HardenedBSD/sys/vm/vm_fault.c
trasz 825d80e01c Add four new RCTL resources - readbps, readiops, writebps and writeiops,
for limiting disk (actually filesystem) IO.

Note that in some cases these limits are not quite precise. It's ok,
as long as it's within some reasonable bounds.

Testing - and review of the code, in particular the VFS and VM parts - is
very welcome.

MFC after:	1 month
Relnotes:	yes
Sponsored by:	The FreeBSD Foundation
Differential Revision:	https://reviews.freebsd.org/D5080
2016-04-07 04:23:25 +00:00

1466 lines
42 KiB
C

/*-
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
* Copyright (c) 1994 John S. Dyson
* All rights reserved.
* Copyright (c) 1994 David Greenman
* All rights reserved.
*
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94
*
*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*
* Page fault handling module.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ktrace.h"
#include "opt_vm.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mman.h>
#include <sys/proc.h>
#include <sys/racct.h>
#include <sys/resourcevar.h>
#include <sys/rwlock.h>
#include <sys/sysctl.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>
#ifdef KTRACE
#include <sys/ktrace.h>
#endif
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_kern.h>
#include <vm/vm_pager.h>
#include <vm/vm_extern.h>
#include <vm/vm_reserv.h>
#define PFBAK 4
#define PFFOR 4
#define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT)
#define VM_FAULT_READ_MAX (1 + VM_FAULT_READ_AHEAD_MAX)
#define VM_FAULT_DONTNEED_MIN 1048576
struct faultstate {
vm_page_t m;
vm_object_t object;
vm_pindex_t pindex;
vm_page_t first_m;
vm_object_t first_object;
vm_pindex_t first_pindex;
vm_map_t map;
vm_map_entry_t entry;
int lookup_still_valid;
struct vnode *vp;
};
static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
int ahead);
static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
int backward, int forward);
static inline void
release_page(struct faultstate *fs)
{
vm_page_xunbusy(fs->m);
vm_page_lock(fs->m);
vm_page_deactivate(fs->m);
vm_page_unlock(fs->m);
fs->m = NULL;
}
static inline void
unlock_map(struct faultstate *fs)
{
if (fs->lookup_still_valid) {
vm_map_lookup_done(fs->map, fs->entry);
fs->lookup_still_valid = FALSE;
}
}
static void
unlock_and_deallocate(struct faultstate *fs)
{
vm_object_pip_wakeup(fs->object);
VM_OBJECT_WUNLOCK(fs->object);
if (fs->object != fs->first_object) {
VM_OBJECT_WLOCK(fs->first_object);
vm_page_lock(fs->first_m);
vm_page_free(fs->first_m);
vm_page_unlock(fs->first_m);
vm_object_pip_wakeup(fs->first_object);
VM_OBJECT_WUNLOCK(fs->first_object);
fs->first_m = NULL;
}
vm_object_deallocate(fs->first_object);
unlock_map(fs);
if (fs->vp != NULL) {
vput(fs->vp);
fs->vp = NULL;
}
}
static void
vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
vm_prot_t fault_type, int fault_flags, boolean_t set_wd)
{
boolean_t need_dirty;
if (((prot & VM_PROT_WRITE) == 0 &&
(fault_flags & VM_FAULT_DIRTY) == 0) ||
(m->oflags & VPO_UNMANAGED) != 0)
return;
VM_OBJECT_ASSERT_LOCKED(m->object);
need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
(fault_flags & VM_FAULT_WIRE) == 0) ||
(fault_flags & VM_FAULT_DIRTY) != 0;
if (set_wd)
vm_object_set_writeable_dirty(m->object);
else
/*
* If two callers of vm_fault_dirty() with set_wd ==
* FALSE, one for the map entry with MAP_ENTRY_NOSYNC
* flag set, other with flag clear, race, it is
* possible for the no-NOSYNC thread to see m->dirty
* != 0 and not clear VPO_NOSYNC. Take vm_page lock
* around manipulation of VPO_NOSYNC and
* vm_page_dirty() call, to avoid the race and keep
* m->oflags consistent.
*/
vm_page_lock(m);
/*
* If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
* if the page is already dirty to prevent data written with
* the expectation of being synced from not being synced.
* Likewise if this entry does not request NOSYNC then make
* sure the page isn't marked NOSYNC. Applications sharing
* data should use the same flags to avoid ping ponging.
*/
if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
if (m->dirty == 0) {
m->oflags |= VPO_NOSYNC;
}
} else {
m->oflags &= ~VPO_NOSYNC;
}
/*
* If the fault is a write, we know that this page is being
* written NOW so dirty it explicitly to save on
* pmap_is_modified() calls later.
*
* Also tell the backing pager, if any, that it should remove
* any swap backing since the page is now dirty.
*/
if (need_dirty)
vm_page_dirty(m);
if (!set_wd)
vm_page_unlock(m);
if (need_dirty)
vm_pager_page_unswapped(m);
}
/*
* vm_fault:
*
* Handle a page fault occurring at the given address,
* requiring the given permissions, in the map specified.
* If successful, the page is inserted into the
* associated physical map.
*
* NOTE: the given address should be truncated to the
* proper page address.
*
* KERN_SUCCESS is returned if the page fault is handled; otherwise,
* a standard error specifying why the fault is fatal is returned.
*
* The map in question must be referenced, and remains so.
* Caller may hold no locks.
*/
int
vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
int fault_flags)
{
struct thread *td;
int result;
td = curthread;
if ((td->td_pflags & TDP_NOFAULTING) != 0)
return (KERN_PROTECTION_FAILURE);
#ifdef KTRACE
if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
ktrfault(vaddr, fault_type);
#endif
result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
NULL);
#ifdef KTRACE
if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
ktrfaultend(result);
#endif
return (result);
}
int
vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
int fault_flags, vm_page_t *m_hold)
{
vm_prot_t prot;
int alloc_req, era, faultcount, nera, result;
boolean_t growstack, is_first_object_locked, wired;
int map_generation;
vm_object_t next_object;
int hardfault;
struct faultstate fs;
struct vnode *vp;
vm_page_t m;
int ahead, behind, cluster_offset, error, locked;
hardfault = 0;
growstack = TRUE;
PCPU_INC(cnt.v_vm_faults);
fs.vp = NULL;
faultcount = 0;
RetryFault:;
/*
* Find the backing store object and offset into it to begin the
* search.
*/
fs.map = map;
result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
&fs.first_object, &fs.first_pindex, &prot, &wired);
if (result != KERN_SUCCESS) {
if (growstack && result == KERN_INVALID_ADDRESS &&
map != kernel_map) {
result = vm_map_growstack(curproc, vaddr);
if (result != KERN_SUCCESS)
return (KERN_FAILURE);
growstack = FALSE;
goto RetryFault;
}
return (result);
}
map_generation = fs.map->timestamp;
if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
panic("vm_fault: fault on nofault entry, addr: %lx",
(u_long)vaddr);
}
if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
fs.entry->wiring_thread != curthread) {
vm_map_unlock_read(fs.map);
vm_map_lock(fs.map);
if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
(fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
if (fs.vp != NULL) {
vput(fs.vp);
fs.vp = NULL;
}
fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
vm_map_unlock_and_wait(fs.map, 0);
} else
vm_map_unlock(fs.map);
goto RetryFault;
}
if (wired)
fault_type = prot | (fault_type & VM_PROT_COPY);
else
KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
("!wired && VM_FAULT_WIRE"));
if (fs.vp == NULL /* avoid locked vnode leak */ &&
(fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
/* avoid calling vm_object_set_writeable_dirty() */
((prot & VM_PROT_WRITE) == 0 ||
(fs.first_object->type != OBJT_VNODE &&
(fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
(fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
VM_OBJECT_RLOCK(fs.first_object);
if ((prot & VM_PROT_WRITE) != 0 &&
(fs.first_object->type == OBJT_VNODE ||
(fs.first_object->flags & OBJ_TMPFS_NODE) != 0) &&
(fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0)
goto fast_failed;
m = vm_page_lookup(fs.first_object, fs.first_pindex);
/* A busy page can be mapped for read|execute access. */
if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
goto fast_failed;
result = pmap_enter(fs.map->pmap, vaddr, m, prot,
fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED :
0), 0);
if (result != KERN_SUCCESS)
goto fast_failed;
if (m_hold != NULL) {
*m_hold = m;
vm_page_lock(m);
vm_page_hold(m);
vm_page_unlock(m);
}
vm_fault_dirty(fs.entry, m, prot, fault_type, fault_flags,
FALSE);
VM_OBJECT_RUNLOCK(fs.first_object);
if (!wired)
vm_fault_prefault(&fs, vaddr, PFBAK, PFFOR);
vm_map_lookup_done(fs.map, fs.entry);
curthread->td_ru.ru_minflt++;
return (KERN_SUCCESS);
fast_failed:
if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
VM_OBJECT_RUNLOCK(fs.first_object);
VM_OBJECT_WLOCK(fs.first_object);
}
} else {
VM_OBJECT_WLOCK(fs.first_object);
}
/*
* Make a reference to this object to prevent its disposal while we
* are messing with it. Once we have the reference, the map is free
* to be diddled. Since objects reference their shadows (and copies),
* they will stay around as well.
*
* Bump the paging-in-progress count to prevent size changes (e.g.
* truncation operations) during I/O. This must be done after
* obtaining the vnode lock in order to avoid possible deadlocks.
*/
vm_object_reference_locked(fs.first_object);
vm_object_pip_add(fs.first_object, 1);
fs.lookup_still_valid = TRUE;
fs.first_m = NULL;
/*
* Search for the page at object/offset.
*/
fs.object = fs.first_object;
fs.pindex = fs.first_pindex;
while (TRUE) {
/*
* If the object is dead, we stop here
*/
if (fs.object->flags & OBJ_DEAD) {
unlock_and_deallocate(&fs);
return (KERN_PROTECTION_FAILURE);
}
/*
* See if page is resident
*/
fs.m = vm_page_lookup(fs.object, fs.pindex);
if (fs.m != NULL) {
/*
* Wait/Retry if the page is busy. We have to do this
* if the page is either exclusive or shared busy
* because the vm_pager may be using read busy for
* pageouts (and even pageins if it is the vnode
* pager), and we could end up trying to pagein and
* pageout the same page simultaneously.
*
* We can theoretically allow the busy case on a read
* fault if the page is marked valid, but since such
* pages are typically already pmap'd, putting that
* special case in might be more effort then it is
* worth. We cannot under any circumstances mess
* around with a shared busied page except, perhaps,
* to pmap it.
*/
if (vm_page_busied(fs.m)) {
/*
* Reference the page before unlocking and
* sleeping so that the page daemon is less
* likely to reclaim it.
*/
vm_page_aflag_set(fs.m, PGA_REFERENCED);
if (fs.object != fs.first_object) {
if (!VM_OBJECT_TRYWLOCK(
fs.first_object)) {
VM_OBJECT_WUNLOCK(fs.object);
VM_OBJECT_WLOCK(fs.first_object);
VM_OBJECT_WLOCK(fs.object);
}
vm_page_lock(fs.first_m);
vm_page_free(fs.first_m);
vm_page_unlock(fs.first_m);
vm_object_pip_wakeup(fs.first_object);
VM_OBJECT_WUNLOCK(fs.first_object);
fs.first_m = NULL;
}
unlock_map(&fs);
if (fs.m == vm_page_lookup(fs.object,
fs.pindex)) {
vm_page_sleep_if_busy(fs.m, "vmpfw");
}
vm_object_pip_wakeup(fs.object);
VM_OBJECT_WUNLOCK(fs.object);
PCPU_INC(cnt.v_intrans);
vm_object_deallocate(fs.first_object);
goto RetryFault;
}
vm_page_lock(fs.m);
vm_page_remque(fs.m);
vm_page_unlock(fs.m);
/*
* Mark page busy for other processes, and the
* pagedaemon. If it still isn't completely valid
* (readable), jump to readrest, else break-out ( we
* found the page ).
*/
vm_page_xbusy(fs.m);
if (fs.m->valid != VM_PAGE_BITS_ALL)
goto readrest;
break;
}
/*
* Page is not resident. If this is the search termination
* or the pager might contain the page, allocate a new page.
* Default objects are zero-fill, there is no real pager.
*/
if (fs.object->type != OBJT_DEFAULT ||
fs.object == fs.first_object) {
if (fs.pindex >= fs.object->size) {
unlock_and_deallocate(&fs);
return (KERN_PROTECTION_FAILURE);
}
/*
* Allocate a new page for this object/offset pair.
*
* Unlocked read of the p_flag is harmless. At
* worst, the P_KILLED might be not observed
* there, and allocation can fail, causing
* restart and new reading of the p_flag.
*/
fs.m = NULL;
if (!vm_page_count_severe() || P_KILLED(curproc)) {
#if VM_NRESERVLEVEL > 0
vm_object_color(fs.object, atop(vaddr) -
fs.pindex);
#endif
alloc_req = P_KILLED(curproc) ?
VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
if (fs.object->type != OBJT_VNODE &&
fs.object->backing_object == NULL)
alloc_req |= VM_ALLOC_ZERO;
fs.m = vm_page_alloc(fs.object, fs.pindex,
alloc_req);
}
if (fs.m == NULL) {
unlock_and_deallocate(&fs);
VM_WAITPFAULT;
goto RetryFault;
} else if (fs.m->valid == VM_PAGE_BITS_ALL)
break;
}
readrest:
/*
* We have found a valid page or we have allocated a new page.
* The page thus may not be valid or may not be entirely
* valid.
*
* Attempt to fault-in the page if there is a chance that the
* pager has it, and potentially fault in additional pages
* at the same time. For default objects simply provide
* zero-filled pages.
*/
if (fs.object->type != OBJT_DEFAULT) {
int rv;
u_char behavior = vm_map_entry_behavior(fs.entry);
era = fs.entry->read_ahead;
if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
P_KILLED(curproc)) {
behind = 0;
nera = 0;
ahead = 0;
} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
behind = 0;
nera = VM_FAULT_READ_AHEAD_MAX;
ahead = nera;
if (fs.pindex == fs.entry->next_read)
vm_fault_dontneed(&fs, vaddr, ahead);
} else if (fs.pindex == fs.entry->next_read) {
/*
* This is a sequential fault. Arithmetically
* increase the requested number of pages in
* the read-ahead window. The requested
* number of pages is "# of sequential faults
* x (read ahead min + 1) + read ahead min"
*/
behind = 0;
nera = VM_FAULT_READ_AHEAD_MIN;
if (era > 0) {
nera += era + 1;
if (nera > VM_FAULT_READ_AHEAD_MAX)
nera = VM_FAULT_READ_AHEAD_MAX;
}
ahead = nera;
if (era == VM_FAULT_READ_AHEAD_MAX)
vm_fault_dontneed(&fs, vaddr, ahead);
} else {
/*
* This is a non-sequential fault. Request a
* cluster of pages that is aligned to a
* VM_FAULT_READ_DEFAULT page offset boundary
* within the object. Alignment to a page
* offset boundary is more likely to coincide
* with the underlying file system block than
* alignment to a virtual address boundary.
*/
cluster_offset = fs.pindex %
VM_FAULT_READ_DEFAULT;
behind = ulmin(cluster_offset,
atop(vaddr - fs.entry->start));
nera = 0;
ahead = VM_FAULT_READ_DEFAULT - 1 -
cluster_offset;
}
ahead = ulmin(ahead, atop(fs.entry->end - vaddr) - 1);
if (era != nera)
fs.entry->read_ahead = nera;
/*
* Call the pager to retrieve the data, if any, after
* releasing the lock on the map. We hold a ref on
* fs.object and the pages are exclusive busied.
*/
unlock_map(&fs);
if (fs.object->type == OBJT_VNODE) {
vp = fs.object->handle;
if (vp == fs.vp)
goto vnode_locked;
else if (fs.vp != NULL) {
vput(fs.vp);
fs.vp = NULL;
}
locked = VOP_ISLOCKED(vp);
if (locked != LK_EXCLUSIVE)
locked = LK_SHARED;
/* Do not sleep for vnode lock while fs.m is busy */
error = vget(vp, locked | LK_CANRECURSE |
LK_NOWAIT, curthread);
if (error != 0) {
vhold(vp);
release_page(&fs);
unlock_and_deallocate(&fs);
error = vget(vp, locked | LK_RETRY |
LK_CANRECURSE, curthread);
vdrop(vp);
fs.vp = vp;
KASSERT(error == 0,
("vm_fault: vget failed"));
goto RetryFault;
}
fs.vp = vp;
}
vnode_locked:
KASSERT(fs.vp == NULL || !fs.map->system_map,
("vm_fault: vnode-backed object mapped by system map"));
/*
* Page in the requested page and hint the pager,
* that it may bring up surrounding pages.
*/
rv = vm_pager_get_pages(fs.object, &fs.m, 1,
&behind, &ahead);
if (rv == VM_PAGER_OK) {
faultcount = behind + 1 + ahead;
hardfault++;
break; /* break to PAGE HAS BEEN FOUND */
}
/*
* Remove the bogus page (which does not exist at this
* object/offset); before doing so, we must get back
* our object lock to preserve our invariant.
*
* Also wake up any other process that may want to bring
* in this page.
*
* If this is the top-level object, we must leave the
* busy page to prevent another process from rushing
* past us, and inserting the page in that object at
* the same time that we are.
*/
if (rv == VM_PAGER_ERROR)
printf("vm_fault: pager read error, pid %d (%s)\n",
curproc->p_pid, curproc->p_comm);
/*
* Data outside the range of the pager or an I/O error
*/
/*
* XXX - the check for kernel_map is a kludge to work
* around having the machine panic on a kernel space
* fault w/ I/O error.
*/
if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
(rv == VM_PAGER_BAD)) {
vm_page_lock(fs.m);
vm_page_free(fs.m);
vm_page_unlock(fs.m);
fs.m = NULL;
unlock_and_deallocate(&fs);
return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
}
if (fs.object != fs.first_object) {
vm_page_lock(fs.m);
vm_page_free(fs.m);
vm_page_unlock(fs.m);
fs.m = NULL;
/*
* XXX - we cannot just fall out at this
* point, m has been freed and is invalid!
*/
}
}
/*
* We get here if the object has default pager (or unwiring)
* or the pager doesn't have the page.
*/
if (fs.object == fs.first_object)
fs.first_m = fs.m;
/*
* Move on to the next object. Lock the next object before
* unlocking the current one.
*/
fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
next_object = fs.object->backing_object;
if (next_object == NULL) {
/*
* If there's no object left, fill the page in the top
* object with zeros.
*/
if (fs.object != fs.first_object) {
vm_object_pip_wakeup(fs.object);
VM_OBJECT_WUNLOCK(fs.object);
fs.object = fs.first_object;
fs.pindex = fs.first_pindex;
fs.m = fs.first_m;
VM_OBJECT_WLOCK(fs.object);
}
fs.first_m = NULL;
/*
* Zero the page if necessary and mark it valid.
*/
if ((fs.m->flags & PG_ZERO) == 0) {
pmap_zero_page(fs.m);
} else {
PCPU_INC(cnt.v_ozfod);
}
PCPU_INC(cnt.v_zfod);
fs.m->valid = VM_PAGE_BITS_ALL;
/* Don't try to prefault neighboring pages. */
faultcount = 1;
break; /* break to PAGE HAS BEEN FOUND */
} else {
KASSERT(fs.object != next_object,
("object loop %p", next_object));
VM_OBJECT_WLOCK(next_object);
vm_object_pip_add(next_object, 1);
if (fs.object != fs.first_object)
vm_object_pip_wakeup(fs.object);
VM_OBJECT_WUNLOCK(fs.object);
fs.object = next_object;
}
}
vm_page_assert_xbusied(fs.m);
/*
* PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
* is held.]
*/
/*
* If the page is being written, but isn't already owned by the
* top-level object, we have to copy it into a new page owned by the
* top-level object.
*/
if (fs.object != fs.first_object) {
/*
* We only really need to copy if we want to write it.
*/
if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
/*
* This allows pages to be virtually copied from a
* backing_object into the first_object, where the
* backing object has no other refs to it, and cannot
* gain any more refs. Instead of a bcopy, we just
* move the page from the backing object to the
* first object. Note that we must mark the page
* dirty in the first object so that it will go out
* to swap when needed.
*/
is_first_object_locked = FALSE;
if (
/*
* Only one shadow object
*/
(fs.object->shadow_count == 1) &&
/*
* No COW refs, except us
*/
(fs.object->ref_count == 1) &&
/*
* No one else can look this object up
*/
(fs.object->handle == NULL) &&
/*
* No other ways to look the object up
*/
((fs.object->type == OBJT_DEFAULT) ||
(fs.object->type == OBJT_SWAP)) &&
(is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
/*
* We don't chase down the shadow chain
*/
fs.object == fs.first_object->backing_object) {
/*
* get rid of the unnecessary page
*/
vm_page_lock(fs.first_m);
vm_page_remove(fs.first_m);
vm_page_unlock(fs.first_m);
/*
* grab the page and put it into the
* process'es object. The page is
* automatically made dirty.
*/
if (vm_page_rename(fs.m, fs.first_object,
fs.first_pindex)) {
VM_OBJECT_WUNLOCK(fs.first_object);
unlock_and_deallocate(&fs);
goto RetryFault;
}
vm_page_lock(fs.first_m);
vm_page_free(fs.first_m);
vm_page_unlock(fs.first_m);
#if VM_NRESERVLEVEL > 0
/*
* Rename the reservation.
*/
vm_reserv_rename(fs.m, fs.first_object,
fs.object, OFF_TO_IDX(
fs.first_object->backing_object_offset));
#endif
vm_page_xbusy(fs.m);
fs.first_m = fs.m;
fs.m = NULL;
PCPU_INC(cnt.v_cow_optim);
} else {
/*
* Oh, well, lets copy it.
*/
pmap_copy_page(fs.m, fs.first_m);
fs.first_m->valid = VM_PAGE_BITS_ALL;
if (wired && (fault_flags &
VM_FAULT_WIRE) == 0) {
vm_page_lock(fs.first_m);
vm_page_wire(fs.first_m);
vm_page_unlock(fs.first_m);
vm_page_lock(fs.m);
vm_page_unwire(fs.m, PQ_INACTIVE);
vm_page_unlock(fs.m);
}
/*
* We no longer need the old page or object.
*/
release_page(&fs);
}
/*
* fs.object != fs.first_object due to above
* conditional
*/
vm_object_pip_wakeup(fs.object);
VM_OBJECT_WUNLOCK(fs.object);
/*
* Only use the new page below...
*/
fs.object = fs.first_object;
fs.pindex = fs.first_pindex;
fs.m = fs.first_m;
if (!is_first_object_locked)
VM_OBJECT_WLOCK(fs.object);
PCPU_INC(cnt.v_cow_faults);
curthread->td_cow++;
} else {
prot &= ~VM_PROT_WRITE;
}
}
/*
* We must verify that the maps have not changed since our last
* lookup.
*/
if (!fs.lookup_still_valid) {
vm_object_t retry_object;
vm_pindex_t retry_pindex;
vm_prot_t retry_prot;
if (!vm_map_trylock_read(fs.map)) {
release_page(&fs);
unlock_and_deallocate(&fs);
goto RetryFault;
}
fs.lookup_still_valid = TRUE;
if (fs.map->timestamp != map_generation) {
result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
&fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
/*
* If we don't need the page any longer, put it on the inactive
* list (the easiest thing to do here). If no one needs it,
* pageout will grab it eventually.
*/
if (result != KERN_SUCCESS) {
release_page(&fs);
unlock_and_deallocate(&fs);
/*
* If retry of map lookup would have blocked then
* retry fault from start.
*/
if (result == KERN_FAILURE)
goto RetryFault;
return (result);
}
if ((retry_object != fs.first_object) ||
(retry_pindex != fs.first_pindex)) {
release_page(&fs);
unlock_and_deallocate(&fs);
goto RetryFault;
}
/*
* Check whether the protection has changed or the object has
* been copied while we left the map unlocked. Changing from
* read to write permission is OK - we leave the page
* write-protected, and catch the write fault. Changing from
* write to read permission means that we can't mark the page
* write-enabled after all.
*/
prot &= retry_prot;
}
}
/*
* If the page was filled by a pager, update the map entry's
* last read offset.
*
* XXX The following assignment modifies the map
* without holding a write lock on it.
*/
if (hardfault)
fs.entry->next_read = fs.pindex + ahead + 1;
vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, TRUE);
vm_page_assert_xbusied(fs.m);
/*
* Page must be completely valid or it is not fit to
* map into user space. vm_pager_get_pages() ensures this.
*/
KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
("vm_fault: page %p partially invalid", fs.m));
VM_OBJECT_WUNLOCK(fs.object);
/*
* Put this page into the physical map. We had to do the unlock above
* because pmap_enter() may sleep. We don't put the page
* back on the active queue until later so that the pageout daemon
* won't find it (yet).
*/
pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
wired == 0)
vm_fault_prefault(&fs, vaddr,
faultcount > 0 ? behind : PFBAK,
faultcount > 0 ? ahead : PFFOR);
VM_OBJECT_WLOCK(fs.object);
vm_page_lock(fs.m);
/*
* If the page is not wired down, then put it where the pageout daemon
* can find it.
*/
if ((fault_flags & VM_FAULT_WIRE) != 0) {
KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
vm_page_wire(fs.m);
} else
vm_page_activate(fs.m);
if (m_hold != NULL) {
*m_hold = fs.m;
vm_page_hold(fs.m);
}
vm_page_unlock(fs.m);
vm_page_xunbusy(fs.m);
/*
* Unlock everything, and return
*/
unlock_and_deallocate(&fs);
if (hardfault) {
PCPU_INC(cnt.v_io_faults);
curthread->td_ru.ru_majflt++;
#ifdef RACCT
if (racct_enable && fs.object->type == OBJT_VNODE) {
PROC_LOCK(curproc);
if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
racct_add_force(curproc, RACCT_WRITEBPS,
PAGE_SIZE + behind * PAGE_SIZE);
racct_add_force(curproc, RACCT_WRITEIOPS, 1);
} else {
racct_add_force(curproc, RACCT_READBPS,
PAGE_SIZE + ahead * PAGE_SIZE);
racct_add_force(curproc, RACCT_READIOPS, 1);
}
PROC_UNLOCK(curproc);
}
#endif
} else
curthread->td_ru.ru_minflt++;
return (KERN_SUCCESS);
}
/*
* Speed up the reclamation of pages that precede the faulting pindex within
* the first object of the shadow chain. Essentially, perform the equivalent
* to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
* the faulting pindex by the cluster size when the pages read by vm_fault()
* cross a cluster-size boundary. The cluster size is the greater of the
* smallest superpage size and VM_FAULT_DONTNEED_MIN.
*
* When "fs->first_object" is a shadow object, the pages in the backing object
* that precede the faulting pindex are deactivated by vm_fault(). So, this
* function must only be concerned with pages in the first object.
*/
static void
vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
{
vm_map_entry_t entry;
vm_object_t first_object, object;
vm_offset_t end, start;
vm_page_t m, m_next;
vm_pindex_t pend, pstart;
vm_size_t size;
object = fs->object;
VM_OBJECT_ASSERT_WLOCKED(object);
first_object = fs->first_object;
if (first_object != object) {
if (!VM_OBJECT_TRYWLOCK(first_object)) {
VM_OBJECT_WUNLOCK(object);
VM_OBJECT_WLOCK(first_object);
VM_OBJECT_WLOCK(object);
}
}
/* Neither fictitious nor unmanaged pages can be reclaimed. */
if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
size = VM_FAULT_DONTNEED_MIN;
if (MAXPAGESIZES > 1 && size < pagesizes[1])
size = pagesizes[1];
end = rounddown2(vaddr, size);
if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
(entry = fs->entry)->start < end) {
if (end - entry->start < size)
start = entry->start;
else
start = end - size;
pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
pstart = OFF_TO_IDX(entry->offset) + atop(start -
entry->start);
m_next = vm_page_find_least(first_object, pstart);
pend = OFF_TO_IDX(entry->offset) + atop(end -
entry->start);
while ((m = m_next) != NULL && m->pindex < pend) {
m_next = TAILQ_NEXT(m, listq);
if (m->valid != VM_PAGE_BITS_ALL ||
vm_page_busied(m))
continue;
/*
* Don't clear PGA_REFERENCED, since it would
* likely represent a reference by a different
* process.
*
* Typically, at this point, prefetched pages
* are still in the inactive queue. Only
* pages that triggered page faults are in the
* active queue.
*/
vm_page_lock(m);
vm_page_deactivate(m);
vm_page_unlock(m);
}
}
}
if (first_object != object)
VM_OBJECT_WUNLOCK(first_object);
}
/*
* vm_fault_prefault provides a quick way of clustering
* pagefaults into a processes address space. It is a "cousin"
* of vm_map_pmap_enter, except it runs at page fault time instead
* of mmap time.
*/
static void
vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
int backward, int forward)
{
pmap_t pmap;
vm_map_entry_t entry;
vm_object_t backing_object, lobject;
vm_offset_t addr, starta;
vm_pindex_t pindex;
vm_page_t m;
int i;
pmap = fs->map->pmap;
if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
return;
entry = fs->entry;
starta = addra - backward * PAGE_SIZE;
if (starta < entry->start) {
starta = entry->start;
} else if (starta > addra) {
starta = 0;
}
/*
* Generate the sequence of virtual addresses that are candidates for
* prefaulting in an outward spiral from the faulting virtual address,
* "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra
* + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
* If the candidate address doesn't have a backing physical page, then
* the loop immediately terminates.
*/
for (i = 0; i < 2 * imax(backward, forward); i++) {
addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
PAGE_SIZE);
if (addr > addra + forward * PAGE_SIZE)
addr = 0;
if (addr < starta || addr >= entry->end)
continue;
if (!pmap_is_prefaultable(pmap, addr))
continue;
pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
lobject = entry->object.vm_object;
VM_OBJECT_RLOCK(lobject);
while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
lobject->type == OBJT_DEFAULT &&
(backing_object = lobject->backing_object) != NULL) {
KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
0, ("vm_fault_prefault: unaligned object offset"));
pindex += lobject->backing_object_offset >> PAGE_SHIFT;
VM_OBJECT_RLOCK(backing_object);
VM_OBJECT_RUNLOCK(lobject);
lobject = backing_object;
}
if (m == NULL) {
VM_OBJECT_RUNLOCK(lobject);
break;
}
if (m->valid == VM_PAGE_BITS_ALL &&
(m->flags & PG_FICTITIOUS) == 0)
pmap_enter_quick(pmap, addr, m, entry->protection);
VM_OBJECT_RUNLOCK(lobject);
}
}
/*
* Hold each of the physical pages that are mapped by the specified range of
* virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
* and allow the specified types of access, "prot". If all of the implied
* pages are successfully held, then the number of held pages is returned
* together with pointers to those pages in the array "ma". However, if any
* of the pages cannot be held, -1 is returned.
*/
int
vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
vm_prot_t prot, vm_page_t *ma, int max_count)
{
vm_offset_t end, va;
vm_page_t *mp;
int count;
boolean_t pmap_failed;
if (len == 0)
return (0);
end = round_page(addr + len);
addr = trunc_page(addr);
/*
* Check for illegal addresses.
*/
if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
return (-1);
if (atop(end - addr) > max_count)
panic("vm_fault_quick_hold_pages: count > max_count");
count = atop(end - addr);
/*
* Most likely, the physical pages are resident in the pmap, so it is
* faster to try pmap_extract_and_hold() first.
*/
pmap_failed = FALSE;
for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
*mp = pmap_extract_and_hold(map->pmap, va, prot);
if (*mp == NULL)
pmap_failed = TRUE;
else if ((prot & VM_PROT_WRITE) != 0 &&
(*mp)->dirty != VM_PAGE_BITS_ALL) {
/*
* Explicitly dirty the physical page. Otherwise, the
* caller's changes may go unnoticed because they are
* performed through an unmanaged mapping or by a DMA
* operation.
*
* The object lock is not held here.
* See vm_page_clear_dirty_mask().
*/
vm_page_dirty(*mp);
}
}
if (pmap_failed) {
/*
* One or more pages could not be held by the pmap. Either no
* page was mapped at the specified virtual address or that
* mapping had insufficient permissions. Attempt to fault in
* and hold these pages.
*/
for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
if (*mp == NULL && vm_fault_hold(map, va, prot,
VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
goto error;
}
return (count);
error:
for (mp = ma; mp < ma + count; mp++)
if (*mp != NULL) {
vm_page_lock(*mp);
vm_page_unhold(*mp);
vm_page_unlock(*mp);
}
return (-1);
}
/*
* Routine:
* vm_fault_copy_entry
* Function:
* Create new shadow object backing dst_entry with private copy of
* all underlying pages. When src_entry is equal to dst_entry,
* function implements COW for wired-down map entry. Otherwise,
* it forks wired entry into dst_map.
*
* In/out conditions:
* The source and destination maps must be locked for write.
* The source map entry must be wired down (or be a sharing map
* entry corresponding to a main map entry that is wired down).
*/
void
vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
vm_ooffset_t *fork_charge)
{
vm_object_t backing_object, dst_object, object, src_object;
vm_pindex_t dst_pindex, pindex, src_pindex;
vm_prot_t access, prot;
vm_offset_t vaddr;
vm_page_t dst_m;
vm_page_t src_m;
boolean_t upgrade;
#ifdef lint
src_map++;
#endif /* lint */
upgrade = src_entry == dst_entry;
access = prot = dst_entry->protection;
src_object = src_entry->object.vm_object;
src_pindex = OFF_TO_IDX(src_entry->offset);
if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
dst_object = src_object;
vm_object_reference(dst_object);
} else {
/*
* Create the top-level object for the destination entry. (Doesn't
* actually shadow anything - we copy the pages directly.)
*/
dst_object = vm_object_allocate(OBJT_DEFAULT,
OFF_TO_IDX(dst_entry->end - dst_entry->start));
#if VM_NRESERVLEVEL > 0
dst_object->flags |= OBJ_COLORED;
dst_object->pg_color = atop(dst_entry->start);
#endif
}
VM_OBJECT_WLOCK(dst_object);
KASSERT(upgrade || dst_entry->object.vm_object == NULL,
("vm_fault_copy_entry: vm_object not NULL"));
if (src_object != dst_object) {
dst_entry->object.vm_object = dst_object;
dst_entry->offset = 0;
dst_object->charge = dst_entry->end - dst_entry->start;
}
if (fork_charge != NULL) {
KASSERT(dst_entry->cred == NULL,
("vm_fault_copy_entry: leaked swp charge"));
dst_object->cred = curthread->td_ucred;
crhold(dst_object->cred);
*fork_charge += dst_object->charge;
} else if (dst_object->cred == NULL) {
KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
dst_entry));
dst_object->cred = dst_entry->cred;
dst_entry->cred = NULL;
}
/*
* If not an upgrade, then enter the mappings in the pmap as
* read and/or execute accesses. Otherwise, enter them as
* write accesses.
*
* A writeable large page mapping is only created if all of
* the constituent small page mappings are modified. Marking
* PTEs as modified on inception allows promotion to happen
* without taking potentially large number of soft faults.
*/
if (!upgrade)
access &= ~VM_PROT_WRITE;
/*
* Loop through all of the virtual pages within the entry's
* range, copying each page from the source object to the
* destination object. Since the source is wired, those pages
* must exist. In contrast, the destination is pageable.
* Since the destination object does share any backing storage
* with the source object, all of its pages must be dirtied,
* regardless of whether they can be written.
*/
for (vaddr = dst_entry->start, dst_pindex = 0;
vaddr < dst_entry->end;
vaddr += PAGE_SIZE, dst_pindex++) {
again:
/*
* Find the page in the source object, and copy it in.
* Because the source is wired down, the page will be
* in memory.
*/
if (src_object != dst_object)
VM_OBJECT_RLOCK(src_object);
object = src_object;
pindex = src_pindex + dst_pindex;
while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
(backing_object = object->backing_object) != NULL) {
/*
* Unless the source mapping is read-only or
* it is presently being upgraded from
* read-only, the first object in the shadow
* chain should provide all of the pages. In
* other words, this loop body should never be
* executed when the source mapping is already
* read/write.
*/
KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
upgrade,
("vm_fault_copy_entry: main object missing page"));
VM_OBJECT_RLOCK(backing_object);
pindex += OFF_TO_IDX(object->backing_object_offset);
if (object != dst_object)
VM_OBJECT_RUNLOCK(object);
object = backing_object;
}
KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
if (object != dst_object) {
/*
* Allocate a page in the destination object.
*/
dst_m = vm_page_alloc(dst_object, (src_object ==
dst_object ? src_pindex : 0) + dst_pindex,
VM_ALLOC_NORMAL);
if (dst_m == NULL) {
VM_OBJECT_WUNLOCK(dst_object);
VM_OBJECT_RUNLOCK(object);
VM_WAIT;
VM_OBJECT_WLOCK(dst_object);
goto again;
}
pmap_copy_page(src_m, dst_m);
VM_OBJECT_RUNLOCK(object);
dst_m->valid = VM_PAGE_BITS_ALL;
dst_m->dirty = VM_PAGE_BITS_ALL;
} else {
dst_m = src_m;
if (vm_page_sleep_if_busy(dst_m, "fltupg"))
goto again;
vm_page_xbusy(dst_m);
KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
("invalid dst page %p", dst_m));
}
VM_OBJECT_WUNLOCK(dst_object);
/*
* Enter it in the pmap. If a wired, copy-on-write
* mapping is being replaced by a write-enabled
* mapping, then wire that new mapping.
*/
pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
/*
* Mark it no longer busy, and put it on the active list.
*/
VM_OBJECT_WLOCK(dst_object);
if (upgrade) {
if (src_m != dst_m) {
vm_page_lock(src_m);
vm_page_unwire(src_m, PQ_INACTIVE);
vm_page_unlock(src_m);
vm_page_lock(dst_m);
vm_page_wire(dst_m);
vm_page_unlock(dst_m);
} else {
KASSERT(dst_m->wire_count > 0,
("dst_m %p is not wired", dst_m));
}
} else {
vm_page_lock(dst_m);
vm_page_activate(dst_m);
vm_page_unlock(dst_m);
}
vm_page_xunbusy(dst_m);
}
VM_OBJECT_WUNLOCK(dst_object);
if (upgrade) {
dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
vm_object_deallocate(src_object);
}
}
/*
* Block entry into the machine-independent layer's page fault handler by
* the calling thread. Subsequent calls to vm_fault() by that thread will
* return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of
* spurious page faults.
*/
int
vm_fault_disable_pagefaults(void)
{
return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
}
void
vm_fault_enable_pagefaults(int save)
{
curthread_pflags_restore(save);
}