integer, if necessary, and then truncate or extend
|
||
to the size that is wanted. */
|
||
|
||
/* OFFSET is the number of words or bytes (UNIT says which)
|
||
from STR_RTX to the first word or byte containing part of the field. */
|
||
|
||
if (GET_CODE (op0) == REG)
|
||
{
|
||
if (offset != 0
|
||
|| GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
|
||
op0 = gen_rtx (SUBREG, TYPE_MODE (type_for_size (BITS_PER_WORD, 0)),
|
||
op0, offset);
|
||
offset = 0;
|
||
}
|
||
else
|
||
{
|
||
op0 = protect_from_queue (str_rtx, 1);
|
||
}
|
||
|
||
/* Now OFFSET is nonzero only for memory operands. */
|
||
|
||
if (unsignedp)
|
||
{
|
||
#ifdef HAVE_extzv
|
||
if (HAVE_extzv
|
||
&& (GET_MODE_BITSIZE (insn_operand_mode[(int) CODE_FOR_extzv][0])
|
||
>= bitsize)
|
||
&& ! ((GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG)
|
||
&& (bitsize + bitpos
|
||
> GET_MODE_BITSIZE (insn_operand_mode[(int) CODE_FOR_extzv][0]))))
|
||
{
|
||
int xbitpos = bitpos, xoffset = offset;
|
||
rtx bitsize_rtx, bitpos_rtx;
|
||
rtx last = get_last_insn();
|
||
rtx xop0 = op0;
|
||
rtx xtarget = target;
|
||
rtx xspec_target = spec_target;
|
||
rtx xspec_target_subreg = spec_target_subreg;
|
||
rtx pat;
|
||
enum machine_mode maxmode
|
||
= insn_operand_mode[(int) CODE_FOR_extzv][0];
|
||
|
||
if (GET_CODE (xop0) == MEM)
|
||
{
|
||
int save_volatile_ok = volatile_ok;
|
||
volatile_ok = 1;
|
||
|
||
/* Is the memory operand acceptable? */
|
||
if (flag_force_mem
|
||
|| ! ((*insn_operand_predicate[(int) CODE_FOR_extzv][1])
|
||
(xop0, GET_MODE (xop0))))
|
||
{
|
||
/* No, load into a reg and extract from there. */
|
||
enum machine_mode bestmode;
|
||
|
||
/* Get the mode to use for inserting into this field. If
|
||
OP0 is BLKmode, get the smallest mode consistent with the
|
||
alignment. If OP0 is a non-BLKmode object that is no
|
||
wider than MAXMODE, use its mode. Otherwise, use the
|
||
smallest mode containing the field. */
|
||
|
||
if (GET_MODE (xop0) == BLKmode
|
||
|| (GET_MODE_SIZE (GET_MODE (op0))
|
||
> GET_MODE_SIZE (maxmode)))
|
||
bestmode = get_best_mode (bitsize, bitnum,
|
||
align * BITS_PER_UNIT, maxmode,
|
||
MEM_VOLATILE_P (xop0));
|
||
else
|
||
bestmode = GET_MODE (xop0);
|
||
|
||
if (bestmode == VOIDmode
|
||
|| (SLOW_UNALIGNED_ACCESS && GET_MODE_SIZE (bestmode) > align))
|
||
goto extzv_loses;
|
||
|
||
/* Compute offset as multiple of this unit,
|
||
counting in bytes. */
|
||
unit = GET_MODE_BITSIZE (bestmode);
|
||
xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
|
||
xbitpos = bitnum % unit;
|
||
xop0 = change_address (xop0, bestmode,
|
||
plus_constant (XEXP (xop0, 0),
|
||
xoffset));
|
||
/* Fetch it to a register in that size. */
|
||
xop0 = force_reg (bestmode, xop0);
|
||
|
||
/* XBITPOS counts within UNIT, which is what is expected. */
|
||
}
|
||
else
|
||
/* Get ref to first byte containing part of the field. */
|
||
xop0 = change_address (xop0, byte_mode,
|
||
plus_constant (XEXP (xop0, 0), xoffset));
|
||
|
||
volatile_ok = save_volatile_ok;
|
||
}
|
||
|
||
/* If op0 is a register, we need it in MAXMODE (which is usually
|
||
SImode). to make it acceptable to the format of extzv. */
|
||
if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
|
||
abort ();
|
||
if (GET_CODE (xop0) == REG && GET_MODE (xop0) != maxmode)
|
||
xop0 = gen_rtx (SUBREG, maxmode, xop0, 0);
|
||
|
||
/* On big-endian machines, we count bits from the most significant.
|
||
If the bit field insn does not, we must invert. */
|
||
if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
|
||
xbitpos = unit - bitsize - xbitpos;
|
||
|
||
/* Now convert from counting within UNIT to counting in MAXMODE. */
|
||
if (BITS_BIG_ENDIAN && GET_CODE (xop0) != MEM)
|
||
xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
|
||
|
||
unit = GET_MODE_BITSIZE (maxmode);
|
||
|
||
if (xtarget == 0
|
||
|| (flag_force_mem && GET_CODE (xtarget) == MEM))
|
||
xtarget = xspec_target = gen_reg_rtx (tmode);
|
||
|
||
if (GET_MODE (xtarget) != maxmode)
|
||
{
|
||
if (GET_CODE (xtarget) == REG)
|
||
{
|
||
int wider = (GET_MODE_SIZE (maxmode)
|
||
> GET_MODE_SIZE (GET_MODE (xtarget)));
|
||
xtarget = gen_lowpart (maxmode, xtarget);
|
||
if (wider)
|
||
xspec_target_subreg = xtarget;
|
||
}
|
||
else
|
||
xtarget = gen_reg_rtx (maxmode);
|
||
}
|
||
|
||
/* If this machine's extzv insists on a register target,
|
||
make sure we have one. */
|
||
if (! ((*insn_operand_predicate[(int) CODE_FOR_extzv][0])
|
||
(xtarget, maxmode)))
|
||
xtarget = gen_reg_rtx (maxmode);
|
||
|
||
bitsize_rtx = GEN_INT (bitsize);
|
||
bitpos_rtx = GEN_INT (xbitpos);
|
||
|
||
pat = gen_extzv (protect_from_queue (xtarget, 1),
|
||
xop0, bitsize_rtx, bitpos_rtx);
|
||
if (pat)
|
||
{
|
||
emit_insn (pat);
|
||
target = xtarget;
|
||
spec_target = xspec_target;
|
||
spec_target_subreg = xspec_target_subreg;
|
||
}
|
||
else
|
||
{
|
||
delete_insns_since (last);
|
||
target = extract_fixed_bit_field (tmode, op0, offset, bitsize,
|
||
bitpos, target, 1, align);
|
||
}
|
||
}
|
||
else
|
||
extzv_loses:
|
||
#endif
|
||
target = extract_fixed_bit_field (tmode, op0, offset, bitsize, bitpos,
|
||
target, 1, align);
|
||
}
|
||
else
|
||
{
|
||
#ifdef HAVE_extv
|
||
if (HAVE_extv
|
||
&& (GET_MODE_BITSIZE (insn_operand_mode[(int) CODE_FOR_extv][0])
|
||
>= bitsize)
|
||
&& ! ((GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG)
|
||
&& (bitsize + bitpos
|
||
> GET_MODE_BITSIZE (insn_operand_mode[(int) CODE_FOR_extv][0]))))
|
||
{
|
||
int xbitpos = bitpos, xoffset = offset;
|
||
rtx bitsize_rtx, bitpos_rtx;
|
||
rtx last = get_last_insn();
|
||
rtx xop0 = op0, xtarget = target;
|
||
rtx xspec_target = spec_target;
|
||
rtx xspec_target_subreg = spec_target_subreg;
|
||
rtx pat;
|
||
enum machine_mode maxmode
|
||
= insn_operand_mode[(int) CODE_FOR_extv][0];
|
||
|
||
if (GET_CODE (xop0) == MEM)
|
||
{
|
||
/* Is the memory operand acceptable? */
|
||
if (! ((*insn_operand_predicate[(int) CODE_FOR_extv][1])
|
||
(xop0, GET_MODE (xop0))))
|
||
{
|
||
/* No, load into a reg and extract from there. */
|
||
enum machine_mode bestmode;
|
||
|
||
/* Get the mode to use for inserting into this field. If
|
||
OP0 is BLKmode, get the smallest mode consistent with the
|
||
alignment. If OP0 is a non-BLKmode object that is no
|
||
wider than MAXMODE, use its mode. Otherwise, use the
|
||
smallest mode containing the field. */
|
||
|
||
if (GET_MODE (xop0) == BLKmode
|
||
|| (GET_MODE_SIZE (GET_MODE (op0))
|
||
> GET_MODE_SIZE (maxmode)))
|
||
bestmode = get_best_mode (bitsize, bitnum,
|
||
align * BITS_PER_UNIT, maxmode,
|
||
MEM_VOLATILE_P (xop0));
|
||
else
|
||
bestmode = GET_MODE (xop0);
|
||
|
||
if (bestmode == VOIDmode
|
||
|| (SLOW_UNALIGNED_ACCESS && GET_MODE_SIZE (bestmode) > align))
|
||
goto extv_loses;
|
||
|
||
/* Compute offset as multiple of this unit,
|
||
counting in bytes. */
|
||
unit = GET_MODE_BITSIZE (bestmode);
|
||
xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
|
||
xbitpos = bitnum % unit;
|
||
xop0 = change_address (xop0, bestmode,
|
||
plus_constant (XEXP (xop0, 0),
|
||
xoffset));
|
||
/* Fetch it to a register in that size. */
|
||
xop0 = force_reg (bestmode, xop0);
|
||
|
||
/* XBITPOS counts within UNIT, which is what is expected. */
|
||
}
|
||
else
|
||
/* Get ref to first byte containing part of the field. */
|
||
xop0 = change_address (xop0, byte_mode,
|
||
plus_constant (XEXP (xop0, 0), xoffset));
|
||
}
|
||
|
||
/* If op0 is a register, we need it in MAXMODE (which is usually
|
||
SImode) to make it acceptable to the format of extv. */
|
||
if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
|
||
abort ();
|
||
if (GET_CODE (xop0) == REG && GET_MODE (xop0) != maxmode)
|
||
xop0 = gen_rtx (SUBREG, maxmode, xop0, 0);
|
||
|
||
/* On big-endian machines, we count bits from the most significant.
|
||
If the bit field insn does not, we must invert. */
|
||
if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
|
||
xbitpos = unit - bitsize - xbitpos;
|
||
|
||
/* XBITPOS counts within a size of UNIT.
|
||
Adjust to count within a size of MAXMODE. */
|
||
if (BITS_BIG_ENDIAN && GET_CODE (xop0) != MEM)
|
||
xbitpos += (GET_MODE_BITSIZE (maxmode) - unit);
|
||
|
||
unit = GET_MODE_BITSIZE (maxmode);
|
||
|
||
if (xtarget == 0
|
||
|| (flag_force_mem && GET_CODE (xtarget) == MEM))
|
||
xtarget = xspec_target = gen_reg_rtx (tmode);
|
||
|
||
if (GET_MODE (xtarget) != maxmode)
|
||
{
|
||
if (GET_CODE (xtarget) == REG)
|
||
{
|
||
int wider = (GET_MODE_SIZE (maxmode)
|
||
> GET_MODE_SIZE (GET_MODE (xtarget)));
|
||
xtarget = gen_lowpart (maxmode, xtarget);
|
||
if (wider)
|
||
xspec_target_subreg = xtarget;
|
||
}
|
||
else
|
||
xtarget = gen_reg_rtx (maxmode);
|
||
}
|
||
|
||
/* If this machine's extv insists on a register target,
|
||
make sure we have one. */
|
||
if (! ((*insn_operand_predicate[(int) CODE_FOR_extv][0])
|
||
(xtarget, maxmode)))
|
||
xtarget = gen_reg_rtx (maxmode);
|
||
|
||
bitsize_rtx = GEN_INT (bitsize);
|
||
bitpos_rtx = GEN_INT (xbitpos);
|
||
|
||
pat = gen_extv (protect_from_queue (xtarget, 1),
|
||
xop0, bitsize_rtx, bitpos_rtx);
|
||
if (pat)
|
||
{
|
||
emit_insn (pat);
|
||
target = xtarget;
|
||
spec_target = xspec_target;
|
||
spec_target_subreg = xspec_target_subreg;
|
||
}
|
||
else
|
||
{
|
||
delete_insns_since (last);
|
||
target = extract_fixed_bit_field (tmode, op0, offset, bitsize,
|
||
bitpos, target, 0, align);
|
||
}
|
||
}
|
||
else
|
||
extv_loses:
|
||
#endif
|
||
target = extract_fixed_bit_field (tmode, op0, offset, bitsize, bitpos,
|
||
target, 0, align);
|
||
}
|
||
if (target == spec_target)
|
||
return target;
|
||
if (target == spec_target_subreg)
|
||
return spec_target;
|
||
if (GET_MODE (target) != tmode && GET_MODE (target) != mode)
|
||
{
|
||
/* If the target mode is floating-point, first convert to the
|
||
integer mode of that size and then access it as a floating-point
|
||
value via a SUBREG. */
|
||
if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
|
||
{
|
||
target = convert_to_mode (mode_for_size (GET_MODE_BITSIZE (tmode),
|
||
MODE_INT, 0),
|
||
target, unsignedp);
|
||
if (GET_CODE (target) != REG)
|
||
target = copy_to_reg (target);
|
||
return gen_rtx (SUBREG, tmode, target, 0);
|
||
}
|
||
else
|
||
return convert_to_mode (tmode, target, unsignedp);
|
||
}
|
||
return target;
|
||
}
|
||
|
||
/* Extract a bit field using shifts and boolean operations
|
||
Returns an rtx to represent the value.
|
||
OP0 addresses a register (word) or memory (byte).
|
||
BITPOS says which bit within the word or byte the bit field starts in.
|
||
OFFSET says how many bytes farther the bit field starts;
|
||
it is 0 if OP0 is a register.
|
||
BITSIZE says how many bits long the bit field is.
|
||
(If OP0 is a register, it may be narrower than a full word,
|
||
but BITPOS still counts within a full word,
|
||
which is significant on bigendian machines.)
|
||
|
||
UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
|
||
If TARGET is nonzero, attempts to store the value there
|
||
and return TARGET, but this is not guaranteed.
|
||
If TARGET is not used, create a pseudo-reg of mode TMODE for the value.
|
||
|
||
ALIGN is the alignment that STR_RTX is known to have, measured in bytes. */
|
||
|
||
static rtx
|
||
extract_fixed_bit_field (tmode, op0, offset, bitsize, bitpos,
|
||
target, unsignedp, align)
|
||
enum machine_mode tmode;
|
||
register rtx op0, target;
|
||
register int offset, bitsize, bitpos;
|
||
int unsignedp;
|
||
int align;
|
||
{
|
||
int total_bits = BITS_PER_WORD;
|
||
enum machine_mode mode;
|
||
|
||
if (GET_CODE (op0) == SUBREG || GET_CODE (op0) == REG)
|
||
{
|
||
/* Special treatment for a bit field split across two registers. */
|
||
if (bitsize + bitpos > BITS_PER_WORD)
|
||
return extract_split_bit_field (op0, bitsize, bitpos,
|
||
unsignedp, align);
|
||
}
|
||
else
|
||
{
|
||
/* Get the proper mode to use for this field. We want a mode that
|
||
includes the entire field. If such a mode would be larger than
|
||
a word, we won't be doing the extraction the normal way. */
|
||
|
||
mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
|
||
align * BITS_PER_UNIT, word_mode,
|
||
GET_CODE (op0) == MEM && MEM_VOLATILE_P (op0));
|
||
|
||
if (mode == VOIDmode)
|
||
/* The only way this should occur is if the field spans word
|
||
boundaries. */
|
||
return extract_split_bit_field (op0, bitsize,
|
||
bitpos + offset * BITS_PER_UNIT,
|
||
unsignedp, align);
|
||
|
||
total_bits = GET_MODE_BITSIZE (mode);
|
||
|
||
/* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
|
||
be be in the range 0 to total_bits-1, and put any excess bytes in
|
||
OFFSET. */
|
||
if (bitpos >= total_bits)
|
||
{
|
||
offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
|
||
bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
|
||
* BITS_PER_UNIT);
|
||
}
|
||
|
||
/* Get ref to an aligned byte, halfword, or word containing the field.
|
||
Adjust BITPOS to be position within a word,
|
||
and OFFSET to be the offset of that word.
|
||
Then alter OP0 to refer to that word. */
|
||
bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
|
||
offset -= (offset % (total_bits / BITS_PER_UNIT));
|
||
op0 = change_address (op0, mode,
|
||
plus_constant (XEXP (op0, 0), offset));
|
||
}
|
||
|
||
mode = GET_MODE (op0);
|
||
|
||
if (BYTES_BIG_ENDIAN)
|
||
{
|
||
/* BITPOS is the distance between our msb and that of OP0.
|
||
Convert it to the distance from the lsb. */
|
||
|
||
bitpos = total_bits - bitsize - bitpos;
|
||
}
|
||
|
||
/* Now BITPOS is always the distance between the field's lsb and that of OP0.
|
||
We have reduced the big-endian case to the little-endian case. */
|
||
|
||
if (unsignedp)
|
||
{
|
||
if (bitpos)
|
||
{
|
||
/* If the field does not already start at the lsb,
|
||
shift it so it does. */
|
||
tree amount = build_int_2 (bitpos, 0);
|
||
/* Maybe propagate the target for the shift. */
|
||
/* But not if we will return it--could confuse integrate.c. */
|
||
rtx subtarget = (target != 0 && GET_CODE (target) == REG
|
||
&& !REG_FUNCTION_VALUE_P (target)
|
||
? target : 0);
|
||
if (tmode != mode) subtarget = 0;
|
||
op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
|
||
}
|
||
/* Convert the value to the desired mode. */
|
||
if (mode != tmode)
|
||
op0 = convert_to_mode (tmode, op0, 1);
|
||
|
||
/* Unless the msb of the field used to be the msb when we shifted,
|
||
mask out the upper bits. */
|
||
|
||
if (GET_MODE_BITSIZE (mode) != bitpos + bitsize
|
||
#if 0
|
||
#ifdef SLOW_ZERO_EXTEND
|
||
/* Always generate an `and' if
|
||
we just zero-extended op0 and SLOW_ZERO_EXTEND, since it
|
||
will combine fruitfully with the zero-extend. */
|
||
|| tmode != mode
|
||
#endif
|
||
#endif
|
||
)
|
||
return expand_binop (GET_MODE (op0), and_optab, op0,
|
||
mask_rtx (GET_MODE (op0), 0, bitsize, 0),
|
||
target, 1, OPTAB_LIB_WIDEN);
|
||
return op0;
|
||
}
|
||
|
||
/* To extract a signed bit-field, first shift its msb to the msb of the word,
|
||
then arithmetic-shift its lsb to the lsb of the word. */
|
||
op0 = force_reg (mode, op0);
|
||
if (mode != tmode)
|
||
target = 0;
|
||
|
||
/* Find the narrowest integer mode that contains the field. */
|
||
|
||
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
|
||
mode = GET_MODE_WIDER_MODE (mode))
|
||
if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
|
||
{
|
||
op0 = convert_to_mode (mode, op0, 0);
|
||
break;
|
||
}
|
||
|
||
if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
|
||
{
|
||
tree amount = build_int_2 (GET_MODE_BITSIZE (mode) - (bitsize + bitpos), 0);
|
||
/* Maybe propagate the target for the shift. */
|
||
/* But not if we will return the result--could confuse integrate.c. */
|
||
rtx subtarget = (target != 0 && GET_CODE (target) == REG
|
||
&& ! REG_FUNCTION_VALUE_P (target)
|
||
? target : 0);
|
||
op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
|
||
}
|
||
|
||
return expand_shift (RSHIFT_EXPR, mode, op0,
|
||
build_int_2 (GET_MODE_BITSIZE (mode) - bitsize, 0),
|
||
target, 0);
|
||
}
|
||
|
||
/* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
|
||
of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
|
||
complement of that if COMPLEMENT. The mask is truncated if
|
||
necessary to the width of mode MODE. The mask is zero-extended if
|
||
BITSIZE+BITPOS is too small for MODE. */
|
||
|
||
static rtx
|
||
mask_rtx (mode, bitpos, bitsize, complement)
|
||
enum machine_mode mode;
|
||
int bitpos, bitsize, complement;
|
||
{
|
||
HOST_WIDE_INT masklow, maskhigh;
|
||
|
||
if (bitpos < HOST_BITS_PER_WIDE_INT)
|
||
masklow = (HOST_WIDE_INT) -1 << bitpos;
|
||
else
|
||
masklow = 0;
|
||
|
||
if (bitpos + bitsize < HOST_BITS_PER_WIDE_INT)
|
||
masklow &= ((unsigned HOST_WIDE_INT) -1
|
||
>> (HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
|
||
|
||
if (bitpos <= HOST_BITS_PER_WIDE_INT)
|
||
maskhigh = -1;
|
||
else
|
||
maskhigh = (HOST_WIDE_INT) -1 << (bitpos - HOST_BITS_PER_WIDE_INT);
|
||
|
||
if (bitpos + bitsize > HOST_BITS_PER_WIDE_INT)
|
||
maskhigh &= ((unsigned HOST_WIDE_INT) -1
|
||
>> (2 * HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
|
||
else
|
||
maskhigh = 0;
|
||
|
||
if (complement)
|
||
{
|
||
maskhigh = ~maskhigh;
|
||
masklow = ~masklow;
|
||
}
|
||
|
||
return immed_double_const (masklow, maskhigh, mode);
|
||
}
|
||
|
||
/* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
|
||
VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
|
||
|
||
static rtx
|
||
lshift_value (mode, value, bitpos, bitsize)
|
||
enum machine_mode mode;
|
||
rtx value;
|
||
int bitpos, bitsize;
|
||
{
|
||
unsigned HOST_WIDE_INT v = INTVAL (value);
|
||
HOST_WIDE_INT low, high;
|
||
|
||
if (bitsize < HOST_BITS_PER_WIDE_INT)
|
||
v &= ~((HOST_WIDE_INT) -1 << bitsize);
|
||
|
||
if (bitpos < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
low = v << bitpos;
|
||
high = (bitpos > 0 ? (v >> (HOST_BITS_PER_WIDE_INT - bitpos)) : 0);
|
||
}
|
||
else
|
||
{
|
||
low = 0;
|
||
high = v << (bitpos - HOST_BITS_PER_WIDE_INT);
|
||
}
|
||
|
||
return immed_double_const (low, high, mode);
|
||
}
|
||
|
||
/* Extract a bit field that is split across two words
|
||
and return an RTX for the result.
|
||
|
||
OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
|
||
BITSIZE is the field width; BITPOS, position of its first bit, in the word.
|
||
UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend.
|
||
|
||
ALIGN is the known alignment of OP0, measured in bytes.
|
||
This is also the size of the memory objects to be used. */
|
||
|
||
static rtx
|
||
extract_split_bit_field (op0, bitsize, bitpos, unsignedp, align)
|
||
rtx op0;
|
||
int bitsize, bitpos, unsignedp, align;
|
||
{
|
||
int unit;
|
||
int bitsdone = 0;
|
||
rtx result;
|
||
int first = 1;
|
||
|
||
/* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
|
||
much at a time. */
|
||
if (GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG)
|
||
unit = BITS_PER_WORD;
|
||
else
|
||
unit = MIN (align * BITS_PER_UNIT, BITS_PER_WORD);
|
||
|
||
while (bitsdone < bitsize)
|
||
{
|
||
int thissize;
|
||
rtx part, word;
|
||
int thispos;
|
||
int offset;
|
||
|
||
offset = (bitpos + bitsdone) / unit;
|
||
thispos = (bitpos + bitsdone) % unit;
|
||
|
||
/* THISSIZE must not overrun a word boundary. Otherwise,
|
||
extract_fixed_bit_field will call us again, and we will mutually
|
||
recurse forever. */
|
||
thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
|
||
thissize = MIN (thissize, unit - thispos);
|
||
|
||
/* If OP0 is a register, then handle OFFSET here.
|
||
|
||
When handling multiword bitfields, extract_bit_field may pass
|
||
down a word_mode SUBREG of a larger REG for a bitfield that actually
|
||
crosses a word boundary. Thus, for a SUBREG, we must find
|
||
the current word starting from the base register. */
|
||
if (GET_CODE (op0) == SUBREG)
|
||
{
|
||
word = operand_subword_force (SUBREG_REG (op0),
|
||
SUBREG_WORD (op0) + offset,
|
||
GET_MODE (SUBREG_REG (op0)));
|
||
offset = 0;
|
||
}
|
||
else if (GET_CODE (op0) == REG)
|
||
{
|
||
word = operand_subword_force (op0, offset, GET_MODE (op0));
|
||
offset = 0;
|
||
}
|
||
else
|
||
word = op0;
|
||
|
||
/* Extract the parts in bit-counting order,
|
||
whose meaning is determined by BYTES_PER_UNIT.
|
||
OFFSET is in UNITs, and UNIT is in bits.
|
||
extract_fixed_bit_field wants offset in bytes. */
|
||
part = extract_fixed_bit_field (word_mode, word,
|
||
offset * unit / BITS_PER_UNIT,
|
||
thissize, thispos, 0, 1, align);
|
||
bitsdone += thissize;
|
||
|
||
/* Shift this part into place for the result. */
|
||
if (BYTES_BIG_ENDIAN)
|
||
{
|
||
if (bitsize != bitsdone)
|
||
part = expand_shift (LSHIFT_EXPR, word_mode, part,
|
||
build_int_2 (bitsize - bitsdone, 0), 0, 1);
|
||
}
|
||
else
|
||
{
|
||
if (bitsdone != thissize)
|
||
part = expand_shift (LSHIFT_EXPR, word_mode, part,
|
||
build_int_2 (bitsdone - thissize, 0), 0, 1);
|
||
}
|
||
|
||
if (first)
|
||
result = part;
|
||
else
|
||
/* Combine the parts with bitwise or. This works
|
||
because we extracted each part as an unsigned bit field. */
|
||
result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
|
||
OPTAB_LIB_WIDEN);
|
||
|
||
first = 0;
|
||
}
|
||
|
||
/* Unsigned bit field: we are done. */
|
||
if (unsignedp)
|
||
return result;
|
||
/* Signed bit field: sign-extend with two arithmetic shifts. */
|
||
result = expand_shift (LSHIFT_EXPR, word_mode, result,
|
||
build_int_2 (BITS_PER_WORD - bitsize, 0),
|
||
NULL_RTX, 0);
|
||
return expand_shift (RSHIFT_EXPR, word_mode, result,
|
||
build_int_2 (BITS_PER_WORD - bitsize, 0), NULL_RTX, 0);
|
||
}
|
||
|
||
/* Add INC into TARGET. */
|
||
|
||
void
|
||
expand_inc (target, inc)
|
||
rtx target, inc;
|
||
{
|
||
rtx value = expand_binop (GET_MODE (target), add_optab,
|
||
target, inc,
|
||
target, 0, OPTAB_LIB_WIDEN);
|
||
if (value != target)
|
||
emit_move_insn (target, value);
|
||
}
|
||
|
||
/* Subtract DEC from TARGET. */
|
||
|
||
void
|
||
expand_dec (target, dec)
|
||
rtx target, dec;
|
||
{
|
||
rtx value = expand_binop (GET_MODE (target), sub_optab,
|
||
target, dec,
|
||
target, 0, OPTAB_LIB_WIDEN);
|
||
if (value != target)
|
||
emit_move_insn (target, value);
|
||
}
|
||
|
||
/* Output a shift instruction for expression code CODE,
|
||
with SHIFTED being the rtx for the value to shift,
|
||
and AMOUNT the tree for the amount to shift by.
|
||
Store the result in the rtx TARGET, if that is convenient.
|
||
If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
|
||
Return the rtx for where the value is. */
|
||
|
||
rtx
|
||
expand_shift (code, mode, shifted, amount, target, unsignedp)
|
||
enum tree_code code;
|
||
register enum machine_mode mode;
|
||
rtx shifted;
|
||
tree amount;
|
||
register rtx target;
|
||
int unsignedp;
|
||
{
|
||
register rtx op1, temp = 0;
|
||
register int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
|
||
register int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
|
||
int try;
|
||
|
||
/* Previously detected shift-counts computed by NEGATE_EXPR
|
||
and shifted in the other direction; but that does not work
|
||
on all machines. */
|
||
|
||
op1 = expand_expr (amount, NULL_RTX, VOIDmode, 0);
|
||
|
||
#ifdef SHIFT_COUNT_TRUNCATED
|
||
if (SHIFT_COUNT_TRUNCATED
|
||
&& GET_CODE (op1) == CONST_INT
|
||
&& (unsigned HOST_WIDE_INT) INTVAL (op1) >= GET_MODE_BITSIZE (mode))
|
||
op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
|
||
% GET_MODE_BITSIZE (mode));
|
||
#endif
|
||
|
||
if (op1 == const0_rtx)
|
||
return shifted;
|
||
|
||
for (try = 0; temp == 0 && try < 3; try++)
|
||
{
|
||
enum optab_methods methods;
|
||
|
||
if (try == 0)
|
||
methods = OPTAB_DIRECT;
|
||
else if (try == 1)
|
||
methods = OPTAB_WIDEN;
|
||
else
|
||
methods = OPTAB_LIB_WIDEN;
|
||
|
||
if (rotate)
|
||
{
|
||
/* Widening does not work for rotation. */
|
||
if (methods == OPTAB_WIDEN)
|
||
continue;
|
||
else if (methods == OPTAB_LIB_WIDEN)
|
||
{
|
||
/* If we have been unable to open-code this by a rotation,
|
||
do it as the IOR of two shifts. I.e., to rotate A
|
||
by N bits, compute (A << N) | ((unsigned) A >> (C - N))
|
||
where C is the bitsize of A.
|
||
|
||
It is theoretically possible that the target machine might
|
||
not be able to perform either shift and hence we would
|
||
be making two libcalls rather than just the one for the
|
||
shift (similarly if IOR could not be done). We will allow
|
||
this extremely unlikely lossage to avoid complicating the
|
||
code below. */
|
||
|
||
rtx subtarget = target == shifted ? 0 : target;
|
||
rtx temp1;
|
||
tree type = TREE_TYPE (amount);
|
||
tree new_amount = make_tree (type, op1);
|
||
tree other_amount
|
||
= fold (build (MINUS_EXPR, type,
|
||
convert (type,
|
||
build_int_2 (GET_MODE_BITSIZE (mode),
|
||
0)),
|
||
amount));
|
||
|
||
shifted = force_reg (mode, shifted);
|
||
|
||
temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
|
||
mode, shifted, new_amount, subtarget, 1);
|
||
temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
|
||
mode, shifted, other_amount, 0, 1);
|
||
return expand_binop (mode, ior_optab, temp, temp1, target,
|
||
unsignedp, methods);
|
||
}
|
||
|
||
temp = expand_binop (mode,
|
||
left ? rotl_optab : rotr_optab,
|
||
shifted, op1, target, unsignedp, methods);
|
||
|
||
/* If we don't have the rotate, but we are rotating by a constant
|
||
that is in range, try a rotate in the opposite direction. */
|
||
|
||
if (temp == 0 && GET_CODE (op1) == CONST_INT
|
||
&& INTVAL (op1) > 0 && INTVAL (op1) < GET_MODE_BITSIZE (mode))
|
||
temp = expand_binop (mode,
|
||
left ? rotr_optab : rotl_optab,
|
||
shifted,
|
||
GEN_INT (GET_MODE_BITSIZE (mode)
|
||
- INTVAL (op1)),
|
||
target, unsignedp, methods);
|
||
}
|
||
else if (unsignedp)
|
||
temp = expand_binop (mode,
|
||
left ? ashl_optab : lshr_optab,
|
||
shifted, op1, target, unsignedp, methods);
|
||
|
||
/* Do arithmetic shifts.
|
||
Also, if we are going to widen the operand, we can just as well
|
||
use an arithmetic right-shift instead of a logical one. */
|
||
if (temp == 0 && ! rotate
|
||
&& (! unsignedp || (! left && methods == OPTAB_WIDEN)))
|
||
{
|
||
enum optab_methods methods1 = methods;
|
||
|
||
/* If trying to widen a log shift to an arithmetic shift,
|
||
don't accept an arithmetic shift of the same size. */
|
||
if (unsignedp)
|
||
methods1 = OPTAB_MUST_WIDEN;
|
||
|
||
/* Arithmetic shift */
|
||
|
||
temp = expand_binop (mode,
|
||
left ? ashl_optab : ashr_optab,
|
||
shifted, op1, target, unsignedp, methods1);
|
||
}
|
||
|
||
/* We used to try extzv here for logical right shifts, but that was
|
||
only useful for one machine, the VAX, and caused poor code
|
||
generation there for lshrdi3, so the code was deleted and a
|
||
define_expand for lshrsi3 was added to vax.md. */
|
||
}
|
||
|
||
if (temp == 0)
|
||
abort ();
|
||
return temp;
|
||
}
|
||
|
||
enum alg_code { alg_zero, alg_m, alg_shift,
|
||
alg_add_t_m2, alg_sub_t_m2,
|
||
alg_add_factor, alg_sub_factor,
|
||
alg_add_t2_m, alg_sub_t2_m,
|
||
alg_add, alg_subtract, alg_factor, alg_shiftop };
|
||
|
||
/* This structure records a sequence of operations.
|
||
`ops' is the number of operations recorded.
|
||
`cost' is their total cost.
|
||
The operations are stored in `op' and the corresponding
|
||
logarithms of the integer coefficients in `log'.
|
||
|
||
These are the operations:
|
||
alg_zero total := 0;
|
||
alg_m total := multiplicand;
|
||
alg_shift total := total * coeff
|
||
alg_add_t_m2 total := total + multiplicand * coeff;
|
||
alg_sub_t_m2 total := total - multiplicand * coeff;
|
||
alg_add_factor total := total * coeff + total;
|
||
alg_sub_factor total := total * coeff - total;
|
||
alg_add_t2_m total := total * coeff + multiplicand;
|
||
alg_sub_t2_m total := total * coeff - multiplicand;
|
||
|
||
The first operand must be either alg_zero or alg_m. */
|
||
|
||
struct algorithm
|
||
{
|
||
short cost;
|
||
short ops;
|
||
/* The size of the OP and LOG fields are not directly related to the
|
||
word size, but the worst-case algorithms will be if we have few
|
||
consecutive ones or zeros, i.e., a multiplicand like 10101010101...
|
||
In that case we will generate shift-by-2, add, shift-by-2, add,...,
|
||
in total wordsize operations. */
|
||
enum alg_code op[MAX_BITS_PER_WORD];
|
||
char log[MAX_BITS_PER_WORD];
|
||
};
|
||
|
||
/* Compute and return the best algorithm for multiplying by T.
|
||
The algorithm must cost less than cost_limit
|
||
If retval.cost >= COST_LIMIT, no algorithm was found and all
|
||
other field of the returned struct are undefined. */
|
||
|
||
static void
|
||
synth_mult (alg_out, t, cost_limit)
|
||
struct algorithm *alg_out;
|
||
unsigned HOST_WIDE_INT t;
|
||
int cost_limit;
|
||
{
|
||
int m;
|
||
struct algorithm *alg_in, *best_alg;
|
||
unsigned int cost;
|
||
unsigned HOST_WIDE_INT q;
|
||
|
||
/* Indicate that no algorithm is yet found. If no algorithm
|
||
is found, this value will be returned and indicate failure. */
|
||
alg_out->cost = cost_limit;
|
||
|
||
if (cost_limit <= 0)
|
||
return;
|
||
|
||
/* t == 1 can be done in zero cost. */
|
||
if (t == 1)
|
||
{
|
||
alg_out->ops = 1;
|
||
alg_out->cost = 0;
|
||
alg_out->op[0] = alg_m;
|
||
return;
|
||
}
|
||
|
||
/* t == 0 sometimes has a cost. If it does and it exceeds our limit,
|
||
fail now. */
|
||
if (t == 0)
|
||
{
|
||
if (zero_cost >= cost_limit)
|
||
return;
|
||
else
|
||
{
|
||
alg_out->ops = 1;
|
||
alg_out->cost = zero_cost;
|
||
alg_out->op[0] = alg_zero;
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* We'll be needing a couple extra algorithm structures now. */
|
||
|
||
alg_in = (struct algorithm *)alloca (sizeof (struct algorithm));
|
||
best_alg = (struct algorithm *)alloca (sizeof (struct algorithm));
|
||
|
||
/* If we have a group of zero bits at the low-order part of T, try
|
||
multiplying by the remaining bits and then doing a shift. */
|
||
|
||
if ((t & 1) == 0)
|
||
{
|
||
m = floor_log2 (t & -t); /* m = number of low zero bits */
|
||
q = t >> m;
|
||
cost = shift_cost[m];
|
||
synth_mult (alg_in, q, cost_limit - cost);
|
||
|
||
cost += alg_in->cost;
|
||
if (cost < cost_limit)
|
||
{
|
||
struct algorithm *x;
|
||
x = alg_in, alg_in = best_alg, best_alg = x;
|
||
best_alg->log[best_alg->ops] = m;
|
||
best_alg->op[best_alg->ops] = alg_shift;
|
||
cost_limit = cost;
|
||
}
|
||
}
|
||
|
||
/* If we have an odd number, add or subtract one. */
|
||
if ((t & 1) != 0)
|
||
{
|
||
unsigned HOST_WIDE_INT w;
|
||
|
||
for (w = 1; (w & t) != 0; w <<= 1)
|
||
;
|
||
if (w > 2
|
||
/* Reject the case where t is 3.
|
||
Thus we prefer addition in that case. */
|
||
&& t != 3)
|
||
{
|
||
/* T ends with ...111. Multiply by (T + 1) and subtract 1. */
|
||
|
||
cost = add_cost;
|
||
synth_mult (alg_in, t + 1, cost_limit - cost);
|
||
|
||
cost += alg_in->cost;
|
||
if (cost < cost_limit)
|
||
{
|
||
struct algorithm *x;
|
||
x = alg_in, alg_in = best_alg, best_alg = x;
|
||
best_alg->log[best_alg->ops] = 0;
|
||
best_alg->op[best_alg->ops] = alg_sub_t_m2;
|
||
cost_limit = cost;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
|
||
|
||
cost = add_cost;
|
||
synth_mult (alg_in, t - 1, cost_limit - cost);
|
||
|
||
cost += alg_in->cost;
|
||
if (cost < cost_limit)
|
||
{
|
||
struct algorithm *x;
|
||
x = alg_in, alg_in = best_alg, best_alg = x;
|
||
best_alg->log[best_alg->ops] = 0;
|
||
best_alg->op[best_alg->ops] = alg_add_t_m2;
|
||
cost_limit = cost;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Look for factors of t of the form
|
||
t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
|
||
If we find such a factor, we can multiply by t using an algorithm that
|
||
multiplies by q, shift the result by m and add/subtract it to itself.
|
||
|
||
We search for large factors first and loop down, even if large factors
|
||
are less probable than small; if we find a large factor we will find a
|
||
good sequence quickly, and therefore be able to prune (by decreasing
|
||
COST_LIMIT) the search. */
|
||
|
||
for (m = floor_log2 (t - 1); m >= 2; m--)
|
||
{
|
||
unsigned HOST_WIDE_INT d;
|
||
|
||
d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
|
||
if (t % d == 0 && t > d)
|
||
{
|
||
cost = MIN (shiftadd_cost[m], add_cost + shift_cost[m]);
|
||
synth_mult (alg_in, t / d, cost_limit - cost);
|
||
|
||
cost += alg_in->cost;
|
||
if (cost < cost_limit)
|
||
{
|
||
struct algorithm *x;
|
||
x = alg_in, alg_in = best_alg, best_alg = x;
|
||
best_alg->log[best_alg->ops] = m;
|
||
best_alg->op[best_alg->ops] = alg_add_factor;
|
||
cost_limit = cost;
|
||
}
|
||
/* Other factors will have been taken care of in the recursion. */
|
||
break;
|
||
}
|
||
|
||
d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
|
||
if (t % d == 0 && t > d)
|
||
{
|
||
cost = MIN (shiftsub_cost[m], add_cost + shift_cost[m]);
|
||
synth_mult (alg_in, t / d, cost_limit - cost);
|
||
|
||
cost += alg_in->cost;
|
||
if (cost < cost_limit)
|
||
{
|
||
struct algorithm *x;
|
||
x = alg_in, alg_in = best_alg, best_alg = x;
|
||
best_alg->log[best_alg->ops] = m;
|
||
best_alg->op[best_alg->ops] = alg_sub_factor;
|
||
cost_limit = cost;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Try shift-and-add (load effective address) instructions,
|
||
i.e. do a*3, a*5, a*9. */
|
||
if ((t & 1) != 0)
|
||
{
|
||
q = t - 1;
|
||
q = q & -q;
|
||
m = exact_log2 (q);
|
||
if (m >= 0)
|
||
{
|
||
cost = shiftadd_cost[m];
|
||
synth_mult (alg_in, (t - 1) >> m, cost_limit - cost);
|
||
|
||
cost += alg_in->cost;
|
||
if (cost < cost_limit)
|
||
{
|
||
struct algorithm *x;
|
||
x = alg_in, alg_in = best_alg, best_alg = x;
|
||
best_alg->log[best_alg->ops] = m;
|
||
best_alg->op[best_alg->ops] = alg_add_t2_m;
|
||
cost_limit = cost;
|
||
}
|
||
}
|
||
|
||
q = t + 1;
|
||
q = q & -q;
|
||
m = exact_log2 (q);
|
||
if (m >= 0)
|
||
{
|
||
cost = shiftsub_cost[m];
|
||
synth_mult (alg_in, (t + 1) >> m, cost_limit - cost);
|
||
|
||
cost += alg_in->cost;
|
||
if (cost < cost_limit)
|
||
{
|
||
struct algorithm *x;
|
||
x = alg_in, alg_in = best_alg, best_alg = x;
|
||
best_alg->log[best_alg->ops] = m;
|
||
best_alg->op[best_alg->ops] = alg_sub_t2_m;
|
||
cost_limit = cost;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If cost_limit has not decreased since we stored it in alg_out->cost,
|
||
we have not found any algorithm. */
|
||
if (cost_limit == alg_out->cost)
|
||
return;
|
||
|
||
/* If we are getting a too long sequence for `struct algorithm'
|
||
to record, make this search fail. */
|
||
if (best_alg->ops == MAX_BITS_PER_WORD)
|
||
return;
|
||
|
||
/* Copy the algorithm from temporary space to the space at alg_out.
|
||
We avoid using structure assignment because the majority of
|
||
best_alg is normally undefined, and this is a critical function. */
|
||
alg_out->ops = best_alg->ops + 1;
|
||
alg_out->cost = cost_limit;
|
||
bcopy ((char *) best_alg->op, (char *) alg_out->op,
|
||
alg_out->ops * sizeof *alg_out->op);
|
||
bcopy ((char *) best_alg->log, (char *) alg_out->log,
|
||
alg_out->ops * sizeof *alg_out->log);
|
||
}
|
||
|
||
/* Perform a multiplication and return an rtx for the result.
|
||
MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
|
||
TARGET is a suggestion for where to store the result (an rtx).
|
||
|
||
We check specially for a constant integer as OP1.
|
||
If you want this check for OP0 as well, then before calling
|
||
you should swap the two operands if OP0 would be constant. */
|
||
|
||
rtx
|
||
expand_mult (mode, op0, op1, target, unsignedp)
|
||
enum machine_mode mode;
|
||
register rtx op0, op1, target;
|
||
int unsignedp;
|
||
{
|
||
rtx const_op1 = op1;
|
||
|
||
/* synth_mult does an `unsigned int' multiply. As long as the mode is
|
||
less than or equal in size to `unsigned int' this doesn't matter.
|
||
If the mode is larger than `unsigned int', then synth_mult works only
|
||
if the constant value exactly fits in an `unsigned int' without any
|
||
truncation. This means that multiplying by negative values does
|
||
not work; results are off by 2^32 on a 32 bit machine. */
|
||
|
||
/* If we are multiplying in DImode, it may still be a win
|
||
to try to work with shifts and adds. */
|
||
if (GET_CODE (op1) == CONST_DOUBLE
|
||
&& GET_MODE_CLASS (GET_MODE (op1)) == MODE_INT
|
||
&& HOST_BITS_PER_INT >= BITS_PER_WORD
|
||
&& CONST_DOUBLE_HIGH (op1) == 0)
|
||
const_op1 = GEN_INT (CONST_DOUBLE_LOW (op1));
|
||
else if (HOST_BITS_PER_INT < GET_MODE_BITSIZE (mode)
|
||
&& GET_CODE (op1) == CONST_INT
|
||
&& INTVAL (op1) < 0)
|
||
const_op1 = 0;
|
||
|
||
/* We used to test optimize here, on the grounds that it's better to
|
||
produce a smaller program when -O is not used.
|
||
But this causes such a terrible slowdown sometimes
|
||
that it seems better to use synth_mult always. */
|
||
|
||
if (const_op1 && GET_CODE (const_op1) == CONST_INT)
|
||
{
|
||
struct algorithm alg;
|
||
struct algorithm alg2;
|
||
HOST_WIDE_INT val = INTVAL (op1);
|
||
HOST_WIDE_INT val_so_far;
|
||
rtx insn;
|
||
int mult_cost;
|
||
enum {basic_variant, negate_variant, add_variant} variant = basic_variant;
|
||
|
||
/* Try to do the computation three ways: multiply by the negative of OP1
|
||
and then negate, do the multiplication directly, or do multiplication
|
||
by OP1 - 1. */
|
||
|
||
mult_cost = rtx_cost (gen_rtx (MULT, mode, op0, op1), SET);
|
||
mult_cost = MIN (12 * add_cost, mult_cost);
|
||
|
||
synth_mult (&alg, val, mult_cost);
|
||
|
||
/* This works only if the inverted value actually fits in an
|
||
`unsigned int' */
|
||
if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
|
||
{
|
||
synth_mult (&alg2, - val,
|
||
(alg.cost < mult_cost ? alg.cost : mult_cost) - negate_cost);
|
||
if (alg2.cost + negate_cost < alg.cost)
|
||
alg = alg2, variant = negate_variant;
|
||
}
|
||
|
||
/* This proves very useful for division-by-constant. */
|
||
synth_mult (&alg2, val - 1,
|
||
(alg.cost < mult_cost ? alg.cost : mult_cost) - add_cost);
|
||
if (alg2.cost + add_cost < alg.cost)
|
||
alg = alg2, variant = add_variant;
|
||
|
||
if (alg.cost < mult_cost)
|
||
{
|
||
/* We found something cheaper than a multiply insn. */
|
||
int opno;
|
||
rtx accum, tem;
|
||
|
||
op0 = protect_from_queue (op0, 0);
|
||
|
||
/* Avoid referencing memory over and over.
|
||
For speed, but also for correctness when mem is volatile. */
|
||
if (GET_CODE (op0) == MEM)
|
||
op0 = force_reg (mode, op0);
|
||
|
||
/* ACCUM starts out either as OP0 or as a zero, depending on
|
||
the first operation. */
|
||
|
||
if (alg.op[0] == alg_zero)
|
||
{
|
||
accum = copy_to_mode_reg (mode, const0_rtx);
|
||
val_so_far = 0;
|
||
}
|
||
else if (alg.op[0] == alg_m)
|
||
{
|
||
accum = copy_to_mode_reg (mode, op0);
|
||
val_so_far = 1;
|
||
}
|
||
else
|
||
abort ();
|
||
|
||
for (opno = 1; opno < alg.ops; opno++)
|
||
{
|
||
int log = alg.log[opno];
|
||
int preserve = preserve_subexpressions_p ();
|
||
rtx shift_subtarget = preserve ? 0 : accum;
|
||
rtx add_target
|
||
= (opno == alg.ops - 1 && target != 0 && variant != add_variant
|
||
? target : 0);
|
||
rtx accum_target = preserve ? 0 : accum;
|
||
|
||
switch (alg.op[opno])
|
||
{
|
||
case alg_shift:
|
||
accum = expand_shift (LSHIFT_EXPR, mode, accum,
|
||
build_int_2 (log, 0), NULL_RTX, 0);
|
||
val_so_far <<= log;
|
||
break;
|
||
|
||
case alg_add_t_m2:
|
||
tem = expand_shift (LSHIFT_EXPR, mode, op0,
|
||
build_int_2 (log, 0), NULL_RTX, 0);
|
||
accum = force_operand (gen_rtx (PLUS, mode, accum, tem),
|
||
add_target ? add_target : accum_target);
|
||
val_so_far += (HOST_WIDE_INT) 1 << log;
|
||
break;
|
||
|
||
case alg_sub_t_m2:
|
||
tem = expand_shift (LSHIFT_EXPR, mode, op0,
|
||
build_int_2 (log, 0), NULL_RTX, 0);
|
||
accum = force_operand (gen_rtx (MINUS, mode, accum, tem),
|
||
add_target ? add_target : accum_target);
|
||
val_so_far -= (HOST_WIDE_INT) 1 << log;
|
||
break;
|
||
|
||
case alg_add_t2_m:
|
||
accum = expand_shift (LSHIFT_EXPR, mode, accum,
|
||
build_int_2 (log, 0), shift_subtarget,
|
||
0);
|
||
accum = force_operand (gen_rtx (PLUS, mode, accum, op0),
|
||
add_target ? add_target : accum_target);
|
||
val_so_far = (val_so_far << log) + 1;
|
||
break;
|
||
|
||
case alg_sub_t2_m:
|
||
accum = expand_shift (LSHIFT_EXPR, mode, accum,
|
||
build_int_2 (log, 0), shift_subtarget,
|
||
0);
|
||
accum = force_operand (gen_rtx (MINUS, mode, accum, op0),
|
||
add_target ? add_target : accum_target);
|
||
val_so_far = (val_so_far << log) - 1;
|
||
break;
|
||
|
||
case alg_add_factor:
|
||
tem = expand_shift (LSHIFT_EXPR, mode, accum,
|
||
build_int_2 (log, 0), NULL_RTX, 0);
|
||
accum = force_operand (gen_rtx (PLUS, mode, accum, tem),
|
||
add_target ? add_target : accum_target);
|
||
val_so_far += val_so_far << log;
|
||
break;
|
||
|
||
case alg_sub_factor:
|
||
tem = expand_shift (LSHIFT_EXPR, mode, accum,
|
||
build_int_2 (log, 0), NULL_RTX, 0);
|
||
accum = force_operand (gen_rtx (MINUS, mode, tem, accum),
|
||
(add_target ? add_target
|
||
: preserve ? 0 : tem));
|
||
val_so_far = (val_so_far << log) - val_so_far;
|
||
break;
|
||
|
||
default:
|
||
abort ();;
|
||
}
|
||
|
||
/* Write a REG_EQUAL note on the last insn so that we can cse
|
||
multiplication sequences. */
|
||
|
||
insn = get_last_insn ();
|
||
REG_NOTES (insn)
|
||
= gen_rtx (EXPR_LIST, REG_EQUAL,
|
||
gen_rtx (MULT, mode, op0, GEN_INT (val_so_far)),
|
||
REG_NOTES (insn));
|
||
}
|
||
|
||
if (variant == negate_variant)
|
||
{
|
||
val_so_far = - val_so_far;
|
||
accum = expand_unop (mode, neg_optab, accum, target, 0);
|
||
}
|
||
else if (variant == add_variant)
|
||
{
|
||
val_so_far = val_so_far + 1;
|
||
accum = force_operand (gen_rtx (PLUS, mode, accum, op0), target);
|
||
}
|
||
|
||
if (val != val_so_far)
|
||
abort ();
|
||
|
||
return accum;
|
||
}
|
||
}
|
||
|
||
/* This used to use umul_optab if unsigned, but for non-widening multiply
|
||
there is no difference between signed and unsigned. */
|
||
op0 = expand_binop (mode, smul_optab,
|
||
op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
|
||
if (op0 == 0)
|
||
abort ();
|
||
return op0;
|
||
}
|
||
|
||
/* Return the smallest n such that 2**n >= X. */
|
||
|
||
int
|
||
ceil_log2 (x)
|
||
unsigned HOST_WIDE_INT x;
|
||
{
|
||
return floor_log2 (x - 1) + 1;
|
||
}
|
||
|
||
/* Choose a minimal N + 1 bit approximation to 1/D that can be used to
|
||
replace division by D, and put the least significant N bits of the result
|
||
in *MULTIPLIER_PTR and return the most significant bit.
|
||
|
||
The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
|
||
needed precision is in PRECISION (should be <= N).
|
||
|
||
PRECISION should be as small as possible so this function can choose
|
||
multiplier more freely.
|
||
|
||
The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
|
||
is to be used for a final right shift is placed in *POST_SHIFT_PTR.
|
||
|
||
Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
|
||
where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
|
||
|
||
static
|
||
unsigned HOST_WIDE_INT
|
||
choose_multiplier (d, n, precision, multiplier_ptr, post_shift_ptr, lgup_ptr)
|
||
unsigned HOST_WIDE_INT d;
|
||
int n;
|
||
int precision;
|
||
unsigned HOST_WIDE_INT *multiplier_ptr;
|
||
int *post_shift_ptr;
|
||
int *lgup_ptr;
|
||
{
|
||
unsigned HOST_WIDE_INT mhigh_hi, mhigh_lo;
|
||
unsigned HOST_WIDE_INT mlow_hi, mlow_lo;
|
||
int lgup, post_shift;
|
||
int pow, pow2;
|
||
unsigned HOST_WIDE_INT nh, nl, dummy1, dummy2;
|
||
|
||
/* lgup = ceil(log2(divisor)); */
|
||
lgup = ceil_log2 (d);
|
||
|
||
if (lgup > n)
|
||
abort ();
|
||
|
||
pow = n + lgup;
|
||
pow2 = n + lgup - precision;
|
||
|
||
if (pow == 2 * HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
/* We could handle this with some effort, but this case is much better
|
||
handled directly with a scc insn, so rely on caller using that. */
|
||
abort ();
|
||
}
|
||
|
||
/* mlow = 2^(N + lgup)/d */
|
||
if (pow >= HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
nh = (unsigned HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
|
||
nl = 0;
|
||
}
|
||
else
|
||
{
|
||
nh = 0;
|
||
nl = (unsigned HOST_WIDE_INT) 1 << pow;
|
||
}
|
||
div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
|
||
&mlow_lo, &mlow_hi, &dummy1, &dummy2);
|
||
|
||
/* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
|
||
if (pow2 >= HOST_BITS_PER_WIDE_INT)
|
||
nh |= (unsigned HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
|
||
else
|
||
nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
|
||
div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
|
||
&mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
|
||
|
||
if (mhigh_hi && nh - d >= d)
|
||
abort ();
|
||
if (mhigh_hi > 1 || mlow_hi > 1)
|
||
abort ();
|
||
/* assert that mlow < mhigh. */
|
||
if (! (mlow_hi < mhigh_hi || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo)))
|
||
abort();
|
||
|
||
/* If precision == N, then mlow, mhigh exceed 2^N
|
||
(but they do not exceed 2^(N+1)). */
|
||
|
||
/* Reduce to lowest terms */
|
||
for (post_shift = lgup; post_shift > 0; post_shift--)
|
||
{
|
||
unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
|
||
unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
|
||
if (ml_lo >= mh_lo)
|
||
break;
|
||
|
||
mlow_hi = 0;
|
||
mlow_lo = ml_lo;
|
||
mhigh_hi = 0;
|
||
mhigh_lo = mh_lo;
|
||
}
|
||
|
||
*post_shift_ptr = post_shift;
|
||
*lgup_ptr = lgup;
|
||
if (n < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
|
||
*multiplier_ptr = mhigh_lo & mask;
|
||
return mhigh_lo >= mask;
|
||
}
|
||
else
|
||
{
|
||
*multiplier_ptr = mhigh_lo;
|
||
return mhigh_hi;
|
||
}
|
||
}
|
||
|
||
/* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
|
||
congruent to 1 (mod 2**N). */
|
||
|
||
static unsigned HOST_WIDE_INT
|
||
invert_mod2n (x, n)
|
||
unsigned HOST_WIDE_INT x;
|
||
int n;
|
||
{
|
||
/* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
|
||
|
||
/* The algorithm notes that the choice y = x satisfies
|
||
x*y == 1 mod 2^3, since x is assumed odd.
|
||
Each iteration doubles the number of bits of significance in y. */
|
||
|
||
unsigned HOST_WIDE_INT mask;
|
||
unsigned HOST_WIDE_INT y = x;
|
||
int nbit = 3;
|
||
|
||
mask = (n == HOST_BITS_PER_WIDE_INT
|
||
? ~(unsigned HOST_WIDE_INT) 0
|
||
: ((unsigned HOST_WIDE_INT) 1 << n) - 1);
|
||
|
||
while (nbit < n)
|
||
{
|
||
y = y * (2 - x*y) & mask; /* Modulo 2^N */
|
||
nbit *= 2;
|
||
}
|
||
return y;
|
||
}
|
||
|
||
/* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
|
||
flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
|
||
product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
|
||
to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
|
||
become signed.
|
||
|
||
The result is put in TARGET if that is convenient.
|
||
|
||
MODE is the mode of operation. */
|
||
|
||
rtx
|
||
expand_mult_highpart_adjust (mode, adj_operand, op0, op1, target, unsignedp)
|
||
enum machine_mode mode;
|
||
register rtx adj_operand, op0, op1, target;
|
||
int unsignedp;
|
||
{
|
||
rtx tem;
|
||
enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
|
||
|
||
tem = expand_shift (RSHIFT_EXPR, mode, op0,
|
||
build_int_2 (GET_MODE_BITSIZE (mode) - 1, 0),
|
||
NULL_RTX, 0);
|
||
tem = expand_and (tem, op1, NULL_RTX);
|
||
adj_operand = force_operand (gen_rtx (adj_code, mode, adj_operand, tem),
|
||
adj_operand);
|
||
|
||
tem = expand_shift (RSHIFT_EXPR, mode, op1,
|
||
build_int_2 (GET_MODE_BITSIZE (mode) - 1, 0),
|
||
NULL_RTX, 0);
|
||
tem = expand_and (tem, op0, NULL_RTX);
|
||
target = force_operand (gen_rtx (adj_code, mode, adj_operand, tem), target);
|
||
|
||
return target;
|
||
}
|
||
|
||
/* Emit code to multiply OP0 and CNST1, putting the high half of the result
|
||
in TARGET if that is convenient, and return where the result is. If the
|
||
operation can not be performed, 0 is returned.
|
||
|
||
MODE is the mode of operation and result.
|
||
|
||
UNSIGNEDP nonzero means unsigned multiply.
|
||
|
||
MAX_COST is the total allowed cost for the expanded RTL. */
|
||
|
||
rtx
|
||
expand_mult_highpart (mode, op0, cnst1, target, unsignedp, max_cost)
|
||
enum machine_mode mode;
|
||
register rtx op0, target;
|
||
unsigned HOST_WIDE_INT cnst1;
|
||
int unsignedp;
|
||
int max_cost;
|
||
{
|
||
enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
|
||
optab mul_highpart_optab;
|
||
optab moptab;
|
||
rtx tem;
|
||
int size = GET_MODE_BITSIZE (mode);
|
||
rtx op1, wide_op1;
|
||
|
||
/* We can't support modes wider than HOST_BITS_PER_INT. */
|
||
if (size > HOST_BITS_PER_WIDE_INT)
|
||
abort ();
|
||
|
||
op1 = GEN_INT (cnst1);
|
||
|
||
if (GET_MODE_BITSIZE (wider_mode) <= HOST_BITS_PER_INT)
|
||
wide_op1 = op1;
|
||
else
|
||
wide_op1
|
||
= immed_double_const (cnst1,
|
||
(unsignedp
|
||
? (HOST_WIDE_INT) 0
|
||
: -(cnst1 >> (HOST_BITS_PER_WIDE_INT - 1))),
|
||
wider_mode);
|
||
|
||
/* expand_mult handles constant multiplication of word_mode
|
||
or narrower. It does a poor job for large modes. */
|
||
if (size < BITS_PER_WORD
|
||
&& mul_cost[(int) wider_mode] + shift_cost[size-1] < max_cost)
|
||
{
|
||
/* We have to do this, since expand_binop doesn't do conversion for
|
||
multiply. Maybe change expand_binop to handle widening multiply? */
|
||
op0 = convert_to_mode (wider_mode, op0, unsignedp);
|
||
|
||
tem = expand_mult (wider_mode, op0, wide_op1, NULL_RTX, unsignedp);
|
||
tem = expand_shift (RSHIFT_EXPR, wider_mode, tem,
|
||
build_int_2 (size, 0), NULL_RTX, 1);
|
||
return convert_modes (mode, wider_mode, tem, unsignedp);
|
||
}
|
||
|
||
if (target == 0)
|
||
target = gen_reg_rtx (mode);
|
||
|
||
/* Firstly, try using a multiplication insn that only generates the needed
|
||
high part of the product, and in the sign flavor of unsignedp. */
|
||
if (mul_highpart_cost[(int) mode] < max_cost)
|
||
{
|
||
mul_highpart_optab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
|
||
target = expand_binop (mode, mul_highpart_optab,
|
||
op0, wide_op1, target, unsignedp, OPTAB_DIRECT);
|
||
if (target)
|
||
return target;
|
||
}
|
||
|
||
/* Secondly, same as above, but use sign flavor opposite of unsignedp.
|
||
Need to adjust the result after the multiplication. */
|
||
if (mul_highpart_cost[(int) mode] + 2 * shift_cost[size-1] + 4 * add_cost < max_cost)
|
||
{
|
||
mul_highpart_optab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
|
||
target = expand_binop (mode, mul_highpart_optab,
|
||
op0, wide_op1, target, unsignedp, OPTAB_DIRECT);
|
||
if (target)
|
||
/* We used the wrong signedness. Adjust the result. */
|
||
return expand_mult_highpart_adjust (mode, target, op0,
|
||
op1, target, unsignedp);
|
||
}
|
||
|
||
/* Try widening multiplication. */
|
||
moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
|
||
if (moptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
|
||
&& mul_widen_cost[(int) wider_mode] < max_cost)
|
||
goto try;
|
||
|
||
/* Try widening the mode and perform a non-widening multiplication. */
|
||
moptab = smul_optab;
|
||
if (smul_optab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
|
||
&& mul_cost[(int) wider_mode] + shift_cost[size-1] < max_cost)
|
||
goto try;
|
||
|
||
/* Try widening multiplication of opposite signedness, and adjust. */
|
||
moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
|
||
if (moptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
|
||
&& (mul_widen_cost[(int) wider_mode]
|
||
+ 2 * shift_cost[size-1] + 4 * add_cost < max_cost))
|
||
{
|
||
tem = expand_binop (wider_mode, moptab, op0, wide_op1,
|
||
NULL_RTX, ! unsignedp, OPTAB_WIDEN);
|
||
if (tem != 0)
|
||
{
|
||
/* Extract the high half of the just generated product. */
|
||
tem = expand_shift (RSHIFT_EXPR, wider_mode, tem,
|
||
build_int_2 (size, 0), NULL_RTX, 1);
|
||
tem = convert_modes (mode, wider_mode, tem, unsignedp);
|
||
/* We used the wrong signedness. Adjust the result. */
|
||
return expand_mult_highpart_adjust (mode, tem, op0, op1,
|
||
target, unsignedp);
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
|
||
try:
|
||
/* Pass NULL_RTX as target since TARGET has wrong mode. */
|
||
tem = expand_binop (wider_mode, moptab, op0, wide_op1,
|
||
NULL_RTX, unsignedp, OPTAB_WIDEN);
|
||
if (tem == 0)
|
||
return 0;
|
||
|
||
/* Extract the high half of the just generated product. */
|
||
tem = expand_shift (RSHIFT_EXPR, wider_mode, tem,
|
||
build_int_2 (size, 0), NULL_RTX, 1);
|
||
return convert_modes (mode, wider_mode, tem, unsignedp);
|
||
}
|
||
|
||
/* Emit the code to divide OP0 by OP1, putting the result in TARGET
|
||
if that is convenient, and returning where the result is.
|
||
You may request either the quotient or the remainder as the result;
|
||
specify REM_FLAG nonzero to get the remainder.
|
||
|
||
CODE is the expression code for which kind of division this is;
|
||
it controls how rounding is done. MODE is the machine mode to use.
|
||
UNSIGNEDP nonzero means do unsigned division. */
|
||
|
||
/* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
|
||
and then correct it by or'ing in missing high bits
|
||
if result of ANDI is nonzero.
|
||
For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
|
||
This could optimize to a bfexts instruction.
|
||
But C doesn't use these operations, so their optimizations are
|
||
left for later. */
|
||
|
||
#define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
|
||
|
||
rtx
|
||
expand_divmod (rem_flag, code, mode, op0, op1, target, unsignedp)
|
||
int rem_flag;
|
||
enum tree_code code;
|
||
enum machine_mode mode;
|
||
register rtx op0, op1, target;
|
||
int unsignedp;
|
||
{
|
||
enum machine_mode compute_mode;
|
||
register rtx tquotient;
|
||
rtx quotient = 0, remainder = 0;
|
||
rtx last;
|
||
int size;
|
||
rtx insn, set;
|
||
optab optab1, optab2;
|
||
int op1_is_constant, op1_is_pow2;
|
||
int max_cost, extra_cost;
|
||
|
||
op1_is_constant = GET_CODE (op1) == CONST_INT;
|
||
op1_is_pow2 = (op1_is_constant
|
||
&& ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
|
||
|| EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))));
|
||
|
||
/*
|
||
This is the structure of expand_divmod:
|
||
|
||
First comes code to fix up the operands so we can perform the operations
|
||
correctly and efficiently.
|
||
|
||
Second comes a switch statement with code specific for each rounding mode.
|
||
For some special operands this code emits all RTL for the desired
|
||
operation, for other cases, it generates only a quotient and stores it in
|
||
QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
|
||
to indicate that it has not done anything.
|
||
|
||
Last comes code that finishes the operation. If QUOTIENT is set and
|
||
REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
|
||
QUOTIENT is not set, it is computed using trunc rounding.
|
||
|
||
We try to generate special code for division and remainder when OP1 is a
|
||
constant. If |OP1| = 2**n we can use shifts and some other fast
|
||
operations. For other values of OP1, we compute a carefully selected
|
||
fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
|
||
by m.
|
||
|
||
In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
|
||
half of the product. Different strategies for generating the product are
|
||
implemented in expand_mult_highpart.
|
||
|
||
If what we actually want is the remainder, we generate that by another
|
||
by-constant multiplication and a subtraction. */
|
||
|
||
/* We shouldn't be called with OP1 == const1_rtx, but some of the
|
||
code below will malfunction if we are, so check here and handle
|
||
the special case if so. */
|
||
if (op1 == const1_rtx)
|
||
return rem_flag ? const0_rtx : op0;
|
||
|
||
if (target
|
||
/* Don't use the function value register as a target
|
||
since we have to read it as well as write it,
|
||
and function-inlining gets confused by this. */
|
||
&& ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
|
||
/* Don't clobber an operand while doing a multi-step calculation. */
|
||
|| ((rem_flag || op1_is_constant)
|
||
&& (reg_mentioned_p (target, op0)
|
||
|| (GET_CODE (op0) == MEM && GET_CODE (target) == MEM)))
|
||
|| reg_mentioned_p (target, op1)
|
||
|| (GET_CODE (op1) == MEM && GET_CODE (target) == MEM)))
|
||
target = 0;
|
||
|
||
/* Get the mode in which to perform this computation. Normally it will
|
||
be MODE, but sometimes we can't do the desired operation in MODE.
|
||
If so, pick a wider mode in which we can do the operation. Convert
|
||
to that mode at the start to avoid repeated conversions.
|
||
|
||
First see what operations we need. These depend on the expression
|
||
we are evaluating. (We assume that divxx3 insns exist under the
|
||
same conditions that modxx3 insns and that these insns don't normally
|
||
fail. If these assumptions are not correct, we may generate less
|
||
efficient code in some cases.)
|
||
|
||
Then see if we find a mode in which we can open-code that operation
|
||
(either a division, modulus, or shift). Finally, check for the smallest
|
||
mode for which we can do the operation with a library call. */
|
||
|
||
/* We might want to refine this now that we have division-by-constant
|
||
optimization. Since expand_mult_highpart tries so many variants, it is
|
||
not straightforward to generalize this. Maybe we should make an array
|
||
of possible modes in init_expmed? Save this for GCC 2.7. */
|
||
|
||
optab1 = (op1_is_pow2 ? (unsignedp ? lshr_optab : ashr_optab)
|
||
: (unsignedp ? udiv_optab : sdiv_optab));
|
||
optab2 = (op1_is_pow2 ? optab1 : (unsignedp ? udivmod_optab : sdivmod_optab));
|
||
|
||
for (compute_mode = mode; compute_mode != VOIDmode;
|
||
compute_mode = GET_MODE_WIDER_MODE (compute_mode))
|
||
if (optab1->handlers[(int) compute_mode].insn_code != CODE_FOR_nothing
|
||
|| optab2->handlers[(int) compute_mode].insn_code != CODE_FOR_nothing)
|
||
break;
|
||
|
||
if (compute_mode == VOIDmode)
|
||
for (compute_mode = mode; compute_mode != VOIDmode;
|
||
compute_mode = GET_MODE_WIDER_MODE (compute_mode))
|
||
if (optab1->handlers[(int) compute_mode].libfunc
|
||
|| optab2->handlers[(int) compute_mode].libfunc)
|
||
break;
|
||
|
||
/* If we still couldn't find a mode, use MODE, but we'll probably abort
|
||
in expand_binop. */
|
||
if (compute_mode == VOIDmode)
|
||
compute_mode = mode;
|
||
|
||
if (target && GET_MODE (target) == compute_mode)
|
||
tquotient = target;
|
||
else
|
||
tquotient = gen_reg_rtx (compute_mode);
|
||
|
||
size = GET_MODE_BITSIZE (compute_mode);
|
||
#if 0
|
||
/* It should be possible to restrict the precision to GET_MODE_BITSIZE
|
||
(mode), and thereby get better code when OP1 is a constant. Do that
|
||
later. It will require going over all usages of SIZE below. */
|
||
size = GET_MODE_BITSIZE (mode);
|
||
#endif
|
||
|
||
max_cost = div_cost[(int) compute_mode]
|
||
- (rem_flag ? mul_cost[(int) compute_mode] + add_cost : 0);
|
||
|
||
/* Now convert to the best mode to use. */
|
||
if (compute_mode != mode)
|
||
{
|
||
op0 = convert_modes (compute_mode, mode, op0, unsignedp);
|
||
op1 = convert_modes (compute_mode, mode, op1, unsignedp);
|
||
}
|
||
|
||
/* If one of the operands is a volatile MEM, copy it into a register. */
|
||
|
||
if (GET_CODE (op0) == MEM && MEM_VOLATILE_P (op0))
|
||
op0 = force_reg (compute_mode, op0);
|
||
if (GET_CODE (op1) == MEM && MEM_VOLATILE_P (op1))
|
||
op1 = force_reg (compute_mode, op1);
|
||
|
||
/* If we need the remainder or if OP1 is constant, we need to
|
||
put OP0 in a register in case it has any queued subexpressions. */
|
||
if (rem_flag || op1_is_constant)
|
||
op0 = force_reg (compute_mode, op0);
|
||
|
||
last = get_last_insn ();
|
||
|
||
/* Promote floor rounding to trunc rounding for unsigned operations. */
|
||
if (unsignedp)
|
||
{
|
||
if (code == FLOOR_DIV_EXPR)
|
||
code = TRUNC_DIV_EXPR;
|
||
if (code == FLOOR_MOD_EXPR)
|
||
code = TRUNC_MOD_EXPR;
|
||
}
|
||
|
||
if (op1 != const0_rtx)
|
||
switch (code)
|
||
{
|
||
case TRUNC_MOD_EXPR:
|
||
case TRUNC_DIV_EXPR:
|
||
if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
|
||
{
|
||
if (unsignedp)
|
||
{
|
||
unsigned HOST_WIDE_INT mh, ml;
|
||
int pre_shift, post_shift;
|
||
int dummy;
|
||
unsigned HOST_WIDE_INT d = INTVAL (op1);
|
||
|
||
if (EXACT_POWER_OF_2_OR_ZERO_P (d))
|
||
{
|
||
pre_shift = floor_log2 (d);
|
||
if (rem_flag)
|
||
{
|
||
remainder = expand_binop (compute_mode, and_optab, op0,
|
||
GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
|
||
remainder, 1,
|
||
OPTAB_LIB_WIDEN);
|
||
if (remainder)
|
||
return gen_lowpart (mode, remainder);
|
||
}
|
||
quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
|
||
build_int_2 (pre_shift, 0),
|
||
tquotient, 1);
|
||
}
|
||
else if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
|
||
{
|
||
/* Most significant bit of divisor is set, emit a scc insn.
|
||
emit_store_flag needs to be passed a place for the
|
||
result. */
|
||
quotient = emit_store_flag (tquotient, GEU, op0, op1,
|
||
compute_mode, 1, 1);
|
||
if (quotient == 0)
|
||
goto fail1;
|
||
}
|
||
else
|
||
{
|
||
/* Find a suitable multiplier and right shift count instead
|
||
of multiplying with D. */
|
||
|
||
mh = choose_multiplier (d, size, size,
|
||
&ml, &post_shift, &dummy);
|
||
|
||
/* If the suggested multiplier is more than SIZE bits, we
|
||
can do better for even divisors, using an initial right
|
||
shift. */
|
||
if (mh != 0 && (d & 1) == 0)
|
||
{
|
||
pre_shift = floor_log2 (d & -d);
|
||
mh = choose_multiplier (d >> pre_shift, size,
|
||
size - pre_shift,
|
||
&ml, &post_shift, &dummy);
|
||
if (mh)
|
||
abort ();
|
||
}
|
||
else
|
||
pre_shift = 0;
|
||
|
||
if (mh != 0)
|
||
{
|
||
rtx t1, t2, t3, t4;
|
||
|
||
extra_cost = (shift_cost[post_shift - 1]
|
||
+ shift_cost[1] + 2 * add_cost);
|
||
t1 = expand_mult_highpart (compute_mode, op0, ml,
|
||
NULL_RTX, 1,
|
||
max_cost - extra_cost);
|
||
if (t1 == 0)
|
||
goto fail1;
|
||
t2 = force_operand (gen_rtx (MINUS, compute_mode,
|
||
op0, t1),
|
||
NULL_RTX);
|
||
t3 = expand_shift (RSHIFT_EXPR, compute_mode, t2,
|
||
build_int_2 (1, 0), NULL_RTX, 1);
|
||
t4 = force_operand (gen_rtx (PLUS, compute_mode,
|
||
t1, t3),
|
||
NULL_RTX);
|
||
quotient = expand_shift (RSHIFT_EXPR, compute_mode, t4,
|
||
build_int_2 (post_shift - 1,
|
||
0),
|
||
tquotient, 1);
|
||
}
|
||
else
|
||
{
|
||
rtx t1, t2;
|
||
|
||
t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
|
||
build_int_2 (pre_shift, 0),
|
||
NULL_RTX, 1);
|
||
extra_cost = (shift_cost[pre_shift]
|
||
+ shift_cost[post_shift]);
|
||
t2 = expand_mult_highpart (compute_mode, t1, ml,
|
||
NULL_RTX, 1,
|
||
max_cost - extra_cost);
|
||
if (t2 == 0)
|
||
goto fail1;
|
||
quotient = expand_shift (RSHIFT_EXPR, compute_mode, t2,
|
||
build_int_2 (post_shift, 0),
|
||
tquotient, 1);
|
||
}
|
||
}
|
||
|
||
insn = get_last_insn ();
|
||
if (insn != last
|
||
&& (set = single_set (insn)) != 0
|
||
&& SET_DEST (set) == quotient)
|
||
REG_NOTES (insn)
|
||
= gen_rtx (EXPR_LIST, REG_EQUAL,
|
||
gen_rtx (UDIV, compute_mode, op0, op1),
|
||
REG_NOTES (insn));
|
||
}
|
||
else /* TRUNC_DIV, signed */
|
||
{
|
||
unsigned HOST_WIDE_INT ml;
|
||
int lgup, post_shift;
|
||
HOST_WIDE_INT d = INTVAL (op1);
|
||
unsigned HOST_WIDE_INT abs_d = d >= 0 ? d : -d;
|
||
|
||
/* n rem d = n rem -d */
|
||
if (rem_flag && d < 0)
|
||
{
|
||
d = abs_d;
|
||
op1 = GEN_INT (abs_d);
|
||
}
|
||
|
||
if (d == 1)
|
||
quotient = op0;
|
||
else if (d == -1)
|
||
quotient = expand_unop (compute_mode, neg_optab, op0,
|
||
tquotient, 0);
|
||
else if (abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
|
||
{
|
||
/* This case is not handled correctly below. */
|
||
quotient = emit_store_flag (tquotient, EQ, op0, op1,
|
||
compute_mode, 1, 1);
|
||
if (quotient == 0)
|
||
goto fail1;
|
||
}
|
||
else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
|
||
&& (rem_flag ? smod_pow2_cheap : sdiv_pow2_cheap))
|
||
;
|
||
else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
|
||
{
|
||
lgup = floor_log2 (abs_d);
|
||
if (abs_d != 2 && BRANCH_COST < 3)
|
||
{
|
||
rtx label = gen_label_rtx ();
|
||
rtx t1;
|
||
|
||
t1 = copy_to_mode_reg (compute_mode, op0);
|
||
emit_cmp_insn (t1, const0_rtx, GE,
|
||
NULL_RTX, compute_mode, 0, 0);
|
||
emit_jump_insn (gen_bge (label));
|
||
expand_inc (t1, GEN_INT (abs_d - 1));
|
||
emit_label (label);
|
||
quotient = expand_shift (RSHIFT_EXPR, compute_mode, t1,
|
||
build_int_2 (lgup, 0),
|
||
tquotient, 0);
|
||
}
|
||
else
|
||
{
|
||
rtx t1, t2, t3;
|
||
t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
|
||
build_int_2 (size - 1, 0),
|
||
NULL_RTX, 0);
|
||
t2 = expand_shift (RSHIFT_EXPR, compute_mode, t1,
|
||
build_int_2 (size - lgup, 0),
|
||
NULL_RTX, 1);
|
||
t3 = force_operand (gen_rtx (PLUS, compute_mode,
|
||
op0, t2),
|
||
NULL_RTX);
|
||
quotient = expand_shift (RSHIFT_EXPR, compute_mode, t3,
|
||
build_int_2 (lgup, 0),
|
||
tquotient, 0);
|
||
}
|
||
|
||
/* We have computed OP0 / abs(OP1). If OP1 is negative, negate
|
||
the quotient. */
|
||
if (d < 0)
|
||
{
|
||
insn = get_last_insn ();
|
||
if (insn != last
|
||
&& (set = single_set (insn)) != 0
|
||
&& SET_DEST (set) == quotient)
|
||
REG_NOTES (insn)
|
||
= gen_rtx (EXPR_LIST, REG_EQUAL,
|
||
gen_rtx (DIV, compute_mode, op0,
|
||
GEN_INT (abs_d)),
|
||
REG_NOTES (insn));
|
||
|
||
quotient = expand_unop (compute_mode, neg_optab,
|
||
quotient, quotient, 0);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
choose_multiplier (abs_d, size, size - 1,
|
||
&ml, &post_shift, &lgup);
|
||
if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
|
||
{
|
||
rtx t1, t2, t3;
|
||
|
||
extra_cost = (shift_cost[post_shift]
|
||
+ shift_cost[size - 1] + add_cost);
|
||
t1 = expand_mult_highpart (compute_mode, op0, ml,
|
||
NULL_RTX, 0,
|
||
max_cost - extra_cost);
|
||
if (t1 == 0)
|
||
goto fail1;
|
||
t2 = expand_shift (RSHIFT_EXPR, compute_mode, t1,
|
||
build_int_2 (post_shift, 0), NULL_RTX, 0);
|
||
t3 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
|
||
build_int_2 (size - 1, 0), NULL_RTX, 0);
|
||
if (d < 0)
|
||
quotient = force_operand (gen_rtx (MINUS, compute_mode, t3, t2),
|
||
tquotient);
|
||
else
|
||
quotient = force_operand (gen_rtx (MINUS, compute_mode, t2, t3),
|
||
tquotient);
|
||
}
|
||
else
|
||
{
|
||
rtx t1, t2, t3, t4;
|
||
|
||
ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
|
||
extra_cost = (shift_cost[post_shift]
|
||
+ shift_cost[size - 1] + 2 * add_cost);
|
||
t1 = expand_mult_highpart (compute_mode, op0, ml,
|
||
NULL_RTX, 0,
|
||
max_cost - extra_cost);
|
||
if (t1 == 0)
|
||
goto fail1;
|
||
t2 = force_operand (gen_rtx (PLUS, compute_mode, t1, op0),
|
||
NULL_RTX);
|
||
t3 = expand_shift (RSHIFT_EXPR, compute_mode, t2,
|
||
build_int_2 (post_shift, 0), NULL_RTX, 0);
|
||
t4 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
|
||
build_int_2 (size - 1, 0), NULL_RTX, 0);
|
||
if (d < 0)
|
||
quotient = force_operand (gen_rtx (MINUS, compute_mode, t4, t3),
|
||
tquotient);
|
||
else
|
||
quotient = force_operand (gen_rtx (MINUS, compute_mode, t3, t4),
|
||
tquotient);
|
||
}
|
||
}
|
||
|
||
insn = get_last_insn ();
|
||
if (insn != last
|
||
&& (set = single_set (insn)) != 0
|
||
&& SET_DEST (set) == quotient)
|
||
REG_NOTES (insn)
|
||
= gen_rtx (EXPR_LIST, REG_EQUAL,
|
||
gen_rtx (DIV, compute_mode, op0, op1),
|
||
REG_NOTES (insn));
|
||
}
|
||
break;
|
||
}
|
||
fail1:
|
||
delete_insns_since (last);
|
||
break;
|
||
|
||
case FLOOR_DIV_EXPR:
|
||
case FLOOR_MOD_EXPR:
|
||
/* We will come here only for signed operations. */
|
||
if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
|
||
{
|
||
unsigned HOST_WIDE_INT mh, ml;
|
||
int pre_shift, lgup, post_shift;
|
||
HOST_WIDE_INT d = INTVAL (op1);
|
||
|
||
if (d > 0)
|
||
{
|
||
/* We could just as easily deal with negative constants here,
|
||
but it does not seem worth the trouble for GCC 2.6. */
|
||
if (EXACT_POWER_OF_2_OR_ZERO_P (d))
|
||
{
|
||
pre_shift = floor_log2 (d);
|
||
if (rem_flag)
|
||
{
|
||
remainder = expand_binop (compute_mode, and_optab, op0,
|
||
GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
|
||
remainder, 0, OPTAB_LIB_WIDEN);
|
||
if (remainder)
|
||
return gen_lowpart (mode, remainder);
|
||
}
|
||
quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
|
||
build_int_2 (pre_shift, 0),
|
||
tquotient, 0);
|
||
}
|
||
else
|
||
{
|
||
rtx t1, t2, t3, t4;
|
||
|
||
mh = choose_multiplier (d, size, size - 1,
|
||
&ml, &post_shift, &lgup);
|
||
if (mh)
|
||
abort ();
|
||
|
||
t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
|
||
build_int_2 (size - 1, 0), NULL_RTX, 0);
|
||
t2 = expand_binop (compute_mode, xor_optab, op0, t1,
|
||
NULL_RTX, 0, OPTAB_WIDEN);
|
||
extra_cost = (shift_cost[post_shift]
|
||
+ shift_cost[size - 1] + 2 * add_cost);
|
||
t3 = expand_mult_highpart (compute_mode, t2, ml,
|
||
NULL_RTX, 1,
|
||
max_cost - extra_cost);
|
||
if (t3 != 0)
|
||
{
|
||
t4 = expand_shift (RSHIFT_EXPR, compute_mode, t3,
|
||
build_int_2 (post_shift, 0),
|
||
NULL_RTX, 1);
|
||
quotient = expand_binop (compute_mode, xor_optab,
|
||
t4, t1, tquotient, 0,
|
||
OPTAB_WIDEN);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
rtx nsign, t1, t2, t3, t4;
|
||
t1 = force_operand (gen_rtx (PLUS, compute_mode,
|
||
op0, constm1_rtx), NULL_RTX);
|
||
t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
|
||
0, OPTAB_WIDEN);
|
||
nsign = expand_shift (RSHIFT_EXPR, compute_mode, t2,
|
||
build_int_2 (size - 1, 0), NULL_RTX, 0);
|
||
t3 = force_operand (gen_rtx (MINUS, compute_mode, t1, nsign),
|
||
NULL_RTX);
|
||
t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
|
||
NULL_RTX, 0);
|
||
if (t4)
|
||
{
|
||
rtx t5;
|
||
t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
|
||
NULL_RTX, 0);
|
||
quotient = force_operand (gen_rtx (PLUS, compute_mode,
|
||
t4, t5),
|
||
tquotient);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (quotient != 0)
|
||
break;
|
||
delete_insns_since (last);
|
||
|
||
/* Try using an instruction that produces both the quotient and
|
||
remainder, using truncation. We can easily compensate the quotient
|
||
or remainder to get floor rounding, once we have the remainder.
|
||
Notice that we compute also the final remainder value here,
|
||
and return the result right away. */
|
||
if (target == 0)
|
||
target = gen_reg_rtx (compute_mode);
|
||
|
||
if (rem_flag)
|
||
{
|
||
remainder
|
||
= GET_CODE (target) == REG ? target : gen_reg_rtx (compute_mode);
|
||
quotient = gen_reg_rtx (compute_mode);
|
||
}
|
||
else
|
||
{
|
||
quotient
|
||
= GET_CODE (target) == REG ? target : gen_reg_rtx (compute_mode);
|
||
remainder = gen_reg_rtx (compute_mode);
|
||
}
|
||
|
||
if (expand_twoval_binop (sdivmod_optab, op0, op1,
|
||
quotient, remainder, 0))
|
||
{
|
||
/* This could be computed with a branch-less sequence.
|
||
Save that for later. */
|
||
rtx tem;
|
||
rtx label = gen_label_rtx ();
|
||
emit_cmp_insn (remainder, const0_rtx, EQ, NULL_RTX,
|
||
compute_mode, 0, 0);
|
||
emit_jump_insn (gen_beq (label));
|
||
tem = expand_binop (compute_mode, xor_optab, op0, op1,
|
||
NULL_RTX, 0, OPTAB_WIDEN);
|
||
emit_cmp_insn (tem, const0_rtx, GE, NULL_RTX, compute_mode, 0, 0);
|
||
emit_jump_insn (gen_bge (label));
|
||
expand_dec (quotient, const1_rtx);
|
||
expand_inc (remainder, op1);
|
||
emit_label (label);
|
||
return gen_lowpart (mode, rem_flag ? remainder : quotient);
|
||
}
|
||
|
||
/* No luck with division elimination or divmod. Have to do it
|
||
by conditionally adjusting op0 *and* the result. */
|
||
{
|
||
rtx label1, label2, label3, label4, label5;
|
||
rtx adjusted_op0;
|
||
rtx tem;
|
||
|
||
quotient = gen_reg_rtx (compute_mode);
|
||
adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
|
||
label1 = gen_label_rtx ();
|
||
label2 = gen_label_rtx ();
|
||
label3 = gen_label_rtx ();
|
||
label4 = gen_label_rtx ();
|
||
label5 = gen_label_rtx ();
|
||
emit_cmp_insn (op1, const0_rtx, LT, NULL_RTX, compute_mode, 0, 0);
|
||
emit_jump_insn (gen_blt (label2));
|
||
emit_cmp_insn (adjusted_op0, const0_rtx, LT, NULL_RTX,
|
||
compute_mode, 0, 0);
|
||
emit_jump_insn (gen_blt (label1));
|
||
tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
|
||
quotient, 0, OPTAB_LIB_WIDEN);
|
||
if (tem != quotient)
|
||
emit_move_insn (quotient, tem);
|
||
emit_jump_insn (gen_jump (label5));
|
||
emit_barrier ();
|
||
emit_label (label1);
|
||
expand_inc (adjusted_op0, const1_rtx);
|
||
emit_jump_insn (gen_jump (label4));
|
||
emit_barrier ();
|
||
emit_label (label2);
|
||
emit_cmp_insn (adjusted_op0, const0_rtx, GT, NULL_RTX,
|
||
compute_mode, 0, 0);
|
||
emit_jump_insn (gen_bgt (label3));
|
||
tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
|
||
quotient, 0, OPTAB_LIB_WIDEN);
|
||
if (tem != quotient)
|
||
emit_move_insn (quotient, tem);
|
||
emit_jump_insn (gen_jump (label5));
|
||
emit_barrier ();
|
||
emit_label (label3);
|
||
expand_dec (adjusted_op0, const1_rtx);
|
||
emit_label (label4);
|
||
tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
|
||
quotient, 0, OPTAB_LIB_WIDEN);
|
||
if (tem != quotient)
|
||
emit_move_insn (quotient, tem);
|
||
expand_dec (quotient, const1_rtx);
|
||
emit_label (label5);
|
||
}
|
||
break;
|
||
|
||
case CEIL_DIV_EXPR:
|
||
case CEIL_MOD_EXPR:
|
||
if (unsignedp)
|
||
{
|
||
if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
|
||
{
|
||
rtx t1, t2, t3;
|
||
unsigned HOST_WIDE_INT d = INTVAL (op1);
|
||
t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
|
||
build_int_2 (floor_log2 (d), 0),
|
||
tquotient, 1);
|
||
t2 = expand_binop (compute_mode, and_optab, op0,
|
||
GEN_INT (d - 1),
|
||
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
||
t3 = gen_reg_rtx (compute_mode);
|
||
t3 = emit_store_flag (t3, NE, t2, const0_rtx,
|
||
compute_mode, 1, 1);
|
||
if (t3 == 0)
|
||
{
|
||
rtx lab;
|
||
lab = gen_label_rtx ();
|
||
emit_cmp_insn (t2, const0_rtx, EQ, NULL_RTX,
|
||
compute_mode, 0, 0);
|
||
emit_jump_insn (gen_beq (lab));
|
||
expand_inc (t1, const1_rtx);
|
||
emit_label (lab);
|
||
quotient = t1;
|
||
}
|
||
else
|
||
quotient = force_operand (gen_rtx (PLUS, compute_mode,
|
||
t1, t3),
|
||
tquotient);
|
||
break;
|
||
}
|
||
|
||
/* Try using an instruction that produces both the quotient and
|
||
remainder, using truncation. We can easily compensate the
|
||
quotient or remainder to get ceiling rounding, once we have the
|
||
remainder. Notice that we compute also the final remainder
|
||
value here, and return the result right away. */
|
||
if (target == 0)
|
||
target = gen_reg_rtx (compute_mode);
|
||
|
||
if (rem_flag)
|
||
{
|
||
remainder = (GET_CODE (target) == REG
|
||
? target : gen_reg_rtx (compute_mode));
|
||
quotient = gen_reg_rtx (compute_mode);
|
||
}
|
||
else
|
||
{
|
||
quotient = (GET_CODE (target) == REG
|
||
? target : gen_reg_rtx (compute_mode));
|
||
remainder = gen_reg_rtx (compute_mode);
|
||
}
|
||
|
||
if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
|
||
remainder, 1))
|
||
{
|
||
/* This could be computed with a branch-less sequence.
|
||
Save that for later. */
|
||
rtx label = gen_label_rtx ();
|
||
emit_cmp_insn (remainder, const0_rtx, EQ, NULL_RTX,
|
||
compute_mode, 0, 0);
|
||
emit_jump_insn (gen_beq (label));
|
||
expand_inc (quotient, const1_rtx);
|
||
expand_dec (remainder, op1);
|
||
emit_label (label);
|
||
return gen_lowpart (mode, rem_flag ? remainder : quotient);
|
||
}
|
||
|
||
/* No luck with division elimination or divmod. Have to do it
|
||
by conditionally adjusting op0 *and* the result. */
|
||
{
|
||
rtx label1, label2;
|
||
rtx adjusted_op0, tem;
|
||
|
||
quotient = gen_reg_rtx (compute_mode);
|
||
adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
|
||
label1 = gen_label_rtx ();
|
||
label2 = gen_label_rtx ();
|
||
emit_cmp_insn (adjusted_op0, const0_rtx, NE, NULL_RTX,
|
||
compute_mode, 0, 0);
|
||
emit_jump_insn (gen_bne (label1));
|
||
emit_move_insn (quotient, const0_rtx);
|
||
emit_jump_insn (gen_jump (label2));
|
||
emit_barrier ();
|
||
emit_label (label1);
|
||
expand_dec (adjusted_op0, const1_rtx);
|
||
tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
|
||
quotient, 1, OPTAB_LIB_WIDEN);
|
||
if (tem != quotient)
|
||
emit_move_insn (quotient, tem);
|
||
expand_inc (quotient, const1_rtx);
|
||
emit_label (label2);
|
||
}
|
||
}
|
||
else /* signed */
|
||
{
|
||
if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
|
||
&& INTVAL (op1) >= 0)
|
||
{
|
||
/* This is extremely similar to the code for the unsigned case
|
||
above. For 2.7 we should merge these variants, but for
|
||
2.6.1 I don't want to touch the code for unsigned since that
|
||
get used in C. The signed case will only be used by other
|
||
languages (Ada). */
|
||
|
||
rtx t1, t2, t3;
|
||
unsigned HOST_WIDE_INT d = INTVAL (op1);
|
||
t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
|
||
build_int_2 (floor_log2 (d), 0),
|
||
tquotient, 0);
|
||
t2 = expand_binop (compute_mode, and_optab, op0,
|
||
GEN_INT (d - 1),
|
||
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
||
t3 = gen_reg_rtx (compute_mode);
|
||
t3 = emit_store_flag (t3, NE, t2, const0_rtx,
|
||
compute_mode, 1, 1);
|
||
if (t3 == 0)
|
||
{
|
||
rtx lab;
|
||
lab = gen_label_rtx ();
|
||
emit_cmp_insn (t2, const0_rtx, EQ, NULL_RTX,
|
||
compute_mode, 0, 0);
|
||
emit_jump_insn (gen_beq (lab));
|
||
expand_inc (t1, const1_rtx);
|
||
emit_label (lab);
|
||
quotient = t1;
|
||
}
|
||
else
|
||
quotient = force_operand (gen_rtx (PLUS, compute_mode,
|
||
t1, t3),
|
||
tquotient);
|
||
break;
|
||
}
|
||
|
||
/* Try using an instruction that produces both the quotient and
|
||
remainder, using truncation. We can easily compensate the
|
||
quotient or remainder to get ceiling rounding, once we have the
|
||
remainder. Notice that we compute also the final remainder
|
||
value here, and return the result right away. */
|
||
if (target == 0)
|
||
target = gen_reg_rtx (compute_mode);
|
||
if (rem_flag)
|
||
{
|
||
remainder= (GET_CODE (target) == REG
|
||
? target : gen_reg_rtx (compute_mode));
|
||
quotient = gen_reg_rtx (compute_mode);
|
||
}
|
||
else
|
||
{
|
||
quotient = (GET_CODE (target) == REG
|
||
? target : gen_reg_rtx (compute_mode));
|
||
remainder = gen_reg_rtx (compute_mode);
|
||
}
|
||
|
||
if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
|
||
remainder, 0))
|
||
{
|
||
/* This could be computed with a branch-less sequence.
|
||
Save that for later. */
|
||
rtx tem;
|
||
rtx label = gen_label_rtx ();
|
||
emit_cmp_insn (remainder, const0_rtx, EQ, NULL_RTX,
|
||
compute_mode, 0, 0);
|
||
emit_jump_insn (gen_beq (label));
|
||
tem = expand_binop (compute_mode, xor_optab, op0, op1,
|
||
NULL_RTX, 0, OPTAB_WIDEN);
|
||
emit_cmp_insn (tem, const0_rtx, LT, NULL_RTX,
|
||
compute_mode, 0, 0);
|
||
emit_jump_insn (gen_blt (label));
|
||
expand_inc (quotient, const1_rtx);
|
||
expand_dec (remainder, op1);
|
||
emit_label (label);
|
||
return gen_lowpart (mode, rem_flag ? remainder : quotient);
|
||
}
|
||
|
||
/* No luck with division elimination or divmod. Have to do it
|
||
by conditionally adjusting op0 *and* the result. */
|
||
{
|
||
rtx label1, label2, label3, label4, label5;
|
||
rtx adjusted_op0;
|
||
rtx tem;
|
||
|
||
quotient = gen_reg_rtx (compute_mode);
|
||
adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
|
||
label1 = gen_label_rtx ();
|
||
label2 = gen_label_rtx ();
|
||
label3 = gen_label_rtx ();
|
||
label4 = gen_label_rtx ();
|
||
label5 = gen_label_rtx ();
|
||
emit_cmp_insn (op1, const0_rtx, LT, NULL_RTX,
|
||
compute_mode, 0, 0);
|
||
emit_jump_insn (gen_blt (label2));
|
||
emit_cmp_insn (adjusted_op0, const0_rtx, GT, NULL_RTX,
|
||
compute_mode, 0, 0);
|
||
emit_jump_insn (gen_bgt (label1));
|
||
tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
|
||
quotient, 0, OPTAB_LIB_WIDEN);
|
||
if (tem != quotient)
|
||
emit_move_insn (quotient, tem);
|
||
emit_jump_insn (gen_jump (label5));
|
||
emit_barrier ();
|
||
emit_label (label1);
|
||
expand_dec (adjusted_op0, const1_rtx);
|
||
emit_jump_insn (gen_jump (label4));
|
||
emit_barrier ();
|
||
emit_label (label2);
|
||
emit_cmp_insn (adjusted_op0, const0_rtx, LT, NULL_RTX,
|
||
compute_mode, 0, 0);
|
||
emit_jump_insn (gen_blt (label3));
|
||
tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
|
||
quotient, 0, OPTAB_LIB_WIDEN);
|
||
if (tem != quotient)
|
||
emit_move_insn (quotient, tem);
|
||
emit_jump_insn (gen_jump (label5));
|
||
emit_barrier ();
|
||
emit_label (label3);
|
||
expand_inc (adjusted_op0, const1_rtx);
|
||
emit_label (label4);
|
||
tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
|
||
quotient, 0, OPTAB_LIB_WIDEN);
|
||
if (tem != quotient)
|
||
emit_move_insn (quotient, tem);
|
||
expand_inc (quotient, const1_rtx);
|
||
emit_label (label5);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case EXACT_DIV_EXPR:
|
||
if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
|
||
{
|
||
HOST_WIDE_INT d = INTVAL (op1);
|
||
unsigned HOST_WIDE_INT ml;
|
||
int post_shift;
|
||
rtx t1;
|
||
|
||
post_shift = floor_log2 (d & -d);
|
||
ml = invert_mod2n (d >> post_shift, size);
|
||
t1 = expand_mult (compute_mode, op0, GEN_INT (ml), NULL_RTX,
|
||
unsignedp);
|
||
quotient = expand_shift (RSHIFT_EXPR, compute_mode, t1,
|
||
build_int_2 (post_shift, 0),
|
||
NULL_RTX, unsignedp);
|
||
|
||
insn = get_last_insn ();
|
||
REG_NOTES (insn)
|
||
= gen_rtx (EXPR_LIST, REG_EQUAL,
|
||
gen_rtx (unsignedp ? UDIV : DIV, compute_mode,
|
||
op0, op1),
|
||
REG_NOTES (insn));
|
||
}
|
||
break;
|
||
|
||
case ROUND_DIV_EXPR:
|
||
case ROUND_MOD_EXPR:
|
||
if (unsignedp)
|
||
{
|
||
rtx tem;
|
||
rtx label;
|
||
label = gen_label_rtx ();
|
||
quotient = gen_reg_rtx (compute_mode);
|
||
remainder = gen_reg_rtx (compute_mode);
|
||
if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
|
||
{
|
||
rtx tem;
|
||
quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
|
||
quotient, 1, OPTAB_LIB_WIDEN);
|
||
tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
|
||
remainder = expand_binop (compute_mode, sub_optab, op0, tem,
|
||
remainder, 1, OPTAB_LIB_WIDEN);
|
||
}
|
||
tem = plus_constant (op1, -1);
|
||
tem = expand_shift (RSHIFT_EXPR, compute_mode, tem,
|
||
build_int_2 (1, 0), NULL_RTX, 1);
|
||
emit_cmp_insn (remainder, tem, LEU, NULL_RTX, compute_mode, 0, 0);
|
||
emit_jump_insn (gen_bleu (label));
|
||
expand_inc (quotient, const1_rtx);
|
||
expand_dec (remainder, op1);
|
||
emit_label (label);
|
||
}
|
||
else
|
||
{
|
||
rtx abs_rem, abs_op1, tem, mask;
|
||
rtx label;
|
||
label = gen_label_rtx ();
|
||
quotient = gen_reg_rtx (compute_mode);
|
||
remainder = gen_reg_rtx (compute_mode);
|
||
if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
|
||
{
|
||
rtx tem;
|
||
quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
|
||
quotient, 0, OPTAB_LIB_WIDEN);
|
||
tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
|
||
remainder = expand_binop (compute_mode, sub_optab, op0, tem,
|
||
remainder, 0, OPTAB_LIB_WIDEN);
|
||
}
|
||
abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 0, 0);
|
||
abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 0, 0);
|
||
tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
|
||
build_int_2 (1, 0), NULL_RTX, 1);
|
||
emit_cmp_insn (tem, abs_op1, LTU, NULL_RTX, compute_mode, 0, 0);
|
||
emit_jump_insn (gen_bltu (label));
|
||
tem = expand_binop (compute_mode, xor_optab, op0, op1,
|
||
NULL_RTX, 0, OPTAB_WIDEN);
|
||
mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
|
||
build_int_2 (size - 1, 0), NULL_RTX, 0);
|
||
tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
|
||
NULL_RTX, 0, OPTAB_WIDEN);
|
||
tem = expand_binop (compute_mode, sub_optab, tem, mask,
|
||
NULL_RTX, 0, OPTAB_WIDEN);
|
||
expand_inc (quotient, tem);
|
||
tem = expand_binop (compute_mode, xor_optab, mask, op1,
|
||
NULL_RTX, 0, OPTAB_WIDEN);
|
||
tem = expand_binop (compute_mode, sub_optab, tem, mask,
|
||
NULL_RTX, 0, OPTAB_WIDEN);
|
||
expand_dec (remainder, tem);
|
||
emit_label (label);
|
||
}
|
||
return gen_lowpart (mode, rem_flag ? remainder : quotient);
|
||
}
|
||
|
||
if (quotient == 0)
|
||
{
|
||
if (rem_flag)
|
||
{
|
||
/* Try to produce the remainder directly without a library call. */
|
||
remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
|
||
op0, op1, target,
|
||
unsignedp, OPTAB_WIDEN);
|
||
if (remainder == 0)
|
||
{
|
||
/* No luck there. Can we do remainder and divide at once
|
||
without a library call? */
|
||
remainder = gen_reg_rtx (compute_mode);
|
||
if (! expand_twoval_binop ((unsignedp
|
||
? udivmod_optab
|
||
: sdivmod_optab),
|
||
op0, op1,
|
||
NULL_RTX, remainder, unsignedp))
|
||
remainder = 0;
|
||
}
|
||
|
||
if (remainder)
|
||
return gen_lowpart (mode, remainder);
|
||
}
|
||
|
||
/* Produce the quotient. */
|
||
/* Try a quotient insn, but not a library call. */
|
||
quotient = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
|
||
op0, op1, rem_flag ? NULL_RTX : target,
|
||
unsignedp, OPTAB_WIDEN);
|
||
if (quotient == 0)
|
||
{
|
||
/* No luck there. Try a quotient-and-remainder insn,
|
||
keeping the quotient alone. */
|
||
quotient = gen_reg_rtx (compute_mode);
|
||
if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
|
||
op0, op1,
|
||
quotient, NULL_RTX, unsignedp))
|
||
{
|
||
quotient = 0;
|
||
if (! rem_flag)
|
||
/* Still no luck. If we are not computing the remainder,
|
||
use a library call for the quotient. */
|
||
quotient = sign_expand_binop (compute_mode,
|
||
udiv_optab, sdiv_optab,
|
||
op0, op1, target,
|
||
unsignedp, OPTAB_LIB_WIDEN);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (rem_flag)
|
||
{
|
||
if (quotient == 0)
|
||
/* No divide instruction either. Use library for remainder. */
|
||
remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
|
||
op0, op1, target,
|
||
unsignedp, OPTAB_LIB_WIDEN);
|
||
else
|
||
{
|
||
/* We divided. Now finish doing X - Y * (X / Y). */
|
||
remainder = expand_mult (compute_mode, quotient, op1,
|
||
NULL_RTX, unsignedp);
|
||
remainder = expand_binop (compute_mode, sub_optab, op0,
|
||
remainder, target, unsignedp,
|
||
OPTAB_LIB_WIDEN);
|
||
}
|
||
}
|
||
|
||
return gen_lowpart (mode, rem_flag ? remainder : quotient);
|
||
}
|
||
|
||
/* Return a tree node with data type TYPE, describing the value of X.
|
||
Usually this is an RTL_EXPR, if there is no obvious better choice.
|
||
X may be an expression, however we only support those expressions
|
||
generated by loop.c. */
|
||
|
||
tree
|
||
make_tree (type, x)
|
||
tree type;
|
||
rtx x;
|
||
{
|
||
tree t;
|
||
|
||
switch (GET_CODE (x))
|
||
{
|
||
case CONST_INT:
|
||
t = build_int_2 (INTVAL (x),
|
||
TREE_UNSIGNED (type) || INTVAL (x) >= 0 ? 0 : -1);
|
||
TREE_TYPE (t) = type;
|
||
return t;
|
||
|
||
case CONST_DOUBLE:
|
||
if (GET_MODE (x) == VOIDmode)
|
||
{
|
||
t = build_int_2 (CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
|
||
TREE_TYPE (t) = type;
|
||
}
|
||
else
|
||
{
|
||
REAL_VALUE_TYPE d;
|
||
|
||
REAL_VALUE_FROM_CONST_DOUBLE (d, x);
|
||
t = build_real (type, d);
|
||
}
|
||
|
||
return t;
|
||
|
||
case PLUS:
|
||
return fold (build (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
|
||
make_tree (type, XEXP (x, 1))));
|
||
|
||
case MINUS:
|
||
return fold (build (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
|
||
make_tree (type, XEXP (x, 1))));
|
||
|
||
case NEG:
|
||
return fold (build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0))));
|
||
|
||
case MULT:
|
||
return fold (build (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
|
||
make_tree (type, XEXP (x, 1))));
|
||
|
||
case ASHIFT:
|
||
return fold (build (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
|
||
make_tree (type, XEXP (x, 1))));
|
||
|
||
case LSHIFTRT:
|
||
return fold (convert (type,
|
||
build (RSHIFT_EXPR, unsigned_type (type),
|
||
make_tree (unsigned_type (type),
|
||
XEXP (x, 0)),
|
||
make_tree (type, XEXP (x, 1)))));
|
||
|
||
case ASHIFTRT:
|
||
return fold (convert (type,
|
||
build (RSHIFT_EXPR, signed_type (type),
|
||
make_tree (signed_type (type), XEXP (x, 0)),
|
||
make_tree (type, XEXP (x, 1)))));
|
||
|
||
case DIV:
|
||
if (TREE_CODE (type) != REAL_TYPE)
|
||
t = signed_type (type);
|
||
else
|
||
t = type;
|
||
|
||
return fold (convert (type,
|
||
build (TRUNC_DIV_EXPR, t,
|
||
make_tree (t, XEXP (x, 0)),
|
||
make_tree (t, XEXP (x, 1)))));
|
||
case UDIV:
|
||
t = unsigned_type (type);
|
||
return fold (convert (type,
|
||
build (TRUNC_DIV_EXPR, t,
|
||
make_tree (t, XEXP (x, 0)),
|
||
make_tree (t, XEXP (x, 1)))));
|
||
default:
|
||
t = make_node (RTL_EXPR);
|
||
TREE_TYPE (t) = type;
|
||
RTL_EXPR_RTL (t) = x;
|
||
/* There are no insns to be output
|
||
when this rtl_expr is used. */
|
||
RTL_EXPR_SEQUENCE (t) = 0;
|
||
return t;
|
||
}
|
||
}
|
||
|
||
/* Return an rtx representing the value of X * MULT + ADD.
|
||
TARGET is a suggestion for where to store the result (an rtx).
|
||
MODE is the machine mode for the computation.
|
||
X and MULT must have mode MODE. ADD may have a different mode.
|
||
So can X (defaults to same as MODE).
|
||
UNSIGNEDP is non-zero to do unsigned multiplication.
|
||
This may emit insns. */
|
||
|
||
rtx
|
||
expand_mult_add (x, target, mult, add, mode, unsignedp)
|
||
rtx x, target, mult, add;
|
||
enum machine_mode mode;
|
||
int unsignedp;
|
||
{
|
||
tree type = type_for_mode (mode, unsignedp);
|
||
tree add_type = (GET_MODE (add) == VOIDmode
|
||
? type : type_for_mode (GET_MODE (add), unsignedp));
|
||
tree result = fold (build (PLUS_EXPR, type,
|
||
fold (build (MULT_EXPR, type,
|
||
make_tree (type, x),
|
||
make_tree (type, mult))),
|
||
make_tree (add_type, add)));
|
||
|
||
return expand_expr (result, target, VOIDmode, 0);
|
||
}
|
||
|
||
/* Compute the logical-and of OP0 and OP1, storing it in TARGET
|
||
and returning TARGET.
|
||
|
||
If TARGET is 0, a pseudo-register or constant is returned. */
|
||
|
||
rtx
|
||
expand_and (op0, op1, target)
|
||
rtx op0, op1, target;
|
||
{
|
||
enum machine_mode mode = VOIDmode;
|
||
rtx tem;
|
||
|
||
if (GET_MODE (op0) != VOIDmode)
|
||
mode = GET_MODE (op0);
|
||
else if (GET_MODE (op1) != VOIDmode)
|
||
mode = GET_MODE (op1);
|
||
|
||
if (mode != VOIDmode)
|
||
tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
|
||
else if (GET_CODE (op0) == CONST_INT && GET_CODE (op1) == CONST_INT)
|
||
tem = GEN_INT (INTVAL (op0) & INTVAL (op1));
|
||
else
|
||
abort ();
|
||
|
||
if (target == 0)
|
||
target = tem;
|
||
else if (tem != target)
|
||
emit_move_insn (target, tem);
|
||
return target;
|
||
}
|
||
|
||
/* Emit a store-flags instruction for comparison CODE on OP0 and OP1
|
||
and storing in TARGET. Normally return TARGET.
|
||
Return 0 if that cannot be done.
|
||
|
||
MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
|
||
it is VOIDmode, they cannot both be CONST_INT.
|
||
|
||
UNSIGNEDP is for the case where we have to widen the operands
|
||
to perform the operation. It says to use zero-extension.
|
||
|
||
NORMALIZEP is 1 if we should convert the result to be either zero
|
||
or one one. Normalize is -1 if we should convert the result to be
|
||
either zero or -1. If NORMALIZEP is zero, the result will be left
|
||
"raw" out of the scc insn. */
|
||
|
||
rtx
|
||
emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep)
|
||
rtx target;
|
||
enum rtx_code code;
|
||
rtx op0, op1;
|
||
enum machine_mode mode;
|
||
int unsignedp;
|
||
int normalizep;
|
||
{
|
||
rtx subtarget;
|
||
enum insn_code icode;
|
||
enum machine_mode compare_mode;
|
||
enum machine_mode target_mode = GET_MODE (target);
|
||
rtx tem;
|
||
rtx last = get_last_insn ();
|
||
rtx pattern, comparison;
|
||
|
||
/* If one operand is constant, make it the second one. Only do this
|
||
if the other operand is not constant as well. */
|
||
|
||
if ((CONSTANT_P (op0) && ! CONSTANT_P (op1))
|
||
|| (GET_CODE (op0) == CONST_INT && GET_CODE (op1) != CONST_INT))
|
||
{
|
||
tem = op0;
|
||
op0 = op1;
|
||
op1 = tem;
|
||
code = swap_condition (code);
|
||
}
|
||
|
||
if (mode == VOIDmode)
|
||
mode = GET_MODE (op0);
|
||
|
||
/* For some comparisons with 1 and -1, we can convert this to
|
||
comparisons with zero. This will often produce more opportunities for
|
||
store-flag insns. */
|
||
|
||
switch (code)
|
||
{
|
||
case LT:
|
||
if (op1 == const1_rtx)
|
||
op1 = const0_rtx, code = LE;
|
||
break;
|
||
case LE:
|
||
if (op1 == constm1_rtx)
|
||
op1 = const0_rtx, code = LT;
|
||
break;
|
||
case GE:
|
||
if (op1 == const1_rtx)
|
||
op1 = const0_rtx, code = GT;
|
||
break;
|
||
case GT:
|
||
if (op1 == constm1_rtx)
|
||
op1 = const0_rtx, code = GE;
|
||
break;
|
||
case GEU:
|
||
if (op1 == const1_rtx)
|
||
op1 = const0_rtx, code = NE;
|
||
break;
|
||
case LTU:
|
||
if (op1 == const1_rtx)
|
||
op1 = const0_rtx, code = EQ;
|
||
break;
|
||
}
|
||
|
||
/* From now on, we won't change CODE, so set ICODE now. */
|
||
icode = setcc_gen_code[(int) code];
|
||
|
||
/* If this is A < 0 or A >= 0, we can do this by taking the ones
|
||
complement of A (for GE) and shifting the sign bit to the low bit. */
|
||
if (op1 == const0_rtx && (code == LT || code == GE)
|
||
&& GET_MODE_CLASS (mode) == MODE_INT
|
||
&& (normalizep || STORE_FLAG_VALUE == 1
|
||
|| (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
|
||
&& (STORE_FLAG_VALUE
|
||
== (HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))))
|
||
{
|
||
subtarget = target;
|
||
|
||
/* If the result is to be wider than OP0, it is best to convert it
|
||
first. If it is to be narrower, it is *incorrect* to convert it
|
||
first. */
|
||
if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
|
||
{
|
||
op0 = protect_from_queue (op0, 0);
|
||
op0 = convert_modes (target_mode, mode, op0, 0);
|
||
mode = target_mode;
|
||
}
|
||
|
||
if (target_mode != mode)
|
||
subtarget = 0;
|
||
|
||
if (code == GE)
|
||
op0 = expand_unop (mode, one_cmpl_optab, op0, subtarget, 0);
|
||
|
||
if (normalizep || STORE_FLAG_VALUE == 1)
|
||
/* If we are supposed to produce a 0/1 value, we want to do
|
||
a logical shift from the sign bit to the low-order bit; for
|
||
a -1/0 value, we do an arithmetic shift. */
|
||
op0 = expand_shift (RSHIFT_EXPR, mode, op0,
|
||
size_int (GET_MODE_BITSIZE (mode) - 1),
|
||
subtarget, normalizep != -1);
|
||
|
||
if (mode != target_mode)
|
||
op0 = convert_modes (target_mode, mode, op0, 0);
|
||
|
||
return op0;
|
||
}
|
||
|
||
if (icode != CODE_FOR_nothing)
|
||
{
|
||
/* We think we may be able to do this with a scc insn. Emit the
|
||
comparison and then the scc insn.
|
||
|
||
compare_from_rtx may call emit_queue, which would be deleted below
|
||
if the scc insn fails. So call it ourselves before setting LAST. */
|
||
|
||
emit_queue ();
|
||
last = get_last_insn ();
|
||
|
||
comparison
|
||
= compare_from_rtx (op0, op1, code, unsignedp, mode, NULL_RTX, 0);
|
||
if (GET_CODE (comparison) == CONST_INT)
|
||
return (comparison == const0_rtx ? const0_rtx
|
||
: normalizep == 1 ? const1_rtx
|
||
: normalizep == -1 ? constm1_rtx
|
||
: const_true_rtx);
|
||
|
||
/* If the code of COMPARISON doesn't match CODE, something is
|
||
wrong; we can no longer be sure that we have the operation.
|
||
We could handle this case, but it should not happen. */
|
||
|
||
if (GET_CODE (comparison) != code)
|
||
abort ();
|
||
|
||
/* Get a reference to the target in the proper mode for this insn. */
|
||
compare_mode = insn_operand_mode[(int) icode][0];
|
||
subtarget = target;
|
||
if (preserve_subexpressions_p ()
|
||
|| ! (*insn_operand_predicate[(int) icode][0]) (subtarget, compare_mode))
|
||
subtarget = gen_reg_rtx (compare_mode);
|
||
|
||
pattern = GEN_FCN (icode) (subtarget);
|
||
if (pattern)
|
||
{
|
||
emit_insn (pattern);
|
||
|
||
/* If we are converting to a wider mode, first convert to
|
||
TARGET_MODE, then normalize. This produces better combining
|
||
opportunities on machines that have a SIGN_EXTRACT when we are
|
||
testing a single bit. This mostly benefits the 68k.
|
||
|
||
If STORE_FLAG_VALUE does not have the sign bit set when
|
||
interpreted in COMPARE_MODE, we can do this conversion as
|
||
unsigned, which is usually more efficient. */
|
||
if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (compare_mode))
|
||
{
|
||
convert_move (target, subtarget,
|
||
(GET_MODE_BITSIZE (compare_mode)
|
||
<= HOST_BITS_PER_WIDE_INT)
|
||
&& 0 == (STORE_FLAG_VALUE
|
||
& ((HOST_WIDE_INT) 1
|
||
<< (GET_MODE_BITSIZE (compare_mode) -1))));
|
||
op0 = target;
|
||
compare_mode = target_mode;
|
||
}
|
||
else
|
||
op0 = subtarget;
|
||
|
||
/* If we want to keep subexpressions around, don't reuse our
|
||
last target. */
|
||
|
||
if (preserve_subexpressions_p ())
|
||
subtarget = 0;
|
||
|
||
/* Now normalize to the proper value in COMPARE_MODE. Sometimes
|
||
we don't have to do anything. */
|
||
if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
|
||
;
|
||
else if (normalizep == - STORE_FLAG_VALUE)
|
||
op0 = expand_unop (compare_mode, neg_optab, op0, subtarget, 0);
|
||
|
||
/* We don't want to use STORE_FLAG_VALUE < 0 below since this
|
||
makes it hard to use a value of just the sign bit due to
|
||
ANSI integer constant typing rules. */
|
||
else if (GET_MODE_BITSIZE (compare_mode) <= HOST_BITS_PER_WIDE_INT
|
||
&& (STORE_FLAG_VALUE
|
||
& ((HOST_WIDE_INT) 1
|
||
<< (GET_MODE_BITSIZE (compare_mode) - 1))))
|
||
op0 = expand_shift (RSHIFT_EXPR, compare_mode, op0,
|
||
size_int (GET_MODE_BITSIZE (compare_mode) - 1),
|
||
subtarget, normalizep == 1);
|
||
else if (STORE_FLAG_VALUE & 1)
|
||
{
|
||
op0 = expand_and (op0, const1_rtx, subtarget);
|
||
if (normalizep == -1)
|
||
op0 = expand_unop (compare_mode, neg_optab, op0, op0, 0);
|
||
}
|
||
else
|
||
abort ();
|
||
|
||
/* If we were converting to a smaller mode, do the
|
||
conversion now. */
|
||
if (target_mode != compare_mode)
|
||
{
|
||
convert_move (target, op0, 0);
|
||
return target;
|
||
}
|
||
else
|
||
return op0;
|
||
}
|
||
}
|
||
|
||
delete_insns_since (last);
|
||
|
||
/* If expensive optimizations, use different pseudo registers for each
|
||
insn, instead of reusing the same pseudo. This leads to better CSE,
|
||
but slows down the compiler, since there are more pseudos */
|
||
subtarget = (!flag_expensive_optimizations
|
||
&& (target_mode == mode)) ? target : NULL_RTX;
|
||
|
||
/* If we reached here, we can't do this with a scc insn. However, there
|
||
are some comparisons that can be done directly. For example, if
|
||
this is an equality comparison of integers, we can try to exclusive-or
|
||
(or subtract) the two operands and use a recursive call to try the
|
||
comparison with zero. Don't do any of these cases if branches are
|
||
very cheap. */
|
||
|
||
if (BRANCH_COST > 0
|
||
&& GET_MODE_CLASS (mode) == MODE_INT && (code == EQ || code == NE)
|
||
&& op1 != const0_rtx)
|
||
{
|
||
tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
|
||
OPTAB_WIDEN);
|
||
|
||
if (tem == 0)
|
||
tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
|
||
OPTAB_WIDEN);
|
||
if (tem != 0)
|
||
tem = emit_store_flag (target, code, tem, const0_rtx,
|
||
mode, unsignedp, normalizep);
|
||
if (tem == 0)
|
||
delete_insns_since (last);
|
||
return tem;
|
||
}
|
||
|
||
/* Some other cases we can do are EQ, NE, LE, and GT comparisons with
|
||
the constant zero. Reject all other comparisons at this point. Only
|
||
do LE and GT if branches are expensive since they are expensive on
|
||
2-operand machines. */
|
||
|
||
if (BRANCH_COST == 0
|
||
|| GET_MODE_CLASS (mode) != MODE_INT || op1 != const0_rtx
|
||
|| (code != EQ && code != NE
|
||
&& (BRANCH_COST <= 1 || (code != LE && code != GT))))
|
||
return 0;
|
||
|
||
/* See what we need to return. We can only return a 1, -1, or the
|
||
sign bit. */
|
||
|
||
if (normalizep == 0)
|
||
{
|
||
if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
|
||
normalizep = STORE_FLAG_VALUE;
|
||
|
||
else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
|
||
&& (STORE_FLAG_VALUE
|
||
== (HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
|
||
;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* Try to put the result of the comparison in the sign bit. Assume we can't
|
||
do the necessary operation below. */
|
||
|
||
tem = 0;
|
||
|
||
/* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
|
||
the sign bit set. */
|
||
|
||
if (code == LE)
|
||
{
|
||
/* This is destructive, so SUBTARGET can't be OP0. */
|
||
if (rtx_equal_p (subtarget, op0))
|
||
subtarget = 0;
|
||
|
||
tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
|
||
OPTAB_WIDEN);
|
||
if (tem)
|
||
tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
|
||
OPTAB_WIDEN);
|
||
}
|
||
|
||
/* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
|
||
number of bits in the mode of OP0, minus one. */
|
||
|
||
if (code == GT)
|
||
{
|
||
if (rtx_equal_p (subtarget, op0))
|
||
subtarget = 0;
|
||
|
||
tem = expand_shift (RSHIFT_EXPR, mode, op0,
|
||
size_int (GET_MODE_BITSIZE (mode) - 1),
|
||
subtarget, 0);
|
||
tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
|
||
OPTAB_WIDEN);
|
||
}
|
||
|
||
if (code == EQ || code == NE)
|
||
{
|
||
/* For EQ or NE, one way to do the comparison is to apply an operation
|
||
that converts the operand into a positive number if it is non-zero
|
||
or zero if it was originally zero. Then, for EQ, we subtract 1 and
|
||
for NE we negate. This puts the result in the sign bit. Then we
|
||
normalize with a shift, if needed.
|
||
|
||
Two operations that can do the above actions are ABS and FFS, so try
|
||
them. If that doesn't work, and MODE is smaller than a full word,
|
||
we can use zero-extension to the wider mode (an unsigned conversion)
|
||
as the operation. */
|
||
|
||
if (abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
||
tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
|
||
else if (ffs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
||
tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
|
||
else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
|
||
{
|
||
op0 = protect_from_queue (op0, 0);
|
||
tem = convert_modes (word_mode, mode, op0, 1);
|
||
mode = word_mode;
|
||
}
|
||
|
||
if (tem != 0)
|
||
{
|
||
if (code == EQ)
|
||
tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
|
||
0, OPTAB_WIDEN);
|
||
else
|
||
tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
|
||
}
|
||
|
||
/* If we couldn't do it that way, for NE we can "or" the two's complement
|
||
of the value with itself. For EQ, we take the one's complement of
|
||
that "or", which is an extra insn, so we only handle EQ if branches
|
||
are expensive. */
|
||
|
||
if (tem == 0 && (code == NE || BRANCH_COST > 1))
|
||
{
|
||
if (rtx_equal_p (subtarget, op0))
|
||
subtarget = 0;
|
||
|
||
tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
|
||
tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
|
||
OPTAB_WIDEN);
|
||
|
||
if (tem && code == EQ)
|
||
tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
|
||
}
|
||
}
|
||
|
||
if (tem && normalizep)
|
||
tem = expand_shift (RSHIFT_EXPR, mode, tem,
|
||
size_int (GET_MODE_BITSIZE (mode) - 1),
|
||
subtarget, normalizep == 1);
|
||
|
||
if (tem)
|
||
{
|
||
if (GET_MODE (tem) != target_mode)
|
||
{
|
||
convert_move (target, tem, 0);
|
||
tem = target;
|
||
}
|
||
else if (!subtarget)
|
||
{
|
||
emit_move_insn (target, tem);
|
||
tem = target;
|
||
}
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
|
||
return tem;
|
||
}
|