mirror of
https://git.hardenedbsd.org/hardenedbsd/HardenedBSD.git
synced 2025-01-11 17:04:19 +01:00
c3cf0b476f
allocated with the right size from the start. For the thread that has kernel stack cached, verify that requested stack size is equial to the actual, and reallocate the stack if sizes differ [1]. This fixes the bug introduced by r173361 that was committed several days after r173004 and consisted of kthread_add(9) ignoring the non-default kernel stack size. Also, r173361 removed the caching of the kernel stacks for a non-first thread in the process. Introduce separate kernel stack cache that keeps some limited amount of preallocated kernel stacks to lower the latency of thread allocation. Add vm_lowmem handler to prune the cache on low memory condition. This way, system with reasonable amount of the threads get lower latency of thread creation, while still not exhausting significant portion of KVA for unused kstacks. Submitted by: peter [1] Discussed with: jhb, julian, peter Reviewed by: jhb Tested by: pho MFC after: 1 week
513 lines
12 KiB
C
513 lines
12 KiB
C
/*-
|
|
* Copyright (c) 2003, Jeffrey Roberson <jeff@freebsd.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice unmodified, this list of conditions, and the following
|
|
* disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_compat.h"
|
|
#include "opt_posix.h"
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/posix4.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/syscallsubr.h>
|
|
#include <sys/sysent.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/ucontext.h>
|
|
#include <sys/thr.h>
|
|
#include <sys/rtprio.h>
|
|
#include <sys/umtx.h>
|
|
#include <sys/limits.h>
|
|
|
|
#include <machine/frame.h>
|
|
|
|
#include <security/audit/audit.h>
|
|
|
|
#ifdef COMPAT_IA32
|
|
|
|
static inline int
|
|
suword_lwpid(void *addr, lwpid_t lwpid)
|
|
{
|
|
int error;
|
|
|
|
if (SV_CURPROC_FLAG(SV_LP64))
|
|
error = suword(addr, lwpid);
|
|
else
|
|
error = suword32(addr, lwpid);
|
|
return (error);
|
|
}
|
|
|
|
#else
|
|
#define suword_lwpid suword
|
|
#endif
|
|
|
|
extern int max_threads_per_proc;
|
|
extern int max_threads_hits;
|
|
|
|
static int create_thread(struct thread *td, mcontext_t *ctx,
|
|
void (*start_func)(void *), void *arg,
|
|
char *stack_base, size_t stack_size,
|
|
char *tls_base,
|
|
long *child_tid, long *parent_tid,
|
|
int flags, struct rtprio *rtp);
|
|
|
|
/*
|
|
* System call interface.
|
|
*/
|
|
int
|
|
thr_create(struct thread *td, struct thr_create_args *uap)
|
|
/* ucontext_t *ctx, long *id, int flags */
|
|
{
|
|
ucontext_t ctx;
|
|
int error;
|
|
|
|
if ((error = copyin(uap->ctx, &ctx, sizeof(ctx))))
|
|
return (error);
|
|
|
|
error = create_thread(td, &ctx.uc_mcontext, NULL, NULL,
|
|
NULL, 0, NULL, uap->id, NULL, uap->flags, NULL);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
thr_new(struct thread *td, struct thr_new_args *uap)
|
|
/* struct thr_param * */
|
|
{
|
|
struct thr_param param;
|
|
int error;
|
|
|
|
if (uap->param_size < 0 || uap->param_size > sizeof(param))
|
|
return (EINVAL);
|
|
bzero(¶m, sizeof(param));
|
|
if ((error = copyin(uap->param, ¶m, uap->param_size)))
|
|
return (error);
|
|
return (kern_thr_new(td, ¶m));
|
|
}
|
|
|
|
int
|
|
kern_thr_new(struct thread *td, struct thr_param *param)
|
|
{
|
|
struct rtprio rtp, *rtpp;
|
|
int error;
|
|
|
|
rtpp = NULL;
|
|
if (param->rtp != 0) {
|
|
error = copyin(param->rtp, &rtp, sizeof(struct rtprio));
|
|
if (error)
|
|
return (error);
|
|
rtpp = &rtp;
|
|
}
|
|
error = create_thread(td, NULL, param->start_func, param->arg,
|
|
param->stack_base, param->stack_size, param->tls_base,
|
|
param->child_tid, param->parent_tid, param->flags,
|
|
rtpp);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
create_thread(struct thread *td, mcontext_t *ctx,
|
|
void (*start_func)(void *), void *arg,
|
|
char *stack_base, size_t stack_size,
|
|
char *tls_base,
|
|
long *child_tid, long *parent_tid,
|
|
int flags, struct rtprio *rtp)
|
|
{
|
|
stack_t stack;
|
|
struct thread *newtd;
|
|
struct proc *p;
|
|
int error;
|
|
|
|
p = td->td_proc;
|
|
|
|
/* Have race condition but it is cheap. */
|
|
if (p->p_numthreads >= max_threads_per_proc) {
|
|
++max_threads_hits;
|
|
return (EPROCLIM);
|
|
}
|
|
|
|
if (rtp != NULL) {
|
|
switch(rtp->type) {
|
|
case RTP_PRIO_REALTIME:
|
|
case RTP_PRIO_FIFO:
|
|
/* Only root can set scheduler policy */
|
|
if (priv_check(td, PRIV_SCHED_SETPOLICY) != 0)
|
|
return (EPERM);
|
|
if (rtp->prio > RTP_PRIO_MAX)
|
|
return (EINVAL);
|
|
break;
|
|
case RTP_PRIO_NORMAL:
|
|
rtp->prio = 0;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
}
|
|
|
|
/* Initialize our td */
|
|
newtd = thread_alloc(0);
|
|
if (newtd == NULL)
|
|
return (ENOMEM);
|
|
|
|
/*
|
|
* Try the copyout as soon as we allocate the td so we don't
|
|
* have to tear things down in a failure case below.
|
|
* Here we copy out tid to two places, one for child and one
|
|
* for parent, because pthread can create a detached thread,
|
|
* if parent wants to safely access child tid, it has to provide
|
|
* its storage, because child thread may exit quickly and
|
|
* memory is freed before parent thread can access it.
|
|
*/
|
|
if ((child_tid != NULL &&
|
|
suword_lwpid(child_tid, newtd->td_tid)) ||
|
|
(parent_tid != NULL &&
|
|
suword_lwpid(parent_tid, newtd->td_tid))) {
|
|
thread_free(newtd);
|
|
return (EFAULT);
|
|
}
|
|
|
|
bzero(&newtd->td_startzero,
|
|
__rangeof(struct thread, td_startzero, td_endzero));
|
|
bcopy(&td->td_startcopy, &newtd->td_startcopy,
|
|
__rangeof(struct thread, td_startcopy, td_endcopy));
|
|
newtd->td_proc = td->td_proc;
|
|
newtd->td_ucred = crhold(td->td_ucred);
|
|
|
|
cpu_set_upcall(newtd, td);
|
|
|
|
if (ctx != NULL) { /* old way to set user context */
|
|
error = set_mcontext(newtd, ctx);
|
|
if (error != 0) {
|
|
thread_free(newtd);
|
|
crfree(td->td_ucred);
|
|
return (error);
|
|
}
|
|
} else {
|
|
/* Set up our machine context. */
|
|
stack.ss_sp = stack_base;
|
|
stack.ss_size = stack_size;
|
|
/* Set upcall address to user thread entry function. */
|
|
cpu_set_upcall_kse(newtd, start_func, arg, &stack);
|
|
/* Setup user TLS address and TLS pointer register. */
|
|
error = cpu_set_user_tls(newtd, tls_base);
|
|
if (error != 0) {
|
|
thread_free(newtd);
|
|
crfree(td->td_ucred);
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
PROC_LOCK(td->td_proc);
|
|
td->td_proc->p_flag |= P_HADTHREADS;
|
|
newtd->td_sigmask = td->td_sigmask;
|
|
thread_link(newtd, p);
|
|
bcopy(p->p_comm, newtd->td_name, sizeof(newtd->td_name));
|
|
thread_lock(td);
|
|
/* let the scheduler know about these things. */
|
|
sched_fork_thread(td, newtd);
|
|
thread_unlock(td);
|
|
if (P_SHOULDSTOP(p))
|
|
newtd->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
|
|
PROC_UNLOCK(p);
|
|
thread_lock(newtd);
|
|
if (rtp != NULL) {
|
|
if (!(td->td_pri_class == PRI_TIMESHARE &&
|
|
rtp->type == RTP_PRIO_NORMAL)) {
|
|
rtp_to_pri(rtp, newtd);
|
|
sched_prio(newtd, newtd->td_user_pri);
|
|
} /* ignore timesharing class */
|
|
}
|
|
TD_SET_CAN_RUN(newtd);
|
|
sched_add(newtd, SRQ_BORING);
|
|
thread_unlock(newtd);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
thr_self(struct thread *td, struct thr_self_args *uap)
|
|
/* long *id */
|
|
{
|
|
int error;
|
|
|
|
error = suword_lwpid(uap->id, (unsigned)td->td_tid);
|
|
if (error == -1)
|
|
return (EFAULT);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
thr_exit(struct thread *td, struct thr_exit_args *uap)
|
|
/* long *state */
|
|
{
|
|
struct proc *p;
|
|
|
|
p = td->td_proc;
|
|
|
|
/* Signal userland that it can free the stack. */
|
|
if ((void *)uap->state != NULL) {
|
|
suword_lwpid(uap->state, 1);
|
|
kern_umtx_wake(td, uap->state, INT_MAX, 0);
|
|
}
|
|
|
|
PROC_LOCK(p);
|
|
sigqueue_flush(&td->td_sigqueue);
|
|
PROC_SLOCK(p);
|
|
|
|
/*
|
|
* Shutting down last thread in the proc. This will actually
|
|
* call exit() in the trampoline when it returns.
|
|
*/
|
|
if (p->p_numthreads != 1) {
|
|
thread_stopped(p);
|
|
thread_exit();
|
|
/* NOTREACHED */
|
|
}
|
|
PROC_SUNLOCK(p);
|
|
PROC_UNLOCK(p);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
thr_kill(struct thread *td, struct thr_kill_args *uap)
|
|
/* long id, int sig */
|
|
{
|
|
struct thread *ttd;
|
|
struct proc *p;
|
|
int error;
|
|
|
|
p = td->td_proc;
|
|
error = 0;
|
|
PROC_LOCK(p);
|
|
if (uap->id == -1) {
|
|
if (uap->sig != 0 && !_SIG_VALID(uap->sig)) {
|
|
error = EINVAL;
|
|
} else {
|
|
error = ESRCH;
|
|
FOREACH_THREAD_IN_PROC(p, ttd) {
|
|
if (ttd != td) {
|
|
error = 0;
|
|
if (uap->sig == 0)
|
|
break;
|
|
tdsignal(p, ttd, uap->sig, NULL);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
if (uap->id != td->td_tid)
|
|
ttd = thread_find(p, uap->id);
|
|
else
|
|
ttd = td;
|
|
if (ttd == NULL)
|
|
error = ESRCH;
|
|
else if (uap->sig == 0)
|
|
;
|
|
else if (!_SIG_VALID(uap->sig))
|
|
error = EINVAL;
|
|
else
|
|
tdsignal(p, ttd, uap->sig, NULL);
|
|
}
|
|
PROC_UNLOCK(p);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
thr_kill2(struct thread *td, struct thr_kill2_args *uap)
|
|
/* pid_t pid, long id, int sig */
|
|
{
|
|
struct thread *ttd;
|
|
struct proc *p;
|
|
int error;
|
|
|
|
AUDIT_ARG_SIGNUM(uap->sig);
|
|
|
|
if (uap->pid == td->td_proc->p_pid) {
|
|
p = td->td_proc;
|
|
PROC_LOCK(p);
|
|
} else if ((p = pfind(uap->pid)) == NULL) {
|
|
return (ESRCH);
|
|
}
|
|
AUDIT_ARG_PROCESS(p);
|
|
|
|
error = p_cansignal(td, p, uap->sig);
|
|
if (error == 0) {
|
|
if (uap->id == -1) {
|
|
if (uap->sig != 0 && !_SIG_VALID(uap->sig)) {
|
|
error = EINVAL;
|
|
} else {
|
|
error = ESRCH;
|
|
FOREACH_THREAD_IN_PROC(p, ttd) {
|
|
if (ttd != td) {
|
|
error = 0;
|
|
if (uap->sig == 0)
|
|
break;
|
|
tdsignal(p, ttd, uap->sig, NULL);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
if (uap->id != td->td_tid)
|
|
ttd = thread_find(p, uap->id);
|
|
else
|
|
ttd = td;
|
|
if (ttd == NULL)
|
|
error = ESRCH;
|
|
else if (uap->sig == 0)
|
|
;
|
|
else if (!_SIG_VALID(uap->sig))
|
|
error = EINVAL;
|
|
else
|
|
tdsignal(p, ttd, uap->sig, NULL);
|
|
}
|
|
}
|
|
PROC_UNLOCK(p);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
thr_suspend(struct thread *td, struct thr_suspend_args *uap)
|
|
/* const struct timespec *timeout */
|
|
{
|
|
struct timespec ts, *tsp;
|
|
int error;
|
|
|
|
tsp = NULL;
|
|
if (uap->timeout != NULL) {
|
|
error = copyin((const void *)uap->timeout, (void *)&ts,
|
|
sizeof(struct timespec));
|
|
if (error != 0)
|
|
return (error);
|
|
tsp = &ts;
|
|
}
|
|
|
|
return (kern_thr_suspend(td, tsp));
|
|
}
|
|
|
|
int
|
|
kern_thr_suspend(struct thread *td, struct timespec *tsp)
|
|
{
|
|
struct timeval tv;
|
|
int error = 0, hz = 0;
|
|
|
|
if (tsp != NULL) {
|
|
if (tsp->tv_nsec < 0 || tsp->tv_nsec > 1000000000)
|
|
return (EINVAL);
|
|
if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
|
|
return (ETIMEDOUT);
|
|
TIMESPEC_TO_TIMEVAL(&tv, tsp);
|
|
hz = tvtohz(&tv);
|
|
}
|
|
|
|
if (td->td_pflags & TDP_WAKEUP) {
|
|
td->td_pflags &= ~TDP_WAKEUP;
|
|
return (0);
|
|
}
|
|
|
|
PROC_LOCK(td->td_proc);
|
|
if ((td->td_flags & TDF_THRWAKEUP) == 0)
|
|
error = msleep((void *)td, &td->td_proc->p_mtx, PCATCH, "lthr",
|
|
hz);
|
|
if (td->td_flags & TDF_THRWAKEUP) {
|
|
thread_lock(td);
|
|
td->td_flags &= ~TDF_THRWAKEUP;
|
|
thread_unlock(td);
|
|
PROC_UNLOCK(td->td_proc);
|
|
return (0);
|
|
}
|
|
PROC_UNLOCK(td->td_proc);
|
|
if (error == EWOULDBLOCK)
|
|
error = ETIMEDOUT;
|
|
else if (error == ERESTART) {
|
|
if (hz != 0)
|
|
error = EINTR;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
thr_wake(struct thread *td, struct thr_wake_args *uap)
|
|
/* long id */
|
|
{
|
|
struct proc *p;
|
|
struct thread *ttd;
|
|
|
|
if (uap->id == td->td_tid) {
|
|
td->td_pflags |= TDP_WAKEUP;
|
|
return (0);
|
|
}
|
|
|
|
p = td->td_proc;
|
|
PROC_LOCK(p);
|
|
ttd = thread_find(p, uap->id);
|
|
if (ttd == NULL) {
|
|
PROC_UNLOCK(p);
|
|
return (ESRCH);
|
|
}
|
|
thread_lock(ttd);
|
|
ttd->td_flags |= TDF_THRWAKEUP;
|
|
thread_unlock(ttd);
|
|
wakeup((void *)ttd);
|
|
PROC_UNLOCK(p);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
thr_set_name(struct thread *td, struct thr_set_name_args *uap)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
char name[MAXCOMLEN + 1];
|
|
struct thread *ttd;
|
|
int error;
|
|
|
|
error = 0;
|
|
name[0] = '\0';
|
|
if (uap->name != NULL) {
|
|
error = copyinstr(uap->name, name, sizeof(name),
|
|
NULL);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
PROC_LOCK(p);
|
|
if (uap->id == td->td_tid)
|
|
ttd = td;
|
|
else
|
|
ttd = thread_find(p, uap->id);
|
|
if (ttd != NULL)
|
|
strcpy(ttd->td_name, name);
|
|
else
|
|
error = ESRCH;
|
|
PROC_UNLOCK(p);
|
|
return (error);
|
|
}
|