mirror of
https://git.hardenedbsd.org/hardenedbsd/HardenedBSD.git
synced 2024-11-25 18:12:57 +01:00
56a26fc1af
Hide definitions of several functions that currently don't have implementatations in the arm64 vmm port. In particular, add a WITH_VMMAPI_SNAPSHOT preprocessor variable that can be used to enable compilation of save/restore functions, and conditionalize compilation of some functions only used by amd64 bhyve. If in the long term they remain amd64-only, they can move to vmmapi_machdep.c, but for now it's not clear to me that that's the right thing to do. MFC after: 2 weeks Sponsored by: Innovate UK
1187 lines
24 KiB
C
1187 lines
24 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*
|
|
* Copyright (c) 2011 NetApp, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/capsicum.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/linker.h>
|
|
#include <sys/module.h>
|
|
#include <sys/_iovec.h>
|
|
#include <sys/cpuset.h>
|
|
|
|
#include <capsicum_helpers.h>
|
|
#include <errno.h>
|
|
#include <stdbool.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
|
|
#include <libutil.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <machine/vmm.h>
|
|
#include <machine/vmm_dev.h>
|
|
#ifdef WITH_VMMAPI_SNAPSHOT
|
|
#include <machine/vmm_snapshot.h>
|
|
#endif
|
|
|
|
#include "vmmapi.h"
|
|
#include "internal.h"
|
|
|
|
#define MB (1024 * 1024UL)
|
|
#define GB (1024 * 1024 * 1024UL)
|
|
|
|
#ifdef __amd64__
|
|
#define VM_LOWMEM_LIMIT (3 * GB)
|
|
#else
|
|
#define VM_LOWMEM_LIMIT 0
|
|
#endif
|
|
#define VM_HIGHMEM_BASE (4 * GB)
|
|
|
|
/*
|
|
* Size of the guard region before and after the virtual address space
|
|
* mapping the guest physical memory. This must be a multiple of the
|
|
* superpage size for performance reasons.
|
|
*/
|
|
#define VM_MMAP_GUARD_SIZE (4 * MB)
|
|
|
|
#define PROT_RW (PROT_READ | PROT_WRITE)
|
|
#define PROT_ALL (PROT_READ | PROT_WRITE | PROT_EXEC)
|
|
|
|
#define CREATE(x) sysctlbyname("hw.vmm.create", NULL, NULL, (x), strlen((x)))
|
|
#define DESTROY(x) sysctlbyname("hw.vmm.destroy", NULL, NULL, (x), strlen((x)))
|
|
|
|
static int
|
|
vm_device_open(const char *name)
|
|
{
|
|
int fd, len;
|
|
char *vmfile;
|
|
|
|
len = strlen("/dev/vmm/") + strlen(name) + 1;
|
|
vmfile = malloc(len);
|
|
assert(vmfile != NULL);
|
|
snprintf(vmfile, len, "/dev/vmm/%s", name);
|
|
|
|
/* Open the device file */
|
|
fd = open(vmfile, O_RDWR, 0);
|
|
|
|
free(vmfile);
|
|
return (fd);
|
|
}
|
|
|
|
int
|
|
vm_create(const char *name)
|
|
{
|
|
/* Try to load vmm(4) module before creating a guest. */
|
|
if (modfind("vmm") < 0)
|
|
kldload("vmm");
|
|
return (CREATE(name));
|
|
}
|
|
|
|
struct vmctx *
|
|
vm_open(const char *name)
|
|
{
|
|
struct vmctx *vm;
|
|
int saved_errno;
|
|
|
|
vm = malloc(sizeof(struct vmctx) + strlen(name) + 1);
|
|
assert(vm != NULL);
|
|
|
|
vm->fd = -1;
|
|
vm->memflags = 0;
|
|
vm->name = (char *)(vm + 1);
|
|
strcpy(vm->name, name);
|
|
memset(vm->memsegs, 0, sizeof(vm->memsegs));
|
|
|
|
if ((vm->fd = vm_device_open(vm->name)) < 0)
|
|
goto err;
|
|
|
|
return (vm);
|
|
err:
|
|
saved_errno = errno;
|
|
free(vm);
|
|
errno = saved_errno;
|
|
return (NULL);
|
|
}
|
|
|
|
void
|
|
vm_close(struct vmctx *vm)
|
|
{
|
|
assert(vm != NULL);
|
|
|
|
close(vm->fd);
|
|
free(vm);
|
|
}
|
|
|
|
void
|
|
vm_destroy(struct vmctx *vm)
|
|
{
|
|
assert(vm != NULL);
|
|
|
|
if (vm->fd >= 0)
|
|
close(vm->fd);
|
|
DESTROY(vm->name);
|
|
|
|
free(vm);
|
|
}
|
|
|
|
struct vcpu *
|
|
vm_vcpu_open(struct vmctx *ctx, int vcpuid)
|
|
{
|
|
struct vcpu *vcpu;
|
|
|
|
vcpu = malloc(sizeof(*vcpu));
|
|
vcpu->ctx = ctx;
|
|
vcpu->vcpuid = vcpuid;
|
|
return (vcpu);
|
|
}
|
|
|
|
void
|
|
vm_vcpu_close(struct vcpu *vcpu)
|
|
{
|
|
free(vcpu);
|
|
}
|
|
|
|
int
|
|
vcpu_id(struct vcpu *vcpu)
|
|
{
|
|
return (vcpu->vcpuid);
|
|
}
|
|
|
|
int
|
|
vm_parse_memsize(const char *opt, size_t *ret_memsize)
|
|
{
|
|
char *endptr;
|
|
size_t optval;
|
|
int error;
|
|
|
|
optval = strtoul(opt, &endptr, 0);
|
|
if (*opt != '\0' && *endptr == '\0') {
|
|
/*
|
|
* For the sake of backward compatibility if the memory size
|
|
* specified on the command line is less than a megabyte then
|
|
* it is interpreted as being in units of MB.
|
|
*/
|
|
if (optval < MB)
|
|
optval *= MB;
|
|
*ret_memsize = optval;
|
|
error = 0;
|
|
} else
|
|
error = expand_number(opt, ret_memsize);
|
|
|
|
return (error);
|
|
}
|
|
|
|
uint32_t
|
|
vm_get_lowmem_limit(struct vmctx *ctx __unused)
|
|
{
|
|
|
|
return (VM_LOWMEM_LIMIT);
|
|
}
|
|
|
|
void
|
|
vm_set_memflags(struct vmctx *ctx, int flags)
|
|
{
|
|
|
|
ctx->memflags = flags;
|
|
}
|
|
|
|
int
|
|
vm_get_memflags(struct vmctx *ctx)
|
|
{
|
|
|
|
return (ctx->memflags);
|
|
}
|
|
|
|
/*
|
|
* Map segment 'segid' starting at 'off' into guest address range [gpa,gpa+len).
|
|
*/
|
|
int
|
|
vm_mmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, int segid, vm_ooffset_t off,
|
|
size_t len, int prot)
|
|
{
|
|
struct vm_memmap memmap;
|
|
int error, flags;
|
|
|
|
memmap.gpa = gpa;
|
|
memmap.segid = segid;
|
|
memmap.segoff = off;
|
|
memmap.len = len;
|
|
memmap.prot = prot;
|
|
memmap.flags = 0;
|
|
|
|
if (ctx->memflags & VM_MEM_F_WIRED)
|
|
memmap.flags |= VM_MEMMAP_F_WIRED;
|
|
|
|
/*
|
|
* If this mapping already exists then don't create it again. This
|
|
* is the common case for SYSMEM mappings created by bhyveload(8).
|
|
*/
|
|
error = vm_mmap_getnext(ctx, &gpa, &segid, &off, &len, &prot, &flags);
|
|
if (error == 0 && gpa == memmap.gpa) {
|
|
if (segid != memmap.segid || off != memmap.segoff ||
|
|
prot != memmap.prot || flags != memmap.flags) {
|
|
errno = EEXIST;
|
|
return (-1);
|
|
} else {
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
error = ioctl(ctx->fd, VM_MMAP_MEMSEG, &memmap);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
vm_get_guestmem_from_ctx(struct vmctx *ctx, char **guest_baseaddr,
|
|
size_t *lowmem_size, size_t *highmem_size)
|
|
{
|
|
|
|
*guest_baseaddr = ctx->baseaddr;
|
|
*lowmem_size = ctx->memsegs[VM_MEMSEG_LOW].size;
|
|
*highmem_size = ctx->memsegs[VM_MEMSEG_HIGH].size;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
vm_munmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, size_t len)
|
|
{
|
|
struct vm_munmap munmap;
|
|
int error;
|
|
|
|
munmap.gpa = gpa;
|
|
munmap.len = len;
|
|
|
|
error = ioctl(ctx->fd, VM_MUNMAP_MEMSEG, &munmap);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
vm_mmap_getnext(struct vmctx *ctx, vm_paddr_t *gpa, int *segid,
|
|
vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
|
|
{
|
|
struct vm_memmap memmap;
|
|
int error;
|
|
|
|
bzero(&memmap, sizeof(struct vm_memmap));
|
|
memmap.gpa = *gpa;
|
|
error = ioctl(ctx->fd, VM_MMAP_GETNEXT, &memmap);
|
|
if (error == 0) {
|
|
*gpa = memmap.gpa;
|
|
*segid = memmap.segid;
|
|
*segoff = memmap.segoff;
|
|
*len = memmap.len;
|
|
*prot = memmap.prot;
|
|
*flags = memmap.flags;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Return 0 if the segments are identical and non-zero otherwise.
|
|
*
|
|
* This is slightly complicated by the fact that only device memory segments
|
|
* are named.
|
|
*/
|
|
static int
|
|
cmpseg(size_t len, const char *str, size_t len2, const char *str2)
|
|
{
|
|
|
|
if (len == len2) {
|
|
if ((!str && !str2) || (str && str2 && !strcmp(str, str2)))
|
|
return (0);
|
|
}
|
|
return (-1);
|
|
}
|
|
|
|
static int
|
|
vm_alloc_memseg(struct vmctx *ctx, int segid, size_t len, const char *name)
|
|
{
|
|
struct vm_memseg memseg;
|
|
size_t n;
|
|
int error;
|
|
|
|
/*
|
|
* If the memory segment has already been created then just return.
|
|
* This is the usual case for the SYSMEM segment created by userspace
|
|
* loaders like bhyveload(8).
|
|
*/
|
|
error = vm_get_memseg(ctx, segid, &memseg.len, memseg.name,
|
|
sizeof(memseg.name));
|
|
if (error)
|
|
return (error);
|
|
|
|
if (memseg.len != 0) {
|
|
if (cmpseg(len, name, memseg.len, VM_MEMSEG_NAME(&memseg))) {
|
|
errno = EINVAL;
|
|
return (-1);
|
|
} else {
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
bzero(&memseg, sizeof(struct vm_memseg));
|
|
memseg.segid = segid;
|
|
memseg.len = len;
|
|
if (name != NULL) {
|
|
n = strlcpy(memseg.name, name, sizeof(memseg.name));
|
|
if (n >= sizeof(memseg.name)) {
|
|
errno = ENAMETOOLONG;
|
|
return (-1);
|
|
}
|
|
}
|
|
|
|
error = ioctl(ctx->fd, VM_ALLOC_MEMSEG, &memseg);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
vm_get_memseg(struct vmctx *ctx, int segid, size_t *lenp, char *namebuf,
|
|
size_t bufsize)
|
|
{
|
|
struct vm_memseg memseg;
|
|
size_t n;
|
|
int error;
|
|
|
|
bzero(&memseg, sizeof(memseg));
|
|
memseg.segid = segid;
|
|
error = ioctl(ctx->fd, VM_GET_MEMSEG, &memseg);
|
|
if (error == 0) {
|
|
*lenp = memseg.len;
|
|
n = strlcpy(namebuf, memseg.name, bufsize);
|
|
if (n >= bufsize) {
|
|
errno = ENAMETOOLONG;
|
|
error = -1;
|
|
}
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
setup_memory_segment(struct vmctx *ctx, vm_paddr_t gpa, size_t len, char *base)
|
|
{
|
|
char *ptr;
|
|
int error, flags;
|
|
|
|
/* Map 'len' bytes starting at 'gpa' in the guest address space */
|
|
error = vm_mmap_memseg(ctx, gpa, VM_SYSMEM, gpa, len, PROT_ALL);
|
|
if (error)
|
|
return (error);
|
|
|
|
flags = MAP_SHARED | MAP_FIXED;
|
|
if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
|
|
flags |= MAP_NOCORE;
|
|
|
|
/* mmap into the process address space on the host */
|
|
ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa);
|
|
if (ptr == MAP_FAILED)
|
|
return (-1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms)
|
|
{
|
|
size_t objsize, len;
|
|
vm_paddr_t gpa;
|
|
char *baseaddr, *ptr;
|
|
int error;
|
|
|
|
assert(vms == VM_MMAP_ALL);
|
|
|
|
/*
|
|
* If 'memsize' cannot fit entirely in the 'lowmem' segment then create
|
|
* another 'highmem' segment above VM_HIGHMEM_BASE for the remainder.
|
|
*/
|
|
if (memsize > VM_LOWMEM_LIMIT) {
|
|
ctx->memsegs[VM_MEMSEG_LOW].size = VM_LOWMEM_LIMIT;
|
|
ctx->memsegs[VM_MEMSEG_HIGH].size = memsize - VM_LOWMEM_LIMIT;
|
|
objsize = VM_HIGHMEM_BASE + ctx->memsegs[VM_MEMSEG_HIGH].size;
|
|
} else {
|
|
ctx->memsegs[VM_MEMSEG_LOW].size = memsize;
|
|
ctx->memsegs[VM_MEMSEG_HIGH].size = 0;
|
|
objsize = memsize;
|
|
}
|
|
|
|
error = vm_alloc_memseg(ctx, VM_SYSMEM, objsize, NULL);
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* Stake out a contiguous region covering the guest physical memory
|
|
* and the adjoining guard regions.
|
|
*/
|
|
len = VM_MMAP_GUARD_SIZE + objsize + VM_MMAP_GUARD_SIZE;
|
|
ptr = mmap(NULL, len, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 0);
|
|
if (ptr == MAP_FAILED)
|
|
return (-1);
|
|
|
|
baseaddr = ptr + VM_MMAP_GUARD_SIZE;
|
|
if (ctx->memsegs[VM_MEMSEG_HIGH].size > 0) {
|
|
gpa = VM_HIGHMEM_BASE;
|
|
len = ctx->memsegs[VM_MEMSEG_HIGH].size;
|
|
error = setup_memory_segment(ctx, gpa, len, baseaddr);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
|
|
if (ctx->memsegs[VM_MEMSEG_LOW].size > 0) {
|
|
gpa = 0;
|
|
len = ctx->memsegs[VM_MEMSEG_LOW].size;
|
|
error = setup_memory_segment(ctx, gpa, len, baseaddr);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
|
|
ctx->baseaddr = baseaddr;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in
|
|
* the lowmem or highmem regions.
|
|
*
|
|
* In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region.
|
|
* The instruction emulation code depends on this behavior.
|
|
*/
|
|
void *
|
|
vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len)
|
|
{
|
|
vm_size_t lowsize, highsize;
|
|
|
|
lowsize = ctx->memsegs[VM_MEMSEG_LOW].size;
|
|
if (lowsize > 0) {
|
|
if (gaddr < lowsize && len <= lowsize && gaddr + len <= lowsize)
|
|
return (ctx->baseaddr + gaddr);
|
|
}
|
|
|
|
highsize = ctx->memsegs[VM_MEMSEG_HIGH].size;
|
|
if (highsize > 0 && gaddr >= VM_HIGHMEM_BASE) {
|
|
if (gaddr < VM_HIGHMEM_BASE + highsize && len <= highsize &&
|
|
gaddr + len <= VM_HIGHMEM_BASE + highsize)
|
|
return (ctx->baseaddr + gaddr);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
vm_paddr_t
|
|
vm_rev_map_gpa(struct vmctx *ctx, void *addr)
|
|
{
|
|
vm_paddr_t offaddr;
|
|
vm_size_t lowsize, highsize;
|
|
|
|
offaddr = (char *)addr - ctx->baseaddr;
|
|
|
|
lowsize = ctx->memsegs[VM_MEMSEG_LOW].size;
|
|
if (lowsize > 0)
|
|
if (offaddr <= lowsize)
|
|
return (offaddr);
|
|
|
|
highsize = ctx->memsegs[VM_MEMSEG_HIGH].size;
|
|
if (highsize > 0)
|
|
if (offaddr >= VM_HIGHMEM_BASE &&
|
|
offaddr < VM_HIGHMEM_BASE + highsize)
|
|
return (offaddr);
|
|
|
|
return ((vm_paddr_t)-1);
|
|
}
|
|
|
|
const char *
|
|
vm_get_name(struct vmctx *ctx)
|
|
{
|
|
|
|
return (ctx->name);
|
|
}
|
|
|
|
size_t
|
|
vm_get_lowmem_size(struct vmctx *ctx)
|
|
{
|
|
|
|
return (ctx->memsegs[VM_MEMSEG_LOW].size);
|
|
}
|
|
|
|
vm_paddr_t
|
|
vm_get_highmem_base(struct vmctx *ctx __unused)
|
|
{
|
|
|
|
return (VM_HIGHMEM_BASE);
|
|
}
|
|
|
|
size_t
|
|
vm_get_highmem_size(struct vmctx *ctx)
|
|
{
|
|
|
|
return (ctx->memsegs[VM_MEMSEG_HIGH].size);
|
|
}
|
|
|
|
void *
|
|
vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len)
|
|
{
|
|
char pathname[MAXPATHLEN];
|
|
size_t len2;
|
|
char *base, *ptr;
|
|
int fd, error, flags;
|
|
|
|
fd = -1;
|
|
ptr = MAP_FAILED;
|
|
if (name == NULL || strlen(name) == 0) {
|
|
errno = EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
error = vm_alloc_memseg(ctx, segid, len, name);
|
|
if (error)
|
|
goto done;
|
|
|
|
strlcpy(pathname, "/dev/vmm.io/", sizeof(pathname));
|
|
strlcat(pathname, ctx->name, sizeof(pathname));
|
|
strlcat(pathname, ".", sizeof(pathname));
|
|
strlcat(pathname, name, sizeof(pathname));
|
|
|
|
fd = open(pathname, O_RDWR);
|
|
if (fd < 0)
|
|
goto done;
|
|
|
|
/*
|
|
* Stake out a contiguous region covering the device memory and the
|
|
* adjoining guard regions.
|
|
*/
|
|
len2 = VM_MMAP_GUARD_SIZE + len + VM_MMAP_GUARD_SIZE;
|
|
base = mmap(NULL, len2, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1,
|
|
0);
|
|
if (base == MAP_FAILED)
|
|
goto done;
|
|
|
|
flags = MAP_SHARED | MAP_FIXED;
|
|
if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
|
|
flags |= MAP_NOCORE;
|
|
|
|
/* mmap the devmem region in the host address space */
|
|
ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, fd, 0);
|
|
done:
|
|
if (fd >= 0)
|
|
close(fd);
|
|
return (ptr);
|
|
}
|
|
|
|
int
|
|
vcpu_ioctl(struct vcpu *vcpu, u_long cmd, void *arg)
|
|
{
|
|
/*
|
|
* XXX: fragile, handle with care
|
|
* Assumes that the first field of the ioctl data
|
|
* is the vcpuid.
|
|
*/
|
|
*(int *)arg = vcpu->vcpuid;
|
|
return (ioctl(vcpu->ctx->fd, cmd, arg));
|
|
}
|
|
|
|
int
|
|
vm_set_register(struct vcpu *vcpu, int reg, uint64_t val)
|
|
{
|
|
int error;
|
|
struct vm_register vmreg;
|
|
|
|
bzero(&vmreg, sizeof(vmreg));
|
|
vmreg.regnum = reg;
|
|
vmreg.regval = val;
|
|
|
|
error = vcpu_ioctl(vcpu, VM_SET_REGISTER, &vmreg);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
vm_get_register(struct vcpu *vcpu, int reg, uint64_t *ret_val)
|
|
{
|
|
int error;
|
|
struct vm_register vmreg;
|
|
|
|
bzero(&vmreg, sizeof(vmreg));
|
|
vmreg.regnum = reg;
|
|
|
|
error = vcpu_ioctl(vcpu, VM_GET_REGISTER, &vmreg);
|
|
*ret_val = vmreg.regval;
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
vm_set_register_set(struct vcpu *vcpu, unsigned int count,
|
|
const int *regnums, uint64_t *regvals)
|
|
{
|
|
int error;
|
|
struct vm_register_set vmregset;
|
|
|
|
bzero(&vmregset, sizeof(vmregset));
|
|
vmregset.count = count;
|
|
vmregset.regnums = regnums;
|
|
vmregset.regvals = regvals;
|
|
|
|
error = vcpu_ioctl(vcpu, VM_SET_REGISTER_SET, &vmregset);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
vm_get_register_set(struct vcpu *vcpu, unsigned int count,
|
|
const int *regnums, uint64_t *regvals)
|
|
{
|
|
int error;
|
|
struct vm_register_set vmregset;
|
|
|
|
bzero(&vmregset, sizeof(vmregset));
|
|
vmregset.count = count;
|
|
vmregset.regnums = regnums;
|
|
vmregset.regvals = regvals;
|
|
|
|
error = vcpu_ioctl(vcpu, VM_GET_REGISTER_SET, &vmregset);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
vm_run(struct vcpu *vcpu, struct vm_run *vmrun)
|
|
{
|
|
return (vcpu_ioctl(vcpu, VM_RUN, vmrun));
|
|
}
|
|
|
|
int
|
|
vm_suspend(struct vmctx *ctx, enum vm_suspend_how how)
|
|
{
|
|
struct vm_suspend vmsuspend;
|
|
|
|
bzero(&vmsuspend, sizeof(vmsuspend));
|
|
vmsuspend.how = how;
|
|
return (ioctl(ctx->fd, VM_SUSPEND, &vmsuspend));
|
|
}
|
|
|
|
int
|
|
vm_reinit(struct vmctx *ctx)
|
|
{
|
|
|
|
return (ioctl(ctx->fd, VM_REINIT, 0));
|
|
}
|
|
|
|
int
|
|
vm_capability_name2type(const char *capname)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < VM_CAP_MAX; i++) {
|
|
if (vm_capstrmap[i] != NULL &&
|
|
strcmp(vm_capstrmap[i], capname) == 0)
|
|
return (i);
|
|
}
|
|
|
|
return (-1);
|
|
}
|
|
|
|
const char *
|
|
vm_capability_type2name(int type)
|
|
{
|
|
if (type >= 0 && type < VM_CAP_MAX)
|
|
return (vm_capstrmap[type]);
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
int
|
|
vm_get_capability(struct vcpu *vcpu, enum vm_cap_type cap, int *retval)
|
|
{
|
|
int error;
|
|
struct vm_capability vmcap;
|
|
|
|
bzero(&vmcap, sizeof(vmcap));
|
|
vmcap.captype = cap;
|
|
|
|
error = vcpu_ioctl(vcpu, VM_GET_CAPABILITY, &vmcap);
|
|
*retval = vmcap.capval;
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
vm_set_capability(struct vcpu *vcpu, enum vm_cap_type cap, int val)
|
|
{
|
|
struct vm_capability vmcap;
|
|
|
|
bzero(&vmcap, sizeof(vmcap));
|
|
vmcap.captype = cap;
|
|
vmcap.capval = val;
|
|
|
|
return (vcpu_ioctl(vcpu, VM_SET_CAPABILITY, &vmcap));
|
|
}
|
|
|
|
uint64_t *
|
|
vm_get_stats(struct vcpu *vcpu, struct timeval *ret_tv,
|
|
int *ret_entries)
|
|
{
|
|
static _Thread_local uint64_t *stats_buf;
|
|
static _Thread_local u_int stats_count;
|
|
uint64_t *new_stats;
|
|
struct vm_stats vmstats;
|
|
u_int count, index;
|
|
bool have_stats;
|
|
|
|
have_stats = false;
|
|
count = 0;
|
|
for (index = 0;; index += nitems(vmstats.statbuf)) {
|
|
vmstats.index = index;
|
|
if (vcpu_ioctl(vcpu, VM_STATS, &vmstats) != 0)
|
|
break;
|
|
if (stats_count < index + vmstats.num_entries) {
|
|
new_stats = realloc(stats_buf,
|
|
(index + vmstats.num_entries) * sizeof(uint64_t));
|
|
if (new_stats == NULL) {
|
|
errno = ENOMEM;
|
|
return (NULL);
|
|
}
|
|
stats_count = index + vmstats.num_entries;
|
|
stats_buf = new_stats;
|
|
}
|
|
memcpy(stats_buf + index, vmstats.statbuf,
|
|
vmstats.num_entries * sizeof(uint64_t));
|
|
count += vmstats.num_entries;
|
|
have_stats = true;
|
|
|
|
if (vmstats.num_entries != nitems(vmstats.statbuf))
|
|
break;
|
|
}
|
|
if (have_stats) {
|
|
if (ret_entries)
|
|
*ret_entries = count;
|
|
if (ret_tv)
|
|
*ret_tv = vmstats.tv;
|
|
return (stats_buf);
|
|
} else
|
|
return (NULL);
|
|
}
|
|
|
|
const char *
|
|
vm_get_stat_desc(struct vmctx *ctx, int index)
|
|
{
|
|
static struct vm_stat_desc statdesc;
|
|
|
|
statdesc.index = index;
|
|
if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0)
|
|
return (statdesc.desc);
|
|
else
|
|
return (NULL);
|
|
}
|
|
|
|
#ifdef __amd64__
|
|
int
|
|
vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num)
|
|
{
|
|
int error, i;
|
|
struct vm_gpa_pte gpapte;
|
|
|
|
bzero(&gpapte, sizeof(gpapte));
|
|
gpapte.gpa = gpa;
|
|
|
|
error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte);
|
|
|
|
if (error == 0) {
|
|
*num = gpapte.ptenum;
|
|
for (i = 0; i < gpapte.ptenum; i++)
|
|
pte[i] = gpapte.pte[i];
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
vm_gla2gpa(struct vcpu *vcpu, struct vm_guest_paging *paging,
|
|
uint64_t gla, int prot, uint64_t *gpa, int *fault)
|
|
{
|
|
struct vm_gla2gpa gg;
|
|
int error;
|
|
|
|
bzero(&gg, sizeof(struct vm_gla2gpa));
|
|
gg.prot = prot;
|
|
gg.gla = gla;
|
|
gg.paging = *paging;
|
|
|
|
error = vcpu_ioctl(vcpu, VM_GLA2GPA, &gg);
|
|
if (error == 0) {
|
|
*fault = gg.fault;
|
|
*gpa = gg.gpa;
|
|
}
|
|
return (error);
|
|
}
|
|
#endif
|
|
|
|
int
|
|
vm_gla2gpa_nofault(struct vcpu *vcpu, struct vm_guest_paging *paging,
|
|
uint64_t gla, int prot, uint64_t *gpa, int *fault)
|
|
{
|
|
struct vm_gla2gpa gg;
|
|
int error;
|
|
|
|
bzero(&gg, sizeof(struct vm_gla2gpa));
|
|
gg.prot = prot;
|
|
gg.gla = gla;
|
|
gg.paging = *paging;
|
|
|
|
error = vcpu_ioctl(vcpu, VM_GLA2GPA_NOFAULT, &gg);
|
|
if (error == 0) {
|
|
*fault = gg.fault;
|
|
*gpa = gg.gpa;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
#ifndef min
|
|
#define min(a,b) (((a) < (b)) ? (a) : (b))
|
|
#endif
|
|
|
|
#ifdef __amd64__
|
|
int
|
|
vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging,
|
|
uint64_t gla, size_t len, int prot, struct iovec *iov, int iovcnt,
|
|
int *fault)
|
|
{
|
|
void *va;
|
|
uint64_t gpa, off;
|
|
int error, i, n;
|
|
|
|
for (i = 0; i < iovcnt; i++) {
|
|
iov[i].iov_base = 0;
|
|
iov[i].iov_len = 0;
|
|
}
|
|
|
|
while (len) {
|
|
assert(iovcnt > 0);
|
|
error = vm_gla2gpa(vcpu, paging, gla, prot, &gpa, fault);
|
|
if (error || *fault)
|
|
return (error);
|
|
|
|
off = gpa & PAGE_MASK;
|
|
n = MIN(len, PAGE_SIZE - off);
|
|
|
|
va = vm_map_gpa(vcpu->ctx, gpa, n);
|
|
if (va == NULL)
|
|
return (EFAULT);
|
|
|
|
iov->iov_base = va;
|
|
iov->iov_len = n;
|
|
iov++;
|
|
iovcnt--;
|
|
|
|
gla += n;
|
|
len -= n;
|
|
}
|
|
return (0);
|
|
}
|
|
#endif
|
|
|
|
void
|
|
vm_copy_teardown(struct iovec *iov __unused, int iovcnt __unused)
|
|
{
|
|
/*
|
|
* Intentionally empty. This is used by the instruction
|
|
* emulation code shared with the kernel. The in-kernel
|
|
* version of this is non-empty.
|
|
*/
|
|
}
|
|
|
|
void
|
|
vm_copyin(struct iovec *iov, void *vp, size_t len)
|
|
{
|
|
const char *src;
|
|
char *dst;
|
|
size_t n;
|
|
|
|
dst = vp;
|
|
while (len) {
|
|
assert(iov->iov_len);
|
|
n = min(len, iov->iov_len);
|
|
src = iov->iov_base;
|
|
bcopy(src, dst, n);
|
|
|
|
iov++;
|
|
dst += n;
|
|
len -= n;
|
|
}
|
|
}
|
|
|
|
void
|
|
vm_copyout(const void *vp, struct iovec *iov, size_t len)
|
|
{
|
|
const char *src;
|
|
char *dst;
|
|
size_t n;
|
|
|
|
src = vp;
|
|
while (len) {
|
|
assert(iov->iov_len);
|
|
n = min(len, iov->iov_len);
|
|
dst = iov->iov_base;
|
|
bcopy(src, dst, n);
|
|
|
|
iov++;
|
|
src += n;
|
|
len -= n;
|
|
}
|
|
}
|
|
|
|
static int
|
|
vm_get_cpus(struct vmctx *ctx, int which, cpuset_t *cpus)
|
|
{
|
|
struct vm_cpuset vm_cpuset;
|
|
int error;
|
|
|
|
bzero(&vm_cpuset, sizeof(struct vm_cpuset));
|
|
vm_cpuset.which = which;
|
|
vm_cpuset.cpusetsize = sizeof(cpuset_t);
|
|
vm_cpuset.cpus = cpus;
|
|
|
|
error = ioctl(ctx->fd, VM_GET_CPUS, &vm_cpuset);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
vm_active_cpus(struct vmctx *ctx, cpuset_t *cpus)
|
|
{
|
|
|
|
return (vm_get_cpus(ctx, VM_ACTIVE_CPUS, cpus));
|
|
}
|
|
|
|
int
|
|
vm_suspended_cpus(struct vmctx *ctx, cpuset_t *cpus)
|
|
{
|
|
|
|
return (vm_get_cpus(ctx, VM_SUSPENDED_CPUS, cpus));
|
|
}
|
|
|
|
int
|
|
vm_debug_cpus(struct vmctx *ctx, cpuset_t *cpus)
|
|
{
|
|
|
|
return (vm_get_cpus(ctx, VM_DEBUG_CPUS, cpus));
|
|
}
|
|
|
|
int
|
|
vm_activate_cpu(struct vcpu *vcpu)
|
|
{
|
|
struct vm_activate_cpu ac;
|
|
int error;
|
|
|
|
bzero(&ac, sizeof(struct vm_activate_cpu));
|
|
error = vcpu_ioctl(vcpu, VM_ACTIVATE_CPU, &ac);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
vm_suspend_all_cpus(struct vmctx *ctx)
|
|
{
|
|
struct vm_activate_cpu ac;
|
|
int error;
|
|
|
|
bzero(&ac, sizeof(struct vm_activate_cpu));
|
|
ac.vcpuid = -1;
|
|
error = ioctl(ctx->fd, VM_SUSPEND_CPU, &ac);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
vm_suspend_cpu(struct vcpu *vcpu)
|
|
{
|
|
struct vm_activate_cpu ac;
|
|
int error;
|
|
|
|
bzero(&ac, sizeof(struct vm_activate_cpu));
|
|
error = vcpu_ioctl(vcpu, VM_SUSPEND_CPU, &ac);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
vm_resume_cpu(struct vcpu *vcpu)
|
|
{
|
|
struct vm_activate_cpu ac;
|
|
int error;
|
|
|
|
bzero(&ac, sizeof(struct vm_activate_cpu));
|
|
error = vcpu_ioctl(vcpu, VM_RESUME_CPU, &ac);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
vm_resume_all_cpus(struct vmctx *ctx)
|
|
{
|
|
struct vm_activate_cpu ac;
|
|
int error;
|
|
|
|
bzero(&ac, sizeof(struct vm_activate_cpu));
|
|
ac.vcpuid = -1;
|
|
error = ioctl(ctx->fd, VM_RESUME_CPU, &ac);
|
|
return (error);
|
|
}
|
|
|
|
#ifdef __amd64__
|
|
int
|
|
vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2)
|
|
{
|
|
struct vm_intinfo vmii;
|
|
int error;
|
|
|
|
bzero(&vmii, sizeof(struct vm_intinfo));
|
|
error = vcpu_ioctl(vcpu, VM_GET_INTINFO, &vmii);
|
|
if (error == 0) {
|
|
*info1 = vmii.info1;
|
|
*info2 = vmii.info2;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
vm_set_intinfo(struct vcpu *vcpu, uint64_t info1)
|
|
{
|
|
struct vm_intinfo vmii;
|
|
int error;
|
|
|
|
bzero(&vmii, sizeof(struct vm_intinfo));
|
|
vmii.info1 = info1;
|
|
error = vcpu_ioctl(vcpu, VM_SET_INTINFO, &vmii);
|
|
return (error);
|
|
}
|
|
#endif
|
|
|
|
#ifdef WITH_VMMAPI_SNAPSHOT
|
|
int
|
|
vm_restart_instruction(struct vcpu *vcpu)
|
|
{
|
|
int arg;
|
|
|
|
return (vcpu_ioctl(vcpu, VM_RESTART_INSTRUCTION, &arg));
|
|
}
|
|
|
|
int
|
|
vm_snapshot_req(struct vmctx *ctx, struct vm_snapshot_meta *meta)
|
|
{
|
|
|
|
if (ioctl(ctx->fd, VM_SNAPSHOT_REQ, meta) == -1) {
|
|
#ifdef SNAPSHOT_DEBUG
|
|
fprintf(stderr, "%s: snapshot failed for %s: %d\r\n",
|
|
__func__, meta->dev_name, errno);
|
|
#endif
|
|
return (-1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
vm_restore_time(struct vmctx *ctx)
|
|
{
|
|
int dummy;
|
|
|
|
dummy = 0;
|
|
return (ioctl(ctx->fd, VM_RESTORE_TIME, &dummy));
|
|
}
|
|
#endif
|
|
|
|
int
|
|
vm_set_topology(struct vmctx *ctx,
|
|
uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus)
|
|
{
|
|
struct vm_cpu_topology topology;
|
|
|
|
bzero(&topology, sizeof (struct vm_cpu_topology));
|
|
topology.sockets = sockets;
|
|
topology.cores = cores;
|
|
topology.threads = threads;
|
|
topology.maxcpus = maxcpus;
|
|
return (ioctl(ctx->fd, VM_SET_TOPOLOGY, &topology));
|
|
}
|
|
|
|
int
|
|
vm_get_topology(struct vmctx *ctx,
|
|
uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus)
|
|
{
|
|
struct vm_cpu_topology topology;
|
|
int error;
|
|
|
|
bzero(&topology, sizeof (struct vm_cpu_topology));
|
|
error = ioctl(ctx->fd, VM_GET_TOPOLOGY, &topology);
|
|
if (error == 0) {
|
|
*sockets = topology.sockets;
|
|
*cores = topology.cores;
|
|
*threads = topology.threads;
|
|
*maxcpus = topology.maxcpus;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
vm_limit_rights(struct vmctx *ctx)
|
|
{
|
|
cap_rights_t rights;
|
|
|
|
cap_rights_init(&rights, CAP_IOCTL, CAP_MMAP_RW);
|
|
if (caph_rights_limit(ctx->fd, &rights) != 0)
|
|
return (-1);
|
|
if (caph_ioctls_limit(ctx->fd, vm_ioctl_cmds, vm_ioctl_ncmds) != 0)
|
|
return (-1);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Avoid using in new code. Operations on the fd should be wrapped here so that
|
|
* capability rights can be kept in sync.
|
|
*/
|
|
int
|
|
vm_get_device_fd(struct vmctx *ctx)
|
|
{
|
|
|
|
return (ctx->fd);
|
|
}
|
|
|
|
/* Legacy interface, do not use. */
|
|
const cap_ioctl_t *
|
|
vm_get_ioctls(size_t *len)
|
|
{
|
|
cap_ioctl_t *cmds;
|
|
size_t sz;
|
|
|
|
if (len == NULL) {
|
|
sz = vm_ioctl_ncmds * sizeof(vm_ioctl_cmds[0]);
|
|
cmds = malloc(sz);
|
|
if (cmds == NULL)
|
|
return (NULL);
|
|
bcopy(vm_ioctl_cmds, cmds, sz);
|
|
return (cmds);
|
|
}
|
|
|
|
*len = vm_ioctl_ncmds;
|
|
return (NULL);
|
|
}
|