mirror of
https://git.hardenedbsd.org/hardenedbsd/HardenedBSD.git
synced 2024-11-24 17:44:17 +01:00
b8acb1ed4a
Blessed by: jeff
427 lines
14 KiB
C
427 lines
14 KiB
C
/*-
|
|
* Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org>
|
|
* Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice unmodified, this list of conditions, and the following
|
|
* disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*
|
|
*/
|
|
|
|
#include <sys/_task.h>
|
|
|
|
/*
|
|
* This file includes definitions, structures, prototypes, and inlines that
|
|
* should not be used outside of the actual implementation of UMA.
|
|
*/
|
|
|
|
/*
|
|
* Here's a quick description of the relationship between the objects:
|
|
*
|
|
* Kegs contain lists of slabs which are stored in either the full bin, empty
|
|
* bin, or partially allocated bin, to reduce fragmentation. They also contain
|
|
* the user supplied value for size, which is adjusted for alignment purposes
|
|
* and rsize is the result of that. The Keg also stores information for
|
|
* managing a hash of page addresses that maps pages to uma_slab_t structures
|
|
* for pages that don't have embedded uma_slab_t's.
|
|
*
|
|
* The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may
|
|
* be allocated off the page from a special slab zone. The free list within a
|
|
* slab is managed with a bitmask. For item sizes that would yield more than
|
|
* 10% memory waste we potentially allocate a separate uma_slab_t if this will
|
|
* improve the number of items per slab that will fit.
|
|
*
|
|
* The only really gross cases, with regards to memory waste, are for those
|
|
* items that are just over half the page size. You can get nearly 50% waste,
|
|
* so you fall back to the memory footprint of the power of two allocator. I
|
|
* have looked at memory allocation sizes on many of the machines available to
|
|
* me, and there does not seem to be an abundance of allocations at this range
|
|
* so at this time it may not make sense to optimize for it. This can, of
|
|
* course, be solved with dynamic slab sizes.
|
|
*
|
|
* Kegs may serve multiple Zones but by far most of the time they only serve
|
|
* one. When a Zone is created, a Keg is allocated and setup for it. While
|
|
* the backing Keg stores slabs, the Zone caches Buckets of items allocated
|
|
* from the slabs. Each Zone is equipped with an init/fini and ctor/dtor
|
|
* pair, as well as with its own set of small per-CPU caches, layered above
|
|
* the Zone's general Bucket cache.
|
|
*
|
|
* The PCPU caches are protected by critical sections, and may be accessed
|
|
* safely only from their associated CPU, while the Zones backed by the same
|
|
* Keg all share a common Keg lock (to coalesce contention on the backing
|
|
* slabs). The backing Keg typically only serves one Zone but in the case of
|
|
* multiple Zones, one of the Zones is considered the Master Zone and all
|
|
* Zone-related stats from the Keg are done in the Master Zone. For an
|
|
* example of a Multi-Zone setup, refer to the Mbuf allocation code.
|
|
*/
|
|
|
|
/*
|
|
* This is the representation for normal (Non OFFPAGE slab)
|
|
*
|
|
* i == item
|
|
* s == slab pointer
|
|
*
|
|
* <---------------- Page (UMA_SLAB_SIZE) ------------------>
|
|
* ___________________________________________________________
|
|
* | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___________ |
|
|
* ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header||
|
|
* ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________||
|
|
* |___________________________________________________________|
|
|
*
|
|
*
|
|
* This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE.
|
|
*
|
|
* ___________________________________________________________
|
|
* | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
|
|
* ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |
|
|
* ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |
|
|
* |___________________________________________________________|
|
|
* ___________ ^
|
|
* |slab header| |
|
|
* |___________|---*
|
|
*
|
|
*/
|
|
|
|
#ifndef VM_UMA_INT_H
|
|
#define VM_UMA_INT_H
|
|
|
|
#define UMA_SLAB_SIZE PAGE_SIZE /* How big are our slabs? */
|
|
#define UMA_SLAB_MASK (PAGE_SIZE - 1) /* Mask to get back to the page */
|
|
#define UMA_SLAB_SHIFT PAGE_SHIFT /* Number of bits PAGE_MASK */
|
|
|
|
#define UMA_BOOT_PAGES 64 /* Pages allocated for startup */
|
|
|
|
/* Max waste percentage before going to off page slab management */
|
|
#define UMA_MAX_WASTE 10
|
|
|
|
/*
|
|
* I doubt there will be many cases where this is exceeded. This is the initial
|
|
* size of the hash table for uma_slabs that are managed off page. This hash
|
|
* does expand by powers of two. Currently it doesn't get smaller.
|
|
*/
|
|
#define UMA_HASH_SIZE_INIT 32
|
|
|
|
/*
|
|
* I should investigate other hashing algorithms. This should yield a low
|
|
* number of collisions if the pages are relatively contiguous.
|
|
*/
|
|
|
|
#define UMA_HASH(h, s) ((((uintptr_t)s) >> UMA_SLAB_SHIFT) & (h)->uh_hashmask)
|
|
|
|
#define UMA_HASH_INSERT(h, s, mem) \
|
|
SLIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h), \
|
|
(mem))], (s), us_hlink)
|
|
#define UMA_HASH_REMOVE(h, s, mem) \
|
|
SLIST_REMOVE(&(h)->uh_slab_hash[UMA_HASH((h), \
|
|
(mem))], (s), uma_slab, us_hlink)
|
|
|
|
/* Hash table for freed address -> slab translation */
|
|
|
|
SLIST_HEAD(slabhead, uma_slab);
|
|
|
|
struct uma_hash {
|
|
struct slabhead *uh_slab_hash; /* Hash table for slabs */
|
|
int uh_hashsize; /* Current size of the hash table */
|
|
int uh_hashmask; /* Mask used during hashing */
|
|
};
|
|
|
|
/*
|
|
* align field or structure to cache line
|
|
*/
|
|
#if defined(__amd64__)
|
|
#define UMA_ALIGN __aligned(CACHE_LINE_SIZE)
|
|
#else
|
|
#define UMA_ALIGN
|
|
#endif
|
|
|
|
/*
|
|
* Structures for per cpu queues.
|
|
*/
|
|
|
|
struct uma_bucket {
|
|
LIST_ENTRY(uma_bucket) ub_link; /* Link into the zone */
|
|
int16_t ub_cnt; /* Count of free items. */
|
|
int16_t ub_entries; /* Max items. */
|
|
void *ub_bucket[]; /* actual allocation storage */
|
|
};
|
|
|
|
typedef struct uma_bucket * uma_bucket_t;
|
|
|
|
struct uma_cache {
|
|
uma_bucket_t uc_freebucket; /* Bucket we're freeing to */
|
|
uma_bucket_t uc_allocbucket; /* Bucket to allocate from */
|
|
uint64_t uc_allocs; /* Count of allocations */
|
|
uint64_t uc_frees; /* Count of frees */
|
|
} UMA_ALIGN;
|
|
|
|
typedef struct uma_cache * uma_cache_t;
|
|
|
|
/*
|
|
* Keg management structure
|
|
*
|
|
* TODO: Optimize for cache line size
|
|
*
|
|
*/
|
|
struct uma_keg {
|
|
struct mtx_padalign uk_lock; /* Lock for the keg */
|
|
struct uma_hash uk_hash;
|
|
|
|
LIST_HEAD(,uma_zone) uk_zones; /* Keg's zones */
|
|
LIST_HEAD(,uma_slab) uk_part_slab; /* partially allocated slabs */
|
|
LIST_HEAD(,uma_slab) uk_free_slab; /* empty slab list */
|
|
LIST_HEAD(,uma_slab) uk_full_slab; /* full slabs */
|
|
|
|
uint32_t uk_align; /* Alignment mask */
|
|
uint32_t uk_pages; /* Total page count */
|
|
uint32_t uk_free; /* Count of items free in slabs */
|
|
uint32_t uk_reserve; /* Number of reserved items. */
|
|
uint32_t uk_size; /* Requested size of each item */
|
|
uint32_t uk_rsize; /* Real size of each item */
|
|
uint32_t uk_maxpages; /* Maximum number of pages to alloc */
|
|
|
|
uma_init uk_init; /* Keg's init routine */
|
|
uma_fini uk_fini; /* Keg's fini routine */
|
|
uma_alloc uk_allocf; /* Allocation function */
|
|
uma_free uk_freef; /* Free routine */
|
|
|
|
u_long uk_offset; /* Next free offset from base KVA */
|
|
vm_offset_t uk_kva; /* Zone base KVA */
|
|
uma_zone_t uk_slabzone; /* Slab zone backing us, if OFFPAGE */
|
|
|
|
uint16_t uk_slabsize; /* Slab size for this keg */
|
|
uint16_t uk_pgoff; /* Offset to uma_slab struct */
|
|
uint16_t uk_ppera; /* pages per allocation from backend */
|
|
uint16_t uk_ipers; /* Items per slab */
|
|
uint32_t uk_flags; /* Internal flags */
|
|
|
|
/* Least used fields go to the last cache line. */
|
|
const char *uk_name; /* Name of creating zone. */
|
|
LIST_ENTRY(uma_keg) uk_link; /* List of all kegs */
|
|
};
|
|
typedef struct uma_keg * uma_keg_t;
|
|
|
|
/*
|
|
* Free bits per-slab.
|
|
*/
|
|
#define SLAB_SETSIZE (PAGE_SIZE / UMA_SMALLEST_UNIT)
|
|
BITSET_DEFINE(slabbits, SLAB_SETSIZE);
|
|
|
|
/*
|
|
* The slab structure manages a single contiguous allocation from backing
|
|
* store and subdivides it into individually allocatable items.
|
|
*/
|
|
struct uma_slab {
|
|
uma_keg_t us_keg; /* Keg we live in */
|
|
union {
|
|
LIST_ENTRY(uma_slab) _us_link; /* slabs in zone */
|
|
unsigned long _us_size; /* Size of allocation */
|
|
} us_type;
|
|
SLIST_ENTRY(uma_slab) us_hlink; /* Link for hash table */
|
|
uint8_t *us_data; /* First item */
|
|
struct slabbits us_free; /* Free bitmask. */
|
|
#ifdef INVARIANTS
|
|
struct slabbits us_debugfree; /* Debug bitmask. */
|
|
#endif
|
|
uint16_t us_freecount; /* How many are free? */
|
|
uint8_t us_flags; /* Page flags see uma.h */
|
|
uint8_t us_pad; /* Pad to 32bits, unused. */
|
|
};
|
|
|
|
#define us_link us_type._us_link
|
|
#define us_size us_type._us_size
|
|
|
|
typedef struct uma_slab * uma_slab_t;
|
|
typedef uma_slab_t (*uma_slaballoc)(uma_zone_t, uma_keg_t, int);
|
|
|
|
struct uma_klink {
|
|
LIST_ENTRY(uma_klink) kl_link;
|
|
uma_keg_t kl_keg;
|
|
};
|
|
typedef struct uma_klink *uma_klink_t;
|
|
|
|
/*
|
|
* Zone management structure
|
|
*
|
|
* TODO: Optimize for cache line size
|
|
*
|
|
*/
|
|
struct uma_zone {
|
|
struct mtx_padalign uz_lock; /* Lock for the zone */
|
|
struct mtx_padalign *uz_lockptr;
|
|
const char *uz_name; /* Text name of the zone */
|
|
|
|
LIST_ENTRY(uma_zone) uz_link; /* List of all zones in keg */
|
|
LIST_HEAD(,uma_bucket) uz_buckets; /* full buckets */
|
|
|
|
LIST_HEAD(,uma_klink) uz_kegs; /* List of kegs. */
|
|
struct uma_klink uz_klink; /* klink for first keg. */
|
|
|
|
uma_slaballoc uz_slab; /* Allocate a slab from the backend. */
|
|
uma_ctor uz_ctor; /* Constructor for each allocation */
|
|
uma_dtor uz_dtor; /* Destructor */
|
|
uma_init uz_init; /* Initializer for each item */
|
|
uma_fini uz_fini; /* Finalizer for each item. */
|
|
uma_import uz_import; /* Import new memory to cache. */
|
|
uma_release uz_release; /* Release memory from cache. */
|
|
void *uz_arg; /* Import/release argument. */
|
|
|
|
uint32_t uz_flags; /* Flags inherited from kegs */
|
|
uint32_t uz_size; /* Size inherited from kegs */
|
|
|
|
volatile u_long uz_allocs UMA_ALIGN; /* Total number of allocations */
|
|
volatile u_long uz_fails; /* Total number of alloc failures */
|
|
volatile u_long uz_frees; /* Total number of frees */
|
|
uint64_t uz_sleeps; /* Total number of alloc sleeps */
|
|
uint16_t uz_count; /* Amount of items in full bucket */
|
|
uint16_t uz_count_min; /* Minimal amount of items there */
|
|
|
|
/* The next two fields are used to print a rate-limited warnings. */
|
|
const char *uz_warning; /* Warning to print on failure */
|
|
struct timeval uz_ratecheck; /* Warnings rate-limiting */
|
|
|
|
struct task uz_maxaction; /* Task to run when at limit */
|
|
|
|
/*
|
|
* This HAS to be the last item because we adjust the zone size
|
|
* based on NCPU and then allocate the space for the zones.
|
|
*/
|
|
struct uma_cache uz_cpu[1]; /* Per cpu caches */
|
|
};
|
|
|
|
/*
|
|
* These flags must not overlap with the UMA_ZONE flags specified in uma.h.
|
|
*/
|
|
#define UMA_ZFLAG_MULTI 0x04000000 /* Multiple kegs in the zone. */
|
|
#define UMA_ZFLAG_DRAINING 0x08000000 /* Running zone_drain. */
|
|
#define UMA_ZFLAG_BUCKET 0x10000000 /* Bucket zone. */
|
|
#define UMA_ZFLAG_INTERNAL 0x20000000 /* No offpage no PCPU. */
|
|
#define UMA_ZFLAG_FULL 0x40000000 /* Reached uz_maxpages */
|
|
#define UMA_ZFLAG_CACHEONLY 0x80000000 /* Don't ask VM for buckets. */
|
|
|
|
#define UMA_ZFLAG_INHERIT \
|
|
(UMA_ZFLAG_INTERNAL | UMA_ZFLAG_CACHEONLY | UMA_ZFLAG_BUCKET)
|
|
|
|
static inline uma_keg_t
|
|
zone_first_keg(uma_zone_t zone)
|
|
{
|
|
uma_klink_t klink;
|
|
|
|
klink = LIST_FIRST(&zone->uz_kegs);
|
|
return (klink != NULL) ? klink->kl_keg : NULL;
|
|
}
|
|
|
|
#undef UMA_ALIGN
|
|
|
|
#ifdef _KERNEL
|
|
/* Internal prototypes */
|
|
static __inline uma_slab_t hash_sfind(struct uma_hash *hash, uint8_t *data);
|
|
void *uma_large_malloc(vm_size_t size, int wait);
|
|
void uma_large_free(uma_slab_t slab);
|
|
|
|
/* Lock Macros */
|
|
|
|
#define KEG_LOCK_INIT(k, lc) \
|
|
do { \
|
|
if ((lc)) \
|
|
mtx_init(&(k)->uk_lock, (k)->uk_name, \
|
|
(k)->uk_name, MTX_DEF | MTX_DUPOK); \
|
|
else \
|
|
mtx_init(&(k)->uk_lock, (k)->uk_name, \
|
|
"UMA zone", MTX_DEF | MTX_DUPOK); \
|
|
} while (0)
|
|
|
|
#define KEG_LOCK_FINI(k) mtx_destroy(&(k)->uk_lock)
|
|
#define KEG_LOCK(k) mtx_lock(&(k)->uk_lock)
|
|
#define KEG_UNLOCK(k) mtx_unlock(&(k)->uk_lock)
|
|
|
|
#define ZONE_LOCK_INIT(z, lc) \
|
|
do { \
|
|
if ((lc)) \
|
|
mtx_init(&(z)->uz_lock, (z)->uz_name, \
|
|
(z)->uz_name, MTX_DEF | MTX_DUPOK); \
|
|
else \
|
|
mtx_init(&(z)->uz_lock, (z)->uz_name, \
|
|
"UMA zone", MTX_DEF | MTX_DUPOK); \
|
|
} while (0)
|
|
|
|
#define ZONE_LOCK(z) mtx_lock((z)->uz_lockptr)
|
|
#define ZONE_TRYLOCK(z) mtx_trylock((z)->uz_lockptr)
|
|
#define ZONE_UNLOCK(z) mtx_unlock((z)->uz_lockptr)
|
|
#define ZONE_LOCK_FINI(z) mtx_destroy(&(z)->uz_lock)
|
|
|
|
/*
|
|
* Find a slab within a hash table. This is used for OFFPAGE zones to lookup
|
|
* the slab structure.
|
|
*
|
|
* Arguments:
|
|
* hash The hash table to search.
|
|
* data The base page of the item.
|
|
*
|
|
* Returns:
|
|
* A pointer to a slab if successful, else NULL.
|
|
*/
|
|
static __inline uma_slab_t
|
|
hash_sfind(struct uma_hash *hash, uint8_t *data)
|
|
{
|
|
uma_slab_t slab;
|
|
int hval;
|
|
|
|
hval = UMA_HASH(hash, data);
|
|
|
|
SLIST_FOREACH(slab, &hash->uh_slab_hash[hval], us_hlink) {
|
|
if ((uint8_t *)slab->us_data == data)
|
|
return (slab);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
static __inline uma_slab_t
|
|
vtoslab(vm_offset_t va)
|
|
{
|
|
vm_page_t p;
|
|
|
|
p = PHYS_TO_VM_PAGE(pmap_kextract(va));
|
|
return ((uma_slab_t)p->plinks.s.pv);
|
|
}
|
|
|
|
static __inline void
|
|
vsetslab(vm_offset_t va, uma_slab_t slab)
|
|
{
|
|
vm_page_t p;
|
|
|
|
p = PHYS_TO_VM_PAGE(pmap_kextract(va));
|
|
p->plinks.s.pv = slab;
|
|
}
|
|
|
|
/*
|
|
* The following two functions may be defined by architecture specific code
|
|
* if they can provide more effecient allocation functions. This is useful
|
|
* for using direct mapped addresses.
|
|
*/
|
|
void *uma_small_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag,
|
|
int wait);
|
|
void uma_small_free(void *mem, vm_size_t size, uint8_t flags);
|
|
#endif /* _KERNEL */
|
|
|
|
#endif /* VM_UMA_INT_H */
|