mirror of
https://git.hardenedbsd.org/hardenedbsd/HardenedBSD.git
synced 2024-11-26 10:53:39 +01:00
c05d7bdaf6
- Call kmsan_intr_enter() when an exception occurs. This ensures that code running in the exception context does not clobber thread-local KMSAN state. - Ensure that stack memory containing trap frames is treated as initialized. Co-authored-by: Alexander Stetsenko <alex.stetsenko@klarasystems.com> Reviewed by: imp MFC after: 2 weeks Sponsored by: Klara, Inc. Sponsored by: Juniper Networks, Inc. Differential Revision: https://reviews.freebsd.org/D43155
1929 lines
45 KiB
C
1929 lines
45 KiB
C
/*-
|
|
* Copyright (c) 2015-2016 Svatopluk Kraus
|
|
* Copyright (c) 2015-2016 Michal Meloun
|
|
* All rights reserved.
|
|
* Copyright (c) 2015-2016 The FreeBSD Foundation
|
|
* Copyright (c) 2021 Jessica Clarke <jrtc27@FreeBSD.org>
|
|
*
|
|
* Portions of this software were developed by Andrew Turner under
|
|
* sponsorship from the FreeBSD Foundation.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
/*
|
|
* New-style Interrupt Framework
|
|
*
|
|
* TODO: - add support for disconnected PICs.
|
|
* - to support IPI (PPI) enabling on other CPUs if already started.
|
|
* - to complete things for removable PICs.
|
|
*/
|
|
|
|
#include "opt_ddb.h"
|
|
#include "opt_hwpmc_hooks.h"
|
|
#include "opt_iommu.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/asan.h>
|
|
#include <sys/bitstring.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/cpuset.h>
|
|
#include <sys/interrupt.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/msan.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/tree.h>
|
|
#include <sys/vmmeter.h>
|
|
#ifdef HWPMC_HOOKS
|
|
#include <sys/pmckern.h>
|
|
#endif
|
|
|
|
#include <machine/atomic.h>
|
|
#include <machine/cpu.h>
|
|
#include <machine/intr.h>
|
|
#include <machine/smp.h>
|
|
#include <machine/stdarg.h>
|
|
|
|
#ifdef DDB
|
|
#include <ddb/ddb.h>
|
|
#endif
|
|
|
|
#ifdef IOMMU
|
|
#include <dev/iommu/iommu_msi.h>
|
|
#endif
|
|
|
|
#include "pic_if.h"
|
|
#include "msi_if.h"
|
|
|
|
#define INTRNAME_LEN (2*MAXCOMLEN + 1)
|
|
|
|
#ifdef DEBUG
|
|
#define debugf(fmt, args...) do { printf("%s(): ", __func__); \
|
|
printf(fmt,##args); } while (0)
|
|
#else
|
|
#define debugf(fmt, args...)
|
|
#endif
|
|
|
|
MALLOC_DECLARE(M_INTRNG);
|
|
MALLOC_DEFINE(M_INTRNG, "intr", "intr interrupt handling");
|
|
|
|
/* Main interrupt handler called from assembler -> 'hidden' for C code. */
|
|
void intr_irq_handler(struct trapframe *tf);
|
|
|
|
/* Root interrupt controller stuff. */
|
|
device_t intr_irq_root_dev;
|
|
static intr_irq_filter_t *irq_root_filter;
|
|
static void *irq_root_arg;
|
|
|
|
struct intr_pic_child {
|
|
SLIST_ENTRY(intr_pic_child) pc_next;
|
|
struct intr_pic *pc_pic;
|
|
intr_child_irq_filter_t *pc_filter;
|
|
void *pc_filter_arg;
|
|
uintptr_t pc_start;
|
|
uintptr_t pc_length;
|
|
};
|
|
|
|
/* Interrupt controller definition. */
|
|
struct intr_pic {
|
|
SLIST_ENTRY(intr_pic) pic_next;
|
|
intptr_t pic_xref; /* hardware identification */
|
|
device_t pic_dev;
|
|
/* Only one of FLAG_PIC or FLAG_MSI may be set */
|
|
#define FLAG_PIC (1 << 0)
|
|
#define FLAG_MSI (1 << 1)
|
|
#define FLAG_TYPE_MASK (FLAG_PIC | FLAG_MSI)
|
|
u_int pic_flags;
|
|
struct mtx pic_child_lock;
|
|
SLIST_HEAD(, intr_pic_child) pic_children;
|
|
};
|
|
|
|
#ifdef SMP
|
|
#define INTR_IPI_NAMELEN (MAXCOMLEN + 1)
|
|
|
|
struct intr_ipi {
|
|
intr_ipi_handler_t *ii_handler;
|
|
void *ii_handler_arg;
|
|
struct intr_irqsrc *ii_isrc;
|
|
char ii_name[INTR_IPI_NAMELEN];
|
|
u_long *ii_count;
|
|
};
|
|
|
|
static device_t intr_ipi_dev;
|
|
static u_int intr_ipi_dev_priority;
|
|
static bool intr_ipi_dev_frozen;
|
|
#endif
|
|
|
|
static struct mtx pic_list_lock;
|
|
static SLIST_HEAD(, intr_pic) pic_list;
|
|
|
|
static struct intr_pic *pic_lookup(device_t dev, intptr_t xref, int flags);
|
|
|
|
/* Interrupt source definition. */
|
|
static struct mtx isrc_table_lock;
|
|
static struct intr_irqsrc **irq_sources;
|
|
static u_int irq_next_free;
|
|
|
|
#ifdef SMP
|
|
#ifdef EARLY_AP_STARTUP
|
|
static bool irq_assign_cpu = true;
|
|
#else
|
|
static bool irq_assign_cpu = false;
|
|
#endif
|
|
|
|
static struct intr_ipi ipi_sources[INTR_IPI_COUNT];
|
|
#endif
|
|
|
|
u_int intr_nirq = NIRQ;
|
|
SYSCTL_UINT(_machdep, OID_AUTO, nirq, CTLFLAG_RDTUN, &intr_nirq, 0,
|
|
"Number of IRQs");
|
|
|
|
/* Data for MI statistics reporting. */
|
|
u_long *intrcnt;
|
|
char *intrnames;
|
|
size_t sintrcnt;
|
|
size_t sintrnames;
|
|
int nintrcnt;
|
|
static bitstr_t *intrcnt_bitmap;
|
|
|
|
static struct intr_irqsrc *intr_map_get_isrc(u_int res_id);
|
|
static void intr_map_set_isrc(u_int res_id, struct intr_irqsrc *isrc);
|
|
static struct intr_map_data * intr_map_get_map_data(u_int res_id);
|
|
static void intr_map_copy_map_data(u_int res_id, device_t *dev, intptr_t *xref,
|
|
struct intr_map_data **data);
|
|
|
|
/*
|
|
* Interrupt framework initialization routine.
|
|
*/
|
|
static void
|
|
intr_irq_init(void *dummy __unused)
|
|
{
|
|
|
|
SLIST_INIT(&pic_list);
|
|
mtx_init(&pic_list_lock, "intr pic list", NULL, MTX_DEF);
|
|
|
|
mtx_init(&isrc_table_lock, "intr isrc table", NULL, MTX_DEF);
|
|
|
|
/*
|
|
* - 2 counters for each I/O interrupt.
|
|
* - mp_maxid + 1 counters for each IPI counters for SMP.
|
|
*/
|
|
nintrcnt = intr_nirq * 2;
|
|
#ifdef SMP
|
|
nintrcnt += INTR_IPI_COUNT * (mp_maxid + 1);
|
|
#endif
|
|
|
|
intrcnt = mallocarray(nintrcnt, sizeof(u_long), M_INTRNG,
|
|
M_WAITOK | M_ZERO);
|
|
intrnames = mallocarray(nintrcnt, INTRNAME_LEN, M_INTRNG,
|
|
M_WAITOK | M_ZERO);
|
|
sintrcnt = nintrcnt * sizeof(u_long);
|
|
sintrnames = nintrcnt * INTRNAME_LEN;
|
|
|
|
/* Allocate the bitmap tracking counter allocations. */
|
|
intrcnt_bitmap = bit_alloc(nintrcnt, M_INTRNG, M_WAITOK | M_ZERO);
|
|
|
|
irq_sources = mallocarray(intr_nirq, sizeof(struct intr_irqsrc*),
|
|
M_INTRNG, M_WAITOK | M_ZERO);
|
|
}
|
|
SYSINIT(intr_irq_init, SI_SUB_INTR, SI_ORDER_FIRST, intr_irq_init, NULL);
|
|
|
|
static void
|
|
intrcnt_setname(const char *name, int index)
|
|
{
|
|
|
|
snprintf(intrnames + INTRNAME_LEN * index, INTRNAME_LEN, "%-*s",
|
|
INTRNAME_LEN - 1, name);
|
|
}
|
|
|
|
/*
|
|
* Update name for interrupt source with interrupt event.
|
|
*/
|
|
static void
|
|
intrcnt_updatename(struct intr_irqsrc *isrc)
|
|
{
|
|
|
|
/* QQQ: What about stray counter name? */
|
|
mtx_assert(&isrc_table_lock, MA_OWNED);
|
|
intrcnt_setname(isrc->isrc_event->ie_fullname, isrc->isrc_index);
|
|
}
|
|
|
|
/*
|
|
* Virtualization for interrupt source interrupt counter increment.
|
|
*/
|
|
static inline void
|
|
isrc_increment_count(struct intr_irqsrc *isrc)
|
|
{
|
|
|
|
if (isrc->isrc_flags & INTR_ISRCF_PPI)
|
|
atomic_add_long(&isrc->isrc_count[0], 1);
|
|
else
|
|
isrc->isrc_count[0]++;
|
|
}
|
|
|
|
/*
|
|
* Virtualization for interrupt source interrupt stray counter increment.
|
|
*/
|
|
static inline void
|
|
isrc_increment_straycount(struct intr_irqsrc *isrc)
|
|
{
|
|
|
|
isrc->isrc_count[1]++;
|
|
}
|
|
|
|
/*
|
|
* Virtualization for interrupt source interrupt name update.
|
|
*/
|
|
static void
|
|
isrc_update_name(struct intr_irqsrc *isrc, const char *name)
|
|
{
|
|
char str[INTRNAME_LEN];
|
|
|
|
mtx_assert(&isrc_table_lock, MA_OWNED);
|
|
|
|
if (name != NULL) {
|
|
snprintf(str, INTRNAME_LEN, "%s: %s", isrc->isrc_name, name);
|
|
intrcnt_setname(str, isrc->isrc_index);
|
|
snprintf(str, INTRNAME_LEN, "stray %s: %s", isrc->isrc_name,
|
|
name);
|
|
intrcnt_setname(str, isrc->isrc_index + 1);
|
|
} else {
|
|
snprintf(str, INTRNAME_LEN, "%s:", isrc->isrc_name);
|
|
intrcnt_setname(str, isrc->isrc_index);
|
|
snprintf(str, INTRNAME_LEN, "stray %s:", isrc->isrc_name);
|
|
intrcnt_setname(str, isrc->isrc_index + 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Virtualization for interrupt source interrupt counters setup.
|
|
*/
|
|
static void
|
|
isrc_setup_counters(struct intr_irqsrc *isrc)
|
|
{
|
|
int index;
|
|
|
|
mtx_assert(&isrc_table_lock, MA_OWNED);
|
|
|
|
/*
|
|
* Allocate two counter values, the second tracking "stray" interrupts.
|
|
*/
|
|
bit_ffc_area(intrcnt_bitmap, nintrcnt, 2, &index);
|
|
if (index == -1)
|
|
panic("Failed to allocate 2 counters. Array exhausted?");
|
|
bit_nset(intrcnt_bitmap, index, index + 1);
|
|
isrc->isrc_index = index;
|
|
isrc->isrc_count = &intrcnt[index];
|
|
isrc_update_name(isrc, NULL);
|
|
}
|
|
|
|
/*
|
|
* Virtualization for interrupt source interrupt counters release.
|
|
*/
|
|
static void
|
|
isrc_release_counters(struct intr_irqsrc *isrc)
|
|
{
|
|
int idx = isrc->isrc_index;
|
|
|
|
mtx_assert(&isrc_table_lock, MA_OWNED);
|
|
|
|
bit_nclear(intrcnt_bitmap, idx, idx + 1);
|
|
}
|
|
|
|
/*
|
|
* Main interrupt dispatch handler. It's called straight
|
|
* from the assembler, where CPU interrupt is served.
|
|
*/
|
|
void
|
|
intr_irq_handler(struct trapframe *tf)
|
|
{
|
|
struct trapframe * oldframe;
|
|
struct thread * td;
|
|
|
|
KASSERT(irq_root_filter != NULL, ("%s: no filter", __func__));
|
|
|
|
kasan_mark(tf, sizeof(*tf), sizeof(*tf), 0);
|
|
kmsan_mark(tf, sizeof(*tf), KMSAN_STATE_INITED);
|
|
|
|
VM_CNT_INC(v_intr);
|
|
critical_enter();
|
|
td = curthread;
|
|
oldframe = td->td_intr_frame;
|
|
td->td_intr_frame = tf;
|
|
irq_root_filter(irq_root_arg);
|
|
td->td_intr_frame = oldframe;
|
|
critical_exit();
|
|
#ifdef HWPMC_HOOKS
|
|
if (pmc_hook && TRAPF_USERMODE(tf) &&
|
|
(PCPU_GET(curthread)->td_pflags & TDP_CALLCHAIN))
|
|
pmc_hook(PCPU_GET(curthread), PMC_FN_USER_CALLCHAIN, tf);
|
|
#endif
|
|
}
|
|
|
|
int
|
|
intr_child_irq_handler(struct intr_pic *parent, uintptr_t irq)
|
|
{
|
|
struct intr_pic_child *child;
|
|
bool found;
|
|
|
|
found = false;
|
|
mtx_lock_spin(&parent->pic_child_lock);
|
|
SLIST_FOREACH(child, &parent->pic_children, pc_next) {
|
|
if (child->pc_start <= irq &&
|
|
irq < (child->pc_start + child->pc_length)) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
mtx_unlock_spin(&parent->pic_child_lock);
|
|
|
|
if (found)
|
|
return (child->pc_filter(child->pc_filter_arg, irq));
|
|
|
|
return (FILTER_STRAY);
|
|
}
|
|
|
|
/*
|
|
* interrupt controller dispatch function for interrupts. It should
|
|
* be called straight from the interrupt controller, when associated interrupt
|
|
* source is learned.
|
|
*/
|
|
int
|
|
intr_isrc_dispatch(struct intr_irqsrc *isrc, struct trapframe *tf)
|
|
{
|
|
|
|
KASSERT(isrc != NULL, ("%s: no source", __func__));
|
|
|
|
if ((isrc->isrc_flags & INTR_ISRCF_IPI) == 0)
|
|
isrc_increment_count(isrc);
|
|
|
|
#ifdef INTR_SOLO
|
|
if (isrc->isrc_filter != NULL) {
|
|
int error;
|
|
error = isrc->isrc_filter(isrc->isrc_arg, tf);
|
|
PIC_POST_FILTER(isrc->isrc_dev, isrc);
|
|
if (error == FILTER_HANDLED)
|
|
return (0);
|
|
} else
|
|
#endif
|
|
if (isrc->isrc_event != NULL) {
|
|
if (intr_event_handle(isrc->isrc_event, tf) == 0)
|
|
return (0);
|
|
}
|
|
|
|
if ((isrc->isrc_flags & INTR_ISRCF_IPI) == 0)
|
|
isrc_increment_straycount(isrc);
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* Alloc unique interrupt number (resource handle) for interrupt source.
|
|
*
|
|
* There could be various strategies how to allocate free interrupt number
|
|
* (resource handle) for new interrupt source.
|
|
*
|
|
* 1. Handles are always allocated forward, so handles are not recycled
|
|
* immediately. However, if only one free handle left which is reused
|
|
* constantly...
|
|
*/
|
|
static inline int
|
|
isrc_alloc_irq(struct intr_irqsrc *isrc)
|
|
{
|
|
u_int irq;
|
|
|
|
mtx_assert(&isrc_table_lock, MA_OWNED);
|
|
|
|
if (irq_next_free >= intr_nirq)
|
|
return (ENOSPC);
|
|
|
|
for (irq = irq_next_free; irq < intr_nirq; irq++) {
|
|
if (irq_sources[irq] == NULL)
|
|
goto found;
|
|
}
|
|
for (irq = 0; irq < irq_next_free; irq++) {
|
|
if (irq_sources[irq] == NULL)
|
|
goto found;
|
|
}
|
|
|
|
irq_next_free = intr_nirq;
|
|
return (ENOSPC);
|
|
|
|
found:
|
|
isrc->isrc_irq = irq;
|
|
irq_sources[irq] = isrc;
|
|
|
|
irq_next_free = irq + 1;
|
|
if (irq_next_free >= intr_nirq)
|
|
irq_next_free = 0;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Free unique interrupt number (resource handle) from interrupt source.
|
|
*/
|
|
static inline int
|
|
isrc_free_irq(struct intr_irqsrc *isrc)
|
|
{
|
|
|
|
mtx_assert(&isrc_table_lock, MA_OWNED);
|
|
|
|
if (isrc->isrc_irq >= intr_nirq)
|
|
return (EINVAL);
|
|
if (irq_sources[isrc->isrc_irq] != isrc)
|
|
return (EINVAL);
|
|
|
|
irq_sources[isrc->isrc_irq] = NULL;
|
|
isrc->isrc_irq = INTR_IRQ_INVALID; /* just to be safe */
|
|
|
|
/*
|
|
* If we are recovering from the state irq_sources table is full,
|
|
* then the following allocation should check the entire table. This
|
|
* will ensure maximum separation of allocation order from release
|
|
* order.
|
|
*/
|
|
if (irq_next_free >= intr_nirq)
|
|
irq_next_free = 0;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Initialize interrupt source and register it into global interrupt table.
|
|
*/
|
|
int
|
|
intr_isrc_register(struct intr_irqsrc *isrc, device_t dev, u_int flags,
|
|
const char *fmt, ...)
|
|
{
|
|
int error;
|
|
va_list ap;
|
|
|
|
bzero(isrc, sizeof(struct intr_irqsrc));
|
|
isrc->isrc_dev = dev;
|
|
isrc->isrc_irq = INTR_IRQ_INVALID; /* just to be safe */
|
|
isrc->isrc_flags = flags;
|
|
|
|
va_start(ap, fmt);
|
|
vsnprintf(isrc->isrc_name, INTR_ISRC_NAMELEN, fmt, ap);
|
|
va_end(ap);
|
|
|
|
mtx_lock(&isrc_table_lock);
|
|
error = isrc_alloc_irq(isrc);
|
|
if (error != 0) {
|
|
mtx_unlock(&isrc_table_lock);
|
|
return (error);
|
|
}
|
|
/*
|
|
* Setup interrupt counters, but not for IPI sources. Those are setup
|
|
* later and only for used ones (up to INTR_IPI_COUNT) to not exhaust
|
|
* our counter pool.
|
|
*/
|
|
if ((isrc->isrc_flags & INTR_ISRCF_IPI) == 0)
|
|
isrc_setup_counters(isrc);
|
|
mtx_unlock(&isrc_table_lock);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Deregister interrupt source from global interrupt table.
|
|
*/
|
|
int
|
|
intr_isrc_deregister(struct intr_irqsrc *isrc)
|
|
{
|
|
int error;
|
|
|
|
mtx_lock(&isrc_table_lock);
|
|
if ((isrc->isrc_flags & INTR_ISRCF_IPI) == 0)
|
|
isrc_release_counters(isrc);
|
|
error = isrc_free_irq(isrc);
|
|
mtx_unlock(&isrc_table_lock);
|
|
return (error);
|
|
}
|
|
|
|
#ifdef SMP
|
|
/*
|
|
* A support function for a PIC to decide if provided ISRC should be inited
|
|
* on given cpu. The logic of INTR_ISRCF_BOUND flag and isrc_cpu member of
|
|
* struct intr_irqsrc is the following:
|
|
*
|
|
* If INTR_ISRCF_BOUND is set, the ISRC should be inited only on cpus
|
|
* set in isrc_cpu. If not, the ISRC should be inited on every cpu and
|
|
* isrc_cpu is kept consistent with it. Thus isrc_cpu is always correct.
|
|
*/
|
|
bool
|
|
intr_isrc_init_on_cpu(struct intr_irqsrc *isrc, u_int cpu)
|
|
{
|
|
|
|
if (isrc->isrc_handlers == 0)
|
|
return (false);
|
|
if ((isrc->isrc_flags & (INTR_ISRCF_PPI | INTR_ISRCF_IPI)) == 0)
|
|
return (false);
|
|
if (isrc->isrc_flags & INTR_ISRCF_BOUND)
|
|
return (CPU_ISSET(cpu, &isrc->isrc_cpu));
|
|
|
|
CPU_SET(cpu, &isrc->isrc_cpu);
|
|
return (true);
|
|
}
|
|
#endif
|
|
|
|
#ifdef INTR_SOLO
|
|
/*
|
|
* Setup filter into interrupt source.
|
|
*/
|
|
static int
|
|
iscr_setup_filter(struct intr_irqsrc *isrc, const char *name,
|
|
intr_irq_filter_t *filter, void *arg, void **cookiep)
|
|
{
|
|
|
|
if (filter == NULL)
|
|
return (EINVAL);
|
|
|
|
mtx_lock(&isrc_table_lock);
|
|
/*
|
|
* Make sure that we do not mix the two ways
|
|
* how we handle interrupt sources.
|
|
*/
|
|
if (isrc->isrc_filter != NULL || isrc->isrc_event != NULL) {
|
|
mtx_unlock(&isrc_table_lock);
|
|
return (EBUSY);
|
|
}
|
|
isrc->isrc_filter = filter;
|
|
isrc->isrc_arg = arg;
|
|
isrc_update_name(isrc, name);
|
|
mtx_unlock(&isrc_table_lock);
|
|
|
|
*cookiep = isrc;
|
|
return (0);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Interrupt source pre_ithread method for MI interrupt framework.
|
|
*/
|
|
static void
|
|
intr_isrc_pre_ithread(void *arg)
|
|
{
|
|
struct intr_irqsrc *isrc = arg;
|
|
|
|
PIC_PRE_ITHREAD(isrc->isrc_dev, isrc);
|
|
}
|
|
|
|
/*
|
|
* Interrupt source post_ithread method for MI interrupt framework.
|
|
*/
|
|
static void
|
|
intr_isrc_post_ithread(void *arg)
|
|
{
|
|
struct intr_irqsrc *isrc = arg;
|
|
|
|
PIC_POST_ITHREAD(isrc->isrc_dev, isrc);
|
|
}
|
|
|
|
/*
|
|
* Interrupt source post_filter method for MI interrupt framework.
|
|
*/
|
|
static void
|
|
intr_isrc_post_filter(void *arg)
|
|
{
|
|
struct intr_irqsrc *isrc = arg;
|
|
|
|
PIC_POST_FILTER(isrc->isrc_dev, isrc);
|
|
}
|
|
|
|
/*
|
|
* Interrupt source assign_cpu method for MI interrupt framework.
|
|
*/
|
|
static int
|
|
intr_isrc_assign_cpu(void *arg, int cpu)
|
|
{
|
|
#ifdef SMP
|
|
struct intr_irqsrc *isrc = arg;
|
|
int error;
|
|
|
|
mtx_lock(&isrc_table_lock);
|
|
if (cpu == NOCPU) {
|
|
CPU_ZERO(&isrc->isrc_cpu);
|
|
isrc->isrc_flags &= ~INTR_ISRCF_BOUND;
|
|
} else {
|
|
CPU_SETOF(cpu, &isrc->isrc_cpu);
|
|
isrc->isrc_flags |= INTR_ISRCF_BOUND;
|
|
}
|
|
|
|
/*
|
|
* In NOCPU case, it's up to PIC to either leave ISRC on same CPU or
|
|
* re-balance it to another CPU or enable it on more CPUs. However,
|
|
* PIC is expected to change isrc_cpu appropriately to keep us well
|
|
* informed if the call is successful.
|
|
*/
|
|
if (irq_assign_cpu) {
|
|
error = PIC_BIND_INTR(isrc->isrc_dev, isrc);
|
|
if (error) {
|
|
CPU_ZERO(&isrc->isrc_cpu);
|
|
mtx_unlock(&isrc_table_lock);
|
|
return (error);
|
|
}
|
|
}
|
|
mtx_unlock(&isrc_table_lock);
|
|
return (0);
|
|
#else
|
|
return (EOPNOTSUPP);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Create interrupt event for interrupt source.
|
|
*/
|
|
static int
|
|
isrc_event_create(struct intr_irqsrc *isrc)
|
|
{
|
|
struct intr_event *ie;
|
|
int error;
|
|
|
|
error = intr_event_create(&ie, isrc, 0, isrc->isrc_irq,
|
|
intr_isrc_pre_ithread, intr_isrc_post_ithread, intr_isrc_post_filter,
|
|
intr_isrc_assign_cpu, "%s:", isrc->isrc_name);
|
|
if (error)
|
|
return (error);
|
|
|
|
mtx_lock(&isrc_table_lock);
|
|
/*
|
|
* Make sure that we do not mix the two ways
|
|
* how we handle interrupt sources. Let contested event wins.
|
|
*/
|
|
#ifdef INTR_SOLO
|
|
if (isrc->isrc_filter != NULL || isrc->isrc_event != NULL) {
|
|
#else
|
|
if (isrc->isrc_event != NULL) {
|
|
#endif
|
|
mtx_unlock(&isrc_table_lock);
|
|
intr_event_destroy(ie);
|
|
return (isrc->isrc_event != NULL ? EBUSY : 0);
|
|
}
|
|
isrc->isrc_event = ie;
|
|
mtx_unlock(&isrc_table_lock);
|
|
|
|
return (0);
|
|
}
|
|
#ifdef notyet
|
|
/*
|
|
* Destroy interrupt event for interrupt source.
|
|
*/
|
|
static void
|
|
isrc_event_destroy(struct intr_irqsrc *isrc)
|
|
{
|
|
struct intr_event *ie;
|
|
|
|
mtx_lock(&isrc_table_lock);
|
|
ie = isrc->isrc_event;
|
|
isrc->isrc_event = NULL;
|
|
mtx_unlock(&isrc_table_lock);
|
|
|
|
if (ie != NULL)
|
|
intr_event_destroy(ie);
|
|
}
|
|
#endif
|
|
/*
|
|
* Add handler to interrupt source.
|
|
*/
|
|
static int
|
|
isrc_add_handler(struct intr_irqsrc *isrc, const char *name,
|
|
driver_filter_t filter, driver_intr_t handler, void *arg,
|
|
enum intr_type flags, void **cookiep)
|
|
{
|
|
int error;
|
|
|
|
if (isrc->isrc_event == NULL) {
|
|
error = isrc_event_create(isrc);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
|
|
error = intr_event_add_handler(isrc->isrc_event, name, filter, handler,
|
|
arg, intr_priority(flags), flags, cookiep);
|
|
if (error == 0) {
|
|
mtx_lock(&isrc_table_lock);
|
|
intrcnt_updatename(isrc);
|
|
mtx_unlock(&isrc_table_lock);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Lookup interrupt controller locked.
|
|
*/
|
|
static inline struct intr_pic *
|
|
pic_lookup_locked(device_t dev, intptr_t xref, int flags)
|
|
{
|
|
struct intr_pic *pic;
|
|
|
|
mtx_assert(&pic_list_lock, MA_OWNED);
|
|
|
|
if (dev == NULL && xref == 0)
|
|
return (NULL);
|
|
|
|
/* Note that pic->pic_dev is never NULL on registered PIC. */
|
|
SLIST_FOREACH(pic, &pic_list, pic_next) {
|
|
if ((pic->pic_flags & FLAG_TYPE_MASK) !=
|
|
(flags & FLAG_TYPE_MASK))
|
|
continue;
|
|
|
|
if (dev == NULL) {
|
|
if (xref == pic->pic_xref)
|
|
return (pic);
|
|
} else if (xref == 0 || pic->pic_xref == 0) {
|
|
if (dev == pic->pic_dev)
|
|
return (pic);
|
|
} else if (xref == pic->pic_xref && dev == pic->pic_dev)
|
|
return (pic);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Lookup interrupt controller.
|
|
*/
|
|
static struct intr_pic *
|
|
pic_lookup(device_t dev, intptr_t xref, int flags)
|
|
{
|
|
struct intr_pic *pic;
|
|
|
|
mtx_lock(&pic_list_lock);
|
|
pic = pic_lookup_locked(dev, xref, flags);
|
|
mtx_unlock(&pic_list_lock);
|
|
return (pic);
|
|
}
|
|
|
|
/*
|
|
* Create interrupt controller.
|
|
*/
|
|
static struct intr_pic *
|
|
pic_create(device_t dev, intptr_t xref, int flags)
|
|
{
|
|
struct intr_pic *pic;
|
|
|
|
mtx_lock(&pic_list_lock);
|
|
pic = pic_lookup_locked(dev, xref, flags);
|
|
if (pic != NULL) {
|
|
mtx_unlock(&pic_list_lock);
|
|
return (pic);
|
|
}
|
|
pic = malloc(sizeof(*pic), M_INTRNG, M_NOWAIT | M_ZERO);
|
|
if (pic == NULL) {
|
|
mtx_unlock(&pic_list_lock);
|
|
return (NULL);
|
|
}
|
|
pic->pic_xref = xref;
|
|
pic->pic_dev = dev;
|
|
pic->pic_flags = flags;
|
|
mtx_init(&pic->pic_child_lock, "pic child lock", NULL, MTX_SPIN);
|
|
SLIST_INSERT_HEAD(&pic_list, pic, pic_next);
|
|
mtx_unlock(&pic_list_lock);
|
|
|
|
return (pic);
|
|
}
|
|
#ifdef notyet
|
|
/*
|
|
* Destroy interrupt controller.
|
|
*/
|
|
static void
|
|
pic_destroy(device_t dev, intptr_t xref, int flags)
|
|
{
|
|
struct intr_pic *pic;
|
|
|
|
mtx_lock(&pic_list_lock);
|
|
pic = pic_lookup_locked(dev, xref, flags);
|
|
if (pic == NULL) {
|
|
mtx_unlock(&pic_list_lock);
|
|
return;
|
|
}
|
|
SLIST_REMOVE(&pic_list, pic, intr_pic, pic_next);
|
|
mtx_unlock(&pic_list_lock);
|
|
|
|
free(pic, M_INTRNG);
|
|
}
|
|
#endif
|
|
/*
|
|
* Register interrupt controller.
|
|
*/
|
|
struct intr_pic *
|
|
intr_pic_register(device_t dev, intptr_t xref)
|
|
{
|
|
struct intr_pic *pic;
|
|
|
|
if (dev == NULL)
|
|
return (NULL);
|
|
pic = pic_create(dev, xref, FLAG_PIC);
|
|
if (pic == NULL)
|
|
return (NULL);
|
|
|
|
debugf("PIC %p registered for %s <dev %p, xref %jx>\n", pic,
|
|
device_get_nameunit(dev), dev, (uintmax_t)xref);
|
|
return (pic);
|
|
}
|
|
|
|
/*
|
|
* Unregister interrupt controller.
|
|
*/
|
|
int
|
|
intr_pic_deregister(device_t dev, intptr_t xref)
|
|
{
|
|
|
|
panic("%s: not implemented", __func__);
|
|
}
|
|
|
|
/*
|
|
* Mark interrupt controller (itself) as a root one.
|
|
*
|
|
* Note that only an interrupt controller can really know its position
|
|
* in interrupt controller's tree. So root PIC must claim itself as a root.
|
|
*
|
|
* In FDT case, according to ePAPR approved version 1.1 from 08 April 2011,
|
|
* page 30:
|
|
* "The root of the interrupt tree is determined when traversal
|
|
* of the interrupt tree reaches an interrupt controller node without
|
|
* an interrupts property and thus no explicit interrupt parent."
|
|
*/
|
|
int
|
|
intr_pic_claim_root(device_t dev, intptr_t xref, intr_irq_filter_t *filter,
|
|
void *arg)
|
|
{
|
|
struct intr_pic *pic;
|
|
|
|
pic = pic_lookup(dev, xref, FLAG_PIC);
|
|
if (pic == NULL) {
|
|
device_printf(dev, "not registered\n");
|
|
return (EINVAL);
|
|
}
|
|
|
|
KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_PIC,
|
|
("%s: Found a non-PIC controller: %s", __func__,
|
|
device_get_name(pic->pic_dev)));
|
|
|
|
if (filter == NULL) {
|
|
device_printf(dev, "filter missing\n");
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* Only one interrupt controllers could be on the root for now.
|
|
* Note that we further suppose that there is not threaded interrupt
|
|
* routine (handler) on the root. See intr_irq_handler().
|
|
*/
|
|
if (intr_irq_root_dev != NULL) {
|
|
device_printf(dev, "another root already set\n");
|
|
return (EBUSY);
|
|
}
|
|
|
|
intr_irq_root_dev = dev;
|
|
irq_root_filter = filter;
|
|
irq_root_arg = arg;
|
|
|
|
debugf("irq root set to %s\n", device_get_nameunit(dev));
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Add a handler to manage a sub range of a parents interrupts.
|
|
*/
|
|
int
|
|
intr_pic_add_handler(device_t parent, struct intr_pic *pic,
|
|
intr_child_irq_filter_t *filter, void *arg, uintptr_t start,
|
|
uintptr_t length)
|
|
{
|
|
struct intr_pic *parent_pic;
|
|
struct intr_pic_child *newchild;
|
|
#ifdef INVARIANTS
|
|
struct intr_pic_child *child;
|
|
#endif
|
|
|
|
/* Find the parent PIC */
|
|
parent_pic = pic_lookup(parent, 0, FLAG_PIC);
|
|
if (parent_pic == NULL)
|
|
return (ENXIO);
|
|
|
|
newchild = malloc(sizeof(*newchild), M_INTRNG, M_WAITOK | M_ZERO);
|
|
newchild->pc_pic = pic;
|
|
newchild->pc_filter = filter;
|
|
newchild->pc_filter_arg = arg;
|
|
newchild->pc_start = start;
|
|
newchild->pc_length = length;
|
|
|
|
mtx_lock_spin(&parent_pic->pic_child_lock);
|
|
#ifdef INVARIANTS
|
|
SLIST_FOREACH(child, &parent_pic->pic_children, pc_next) {
|
|
KASSERT(child->pc_pic != pic, ("%s: Adding a child PIC twice",
|
|
__func__));
|
|
}
|
|
#endif
|
|
SLIST_INSERT_HEAD(&parent_pic->pic_children, newchild, pc_next);
|
|
mtx_unlock_spin(&parent_pic->pic_child_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
intr_resolve_irq(device_t dev, intptr_t xref, struct intr_map_data *data,
|
|
struct intr_irqsrc **isrc)
|
|
{
|
|
struct intr_pic *pic;
|
|
struct intr_map_data_msi *msi;
|
|
|
|
if (data == NULL)
|
|
return (EINVAL);
|
|
|
|
pic = pic_lookup(dev, xref,
|
|
(data->type == INTR_MAP_DATA_MSI) ? FLAG_MSI : FLAG_PIC);
|
|
if (pic == NULL)
|
|
return (ESRCH);
|
|
|
|
switch (data->type) {
|
|
case INTR_MAP_DATA_MSI:
|
|
KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_MSI,
|
|
("%s: Found a non-MSI controller: %s", __func__,
|
|
device_get_name(pic->pic_dev)));
|
|
msi = (struct intr_map_data_msi *)data;
|
|
*isrc = msi->isrc;
|
|
return (0);
|
|
|
|
default:
|
|
KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_PIC,
|
|
("%s: Found a non-PIC controller: %s", __func__,
|
|
device_get_name(pic->pic_dev)));
|
|
return (PIC_MAP_INTR(pic->pic_dev, data, isrc));
|
|
}
|
|
}
|
|
|
|
bool
|
|
intr_is_per_cpu(struct resource *res)
|
|
{
|
|
u_int res_id;
|
|
struct intr_irqsrc *isrc;
|
|
|
|
res_id = (u_int)rman_get_start(res);
|
|
isrc = intr_map_get_isrc(res_id);
|
|
|
|
if (isrc == NULL)
|
|
panic("Attempt to get isrc for non-active resource id: %u\n",
|
|
res_id);
|
|
return ((isrc->isrc_flags & INTR_ISRCF_PPI) != 0);
|
|
}
|
|
|
|
int
|
|
intr_activate_irq(device_t dev, struct resource *res)
|
|
{
|
|
device_t map_dev;
|
|
intptr_t map_xref;
|
|
struct intr_map_data *data;
|
|
struct intr_irqsrc *isrc;
|
|
u_int res_id;
|
|
int error;
|
|
|
|
KASSERT(rman_get_start(res) == rman_get_end(res),
|
|
("%s: more interrupts in resource", __func__));
|
|
|
|
res_id = (u_int)rman_get_start(res);
|
|
if (intr_map_get_isrc(res_id) != NULL)
|
|
panic("Attempt to double activation of resource id: %u\n",
|
|
res_id);
|
|
intr_map_copy_map_data(res_id, &map_dev, &map_xref, &data);
|
|
error = intr_resolve_irq(map_dev, map_xref, data, &isrc);
|
|
if (error != 0) {
|
|
free(data, M_INTRNG);
|
|
/* XXX TODO DISCONECTED PICs */
|
|
/* if (error == EINVAL) return(0); */
|
|
return (error);
|
|
}
|
|
intr_map_set_isrc(res_id, isrc);
|
|
rman_set_virtual(res, data);
|
|
return (PIC_ACTIVATE_INTR(isrc->isrc_dev, isrc, res, data));
|
|
}
|
|
|
|
int
|
|
intr_deactivate_irq(device_t dev, struct resource *res)
|
|
{
|
|
struct intr_map_data *data;
|
|
struct intr_irqsrc *isrc;
|
|
u_int res_id;
|
|
int error;
|
|
|
|
KASSERT(rman_get_start(res) == rman_get_end(res),
|
|
("%s: more interrupts in resource", __func__));
|
|
|
|
res_id = (u_int)rman_get_start(res);
|
|
isrc = intr_map_get_isrc(res_id);
|
|
if (isrc == NULL)
|
|
panic("Attempt to deactivate non-active resource id: %u\n",
|
|
res_id);
|
|
|
|
data = rman_get_virtual(res);
|
|
error = PIC_DEACTIVATE_INTR(isrc->isrc_dev, isrc, res, data);
|
|
intr_map_set_isrc(res_id, NULL);
|
|
rman_set_virtual(res, NULL);
|
|
free(data, M_INTRNG);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
intr_setup_irq(device_t dev, struct resource *res, driver_filter_t filt,
|
|
driver_intr_t hand, void *arg, int flags, void **cookiep)
|
|
{
|
|
int error;
|
|
struct intr_map_data *data;
|
|
struct intr_irqsrc *isrc;
|
|
const char *name;
|
|
u_int res_id;
|
|
|
|
KASSERT(rman_get_start(res) == rman_get_end(res),
|
|
("%s: more interrupts in resource", __func__));
|
|
|
|
res_id = (u_int)rman_get_start(res);
|
|
isrc = intr_map_get_isrc(res_id);
|
|
if (isrc == NULL) {
|
|
/* XXX TODO DISCONECTED PICs */
|
|
return (EINVAL);
|
|
}
|
|
|
|
data = rman_get_virtual(res);
|
|
name = device_get_nameunit(dev);
|
|
|
|
#ifdef INTR_SOLO
|
|
/*
|
|
* Standard handling is done through MI interrupt framework. However,
|
|
* some interrupts could request solely own special handling. This
|
|
* non standard handling can be used for interrupt controllers without
|
|
* handler (filter only), so in case that interrupt controllers are
|
|
* chained, MI interrupt framework is called only in leaf controller.
|
|
*
|
|
* Note that root interrupt controller routine is served as well,
|
|
* however in intr_irq_handler(), i.e. main system dispatch routine.
|
|
*/
|
|
if (flags & INTR_SOLO && hand != NULL) {
|
|
debugf("irq %u cannot solo on %s\n", irq, name);
|
|
return (EINVAL);
|
|
}
|
|
|
|
if (flags & INTR_SOLO) {
|
|
error = iscr_setup_filter(isrc, name, (intr_irq_filter_t *)filt,
|
|
arg, cookiep);
|
|
debugf("irq %u setup filter error %d on %s\n", isrc->isrc_irq, error,
|
|
name);
|
|
} else
|
|
#endif
|
|
{
|
|
error = isrc_add_handler(isrc, name, filt, hand, arg, flags,
|
|
cookiep);
|
|
debugf("irq %u add handler error %d on %s\n", isrc->isrc_irq, error, name);
|
|
}
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
mtx_lock(&isrc_table_lock);
|
|
error = PIC_SETUP_INTR(isrc->isrc_dev, isrc, res, data);
|
|
if (error == 0) {
|
|
isrc->isrc_handlers++;
|
|
if (isrc->isrc_handlers == 1)
|
|
PIC_ENABLE_INTR(isrc->isrc_dev, isrc);
|
|
}
|
|
mtx_unlock(&isrc_table_lock);
|
|
if (error != 0)
|
|
intr_event_remove_handler(*cookiep);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
intr_teardown_irq(device_t dev, struct resource *res, void *cookie)
|
|
{
|
|
int error;
|
|
struct intr_map_data *data;
|
|
struct intr_irqsrc *isrc;
|
|
u_int res_id;
|
|
|
|
KASSERT(rman_get_start(res) == rman_get_end(res),
|
|
("%s: more interrupts in resource", __func__));
|
|
|
|
res_id = (u_int)rman_get_start(res);
|
|
isrc = intr_map_get_isrc(res_id);
|
|
if (isrc == NULL || isrc->isrc_handlers == 0)
|
|
return (EINVAL);
|
|
|
|
data = rman_get_virtual(res);
|
|
|
|
#ifdef INTR_SOLO
|
|
if (isrc->isrc_filter != NULL) {
|
|
if (isrc != cookie)
|
|
return (EINVAL);
|
|
|
|
mtx_lock(&isrc_table_lock);
|
|
isrc->isrc_filter = NULL;
|
|
isrc->isrc_arg = NULL;
|
|
isrc->isrc_handlers = 0;
|
|
PIC_DISABLE_INTR(isrc->isrc_dev, isrc);
|
|
PIC_TEARDOWN_INTR(isrc->isrc_dev, isrc, res, data);
|
|
isrc_update_name(isrc, NULL);
|
|
mtx_unlock(&isrc_table_lock);
|
|
return (0);
|
|
}
|
|
#endif
|
|
if (isrc != intr_handler_source(cookie))
|
|
return (EINVAL);
|
|
|
|
error = intr_event_remove_handler(cookie);
|
|
if (error == 0) {
|
|
mtx_lock(&isrc_table_lock);
|
|
isrc->isrc_handlers--;
|
|
if (isrc->isrc_handlers == 0)
|
|
PIC_DISABLE_INTR(isrc->isrc_dev, isrc);
|
|
PIC_TEARDOWN_INTR(isrc->isrc_dev, isrc, res, data);
|
|
intrcnt_updatename(isrc);
|
|
mtx_unlock(&isrc_table_lock);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
intr_describe_irq(device_t dev, struct resource *res, void *cookie,
|
|
const char *descr)
|
|
{
|
|
int error;
|
|
struct intr_irqsrc *isrc;
|
|
u_int res_id;
|
|
|
|
KASSERT(rman_get_start(res) == rman_get_end(res),
|
|
("%s: more interrupts in resource", __func__));
|
|
|
|
res_id = (u_int)rman_get_start(res);
|
|
isrc = intr_map_get_isrc(res_id);
|
|
if (isrc == NULL || isrc->isrc_handlers == 0)
|
|
return (EINVAL);
|
|
#ifdef INTR_SOLO
|
|
if (isrc->isrc_filter != NULL) {
|
|
if (isrc != cookie)
|
|
return (EINVAL);
|
|
|
|
mtx_lock(&isrc_table_lock);
|
|
isrc_update_name(isrc, descr);
|
|
mtx_unlock(&isrc_table_lock);
|
|
return (0);
|
|
}
|
|
#endif
|
|
error = intr_event_describe_handler(isrc->isrc_event, cookie, descr);
|
|
if (error == 0) {
|
|
mtx_lock(&isrc_table_lock);
|
|
intrcnt_updatename(isrc);
|
|
mtx_unlock(&isrc_table_lock);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
#ifdef SMP
|
|
int
|
|
intr_bind_irq(device_t dev, struct resource *res, int cpu)
|
|
{
|
|
struct intr_irqsrc *isrc;
|
|
u_int res_id;
|
|
|
|
KASSERT(rman_get_start(res) == rman_get_end(res),
|
|
("%s: more interrupts in resource", __func__));
|
|
|
|
res_id = (u_int)rman_get_start(res);
|
|
isrc = intr_map_get_isrc(res_id);
|
|
if (isrc == NULL || isrc->isrc_handlers == 0)
|
|
return (EINVAL);
|
|
#ifdef INTR_SOLO
|
|
if (isrc->isrc_filter != NULL)
|
|
return (intr_isrc_assign_cpu(isrc, cpu));
|
|
#endif
|
|
return (intr_event_bind(isrc->isrc_event, cpu));
|
|
}
|
|
|
|
/*
|
|
* Return the CPU that the next interrupt source should use.
|
|
* For now just returns the next CPU according to round-robin.
|
|
*/
|
|
u_int
|
|
intr_irq_next_cpu(u_int last_cpu, cpuset_t *cpumask)
|
|
{
|
|
u_int cpu;
|
|
|
|
KASSERT(!CPU_EMPTY(cpumask), ("%s: Empty CPU mask", __func__));
|
|
if (!irq_assign_cpu || mp_ncpus == 1) {
|
|
cpu = PCPU_GET(cpuid);
|
|
|
|
if (CPU_ISSET(cpu, cpumask))
|
|
return (curcpu);
|
|
|
|
return (CPU_FFS(cpumask) - 1);
|
|
}
|
|
|
|
do {
|
|
last_cpu++;
|
|
if (last_cpu > mp_maxid)
|
|
last_cpu = 0;
|
|
} while (!CPU_ISSET(last_cpu, cpumask));
|
|
return (last_cpu);
|
|
}
|
|
|
|
#ifndef EARLY_AP_STARTUP
|
|
/*
|
|
* Distribute all the interrupt sources among the available
|
|
* CPUs once the AP's have been launched.
|
|
*/
|
|
static void
|
|
intr_irq_shuffle(void *arg __unused)
|
|
{
|
|
struct intr_irqsrc *isrc;
|
|
u_int i;
|
|
|
|
if (mp_ncpus == 1)
|
|
return;
|
|
|
|
mtx_lock(&isrc_table_lock);
|
|
irq_assign_cpu = true;
|
|
for (i = 0; i < intr_nirq; i++) {
|
|
isrc = irq_sources[i];
|
|
if (isrc == NULL || isrc->isrc_handlers == 0 ||
|
|
isrc->isrc_flags & (INTR_ISRCF_PPI | INTR_ISRCF_IPI))
|
|
continue;
|
|
|
|
if (isrc->isrc_event != NULL &&
|
|
isrc->isrc_flags & INTR_ISRCF_BOUND &&
|
|
isrc->isrc_event->ie_cpu != CPU_FFS(&isrc->isrc_cpu) - 1)
|
|
panic("%s: CPU inconsistency", __func__);
|
|
|
|
if ((isrc->isrc_flags & INTR_ISRCF_BOUND) == 0)
|
|
CPU_ZERO(&isrc->isrc_cpu); /* start again */
|
|
|
|
/*
|
|
* We are in wicked position here if the following call fails
|
|
* for bound ISRC. The best thing we can do is to clear
|
|
* isrc_cpu so inconsistency with ie_cpu will be detectable.
|
|
*/
|
|
if (PIC_BIND_INTR(isrc->isrc_dev, isrc) != 0)
|
|
CPU_ZERO(&isrc->isrc_cpu);
|
|
}
|
|
mtx_unlock(&isrc_table_lock);
|
|
}
|
|
SYSINIT(intr_irq_shuffle, SI_SUB_SMP, SI_ORDER_SECOND, intr_irq_shuffle, NULL);
|
|
#endif /* !EARLY_AP_STARTUP */
|
|
|
|
#else
|
|
u_int
|
|
intr_irq_next_cpu(u_int current_cpu, cpuset_t *cpumask)
|
|
{
|
|
|
|
return (PCPU_GET(cpuid));
|
|
}
|
|
#endif /* SMP */
|
|
|
|
/*
|
|
* Allocate memory for new intr_map_data structure.
|
|
* Initialize common fields.
|
|
*/
|
|
struct intr_map_data *
|
|
intr_alloc_map_data(enum intr_map_data_type type, size_t len, int flags)
|
|
{
|
|
struct intr_map_data *data;
|
|
|
|
data = malloc(len, M_INTRNG, flags);
|
|
data->type = type;
|
|
data->len = len;
|
|
return (data);
|
|
}
|
|
|
|
void intr_free_intr_map_data(struct intr_map_data *data)
|
|
{
|
|
|
|
free(data, M_INTRNG);
|
|
}
|
|
|
|
/*
|
|
* Register a MSI/MSI-X interrupt controller
|
|
*/
|
|
int
|
|
intr_msi_register(device_t dev, intptr_t xref)
|
|
{
|
|
struct intr_pic *pic;
|
|
|
|
if (dev == NULL)
|
|
return (EINVAL);
|
|
pic = pic_create(dev, xref, FLAG_MSI);
|
|
if (pic == NULL)
|
|
return (ENOMEM);
|
|
|
|
debugf("PIC %p registered for %s <dev %p, xref %jx>\n", pic,
|
|
device_get_nameunit(dev), dev, (uintmax_t)xref);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
intr_alloc_msi(device_t pci, device_t child, intptr_t xref, int count,
|
|
int maxcount, int *irqs)
|
|
{
|
|
struct iommu_domain *domain;
|
|
struct intr_irqsrc **isrc;
|
|
struct intr_pic *pic;
|
|
device_t pdev;
|
|
struct intr_map_data_msi *msi;
|
|
int err, i;
|
|
|
|
pic = pic_lookup(NULL, xref, FLAG_MSI);
|
|
if (pic == NULL)
|
|
return (ESRCH);
|
|
|
|
KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_MSI,
|
|
("%s: Found a non-MSI controller: %s", __func__,
|
|
device_get_name(pic->pic_dev)));
|
|
|
|
/*
|
|
* If this is the first time we have used this context ask the
|
|
* interrupt controller to map memory the msi source will need.
|
|
*/
|
|
err = MSI_IOMMU_INIT(pic->pic_dev, child, &domain);
|
|
if (err != 0)
|
|
return (err);
|
|
|
|
isrc = malloc(sizeof(*isrc) * count, M_INTRNG, M_WAITOK);
|
|
err = MSI_ALLOC_MSI(pic->pic_dev, child, count, maxcount, &pdev, isrc);
|
|
if (err != 0) {
|
|
free(isrc, M_INTRNG);
|
|
return (err);
|
|
}
|
|
|
|
for (i = 0; i < count; i++) {
|
|
isrc[i]->isrc_iommu = domain;
|
|
msi = (struct intr_map_data_msi *)intr_alloc_map_data(
|
|
INTR_MAP_DATA_MSI, sizeof(*msi), M_WAITOK | M_ZERO);
|
|
msi-> isrc = isrc[i];
|
|
|
|
irqs[i] = intr_map_irq(pic->pic_dev, xref,
|
|
(struct intr_map_data *)msi);
|
|
}
|
|
free(isrc, M_INTRNG);
|
|
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
intr_release_msi(device_t pci, device_t child, intptr_t xref, int count,
|
|
int *irqs)
|
|
{
|
|
struct intr_irqsrc **isrc;
|
|
struct intr_pic *pic;
|
|
struct intr_map_data_msi *msi;
|
|
int i, err;
|
|
|
|
pic = pic_lookup(NULL, xref, FLAG_MSI);
|
|
if (pic == NULL)
|
|
return (ESRCH);
|
|
|
|
KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_MSI,
|
|
("%s: Found a non-MSI controller: %s", __func__,
|
|
device_get_name(pic->pic_dev)));
|
|
|
|
isrc = malloc(sizeof(*isrc) * count, M_INTRNG, M_WAITOK);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
msi = (struct intr_map_data_msi *)
|
|
intr_map_get_map_data(irqs[i]);
|
|
KASSERT(msi->hdr.type == INTR_MAP_DATA_MSI,
|
|
("%s: irq %d map data is not MSI", __func__,
|
|
irqs[i]));
|
|
isrc[i] = msi->isrc;
|
|
}
|
|
|
|
MSI_IOMMU_DEINIT(pic->pic_dev, child);
|
|
|
|
err = MSI_RELEASE_MSI(pic->pic_dev, child, count, isrc);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
if (isrc[i] != NULL)
|
|
intr_unmap_irq(irqs[i]);
|
|
}
|
|
|
|
free(isrc, M_INTRNG);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
intr_alloc_msix(device_t pci, device_t child, intptr_t xref, int *irq)
|
|
{
|
|
struct iommu_domain *domain;
|
|
struct intr_irqsrc *isrc;
|
|
struct intr_pic *pic;
|
|
device_t pdev;
|
|
struct intr_map_data_msi *msi;
|
|
int err;
|
|
|
|
pic = pic_lookup(NULL, xref, FLAG_MSI);
|
|
if (pic == NULL)
|
|
return (ESRCH);
|
|
|
|
KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_MSI,
|
|
("%s: Found a non-MSI controller: %s", __func__,
|
|
device_get_name(pic->pic_dev)));
|
|
|
|
/*
|
|
* If this is the first time we have used this context ask the
|
|
* interrupt controller to map memory the msi source will need.
|
|
*/
|
|
err = MSI_IOMMU_INIT(pic->pic_dev, child, &domain);
|
|
if (err != 0)
|
|
return (err);
|
|
|
|
err = MSI_ALLOC_MSIX(pic->pic_dev, child, &pdev, &isrc);
|
|
if (err != 0)
|
|
return (err);
|
|
|
|
isrc->isrc_iommu = domain;
|
|
msi = (struct intr_map_data_msi *)intr_alloc_map_data(
|
|
INTR_MAP_DATA_MSI, sizeof(*msi), M_WAITOK | M_ZERO);
|
|
msi->isrc = isrc;
|
|
*irq = intr_map_irq(pic->pic_dev, xref, (struct intr_map_data *)msi);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
intr_release_msix(device_t pci, device_t child, intptr_t xref, int irq)
|
|
{
|
|
struct intr_irqsrc *isrc;
|
|
struct intr_pic *pic;
|
|
struct intr_map_data_msi *msi;
|
|
int err;
|
|
|
|
pic = pic_lookup(NULL, xref, FLAG_MSI);
|
|
if (pic == NULL)
|
|
return (ESRCH);
|
|
|
|
KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_MSI,
|
|
("%s: Found a non-MSI controller: %s", __func__,
|
|
device_get_name(pic->pic_dev)));
|
|
|
|
msi = (struct intr_map_data_msi *)
|
|
intr_map_get_map_data(irq);
|
|
KASSERT(msi->hdr.type == INTR_MAP_DATA_MSI,
|
|
("%s: irq %d map data is not MSI", __func__,
|
|
irq));
|
|
isrc = msi->isrc;
|
|
if (isrc == NULL) {
|
|
intr_unmap_irq(irq);
|
|
return (EINVAL);
|
|
}
|
|
|
|
MSI_IOMMU_DEINIT(pic->pic_dev, child);
|
|
|
|
err = MSI_RELEASE_MSIX(pic->pic_dev, child, isrc);
|
|
intr_unmap_irq(irq);
|
|
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
intr_map_msi(device_t pci, device_t child, intptr_t xref, int irq,
|
|
uint64_t *addr, uint32_t *data)
|
|
{
|
|
struct intr_irqsrc *isrc;
|
|
struct intr_pic *pic;
|
|
int err;
|
|
|
|
pic = pic_lookup(NULL, xref, FLAG_MSI);
|
|
if (pic == NULL)
|
|
return (ESRCH);
|
|
|
|
KASSERT((pic->pic_flags & FLAG_TYPE_MASK) == FLAG_MSI,
|
|
("%s: Found a non-MSI controller: %s", __func__,
|
|
device_get_name(pic->pic_dev)));
|
|
|
|
isrc = intr_map_get_isrc(irq);
|
|
if (isrc == NULL)
|
|
return (EINVAL);
|
|
|
|
err = MSI_MAP_MSI(pic->pic_dev, child, isrc, addr, data);
|
|
|
|
#ifdef IOMMU
|
|
if (isrc->isrc_iommu != NULL)
|
|
iommu_translate_msi(isrc->isrc_iommu, addr);
|
|
#endif
|
|
|
|
return (err);
|
|
}
|
|
|
|
void dosoftints(void);
|
|
void
|
|
dosoftints(void)
|
|
{
|
|
}
|
|
|
|
#ifdef SMP
|
|
/*
|
|
* Init interrupt controller on another CPU.
|
|
*/
|
|
void
|
|
intr_pic_init_secondary(void)
|
|
{
|
|
|
|
/*
|
|
* QQQ: Only root PIC is aware of other CPUs ???
|
|
*/
|
|
KASSERT(intr_irq_root_dev != NULL, ("%s: no root attached", __func__));
|
|
|
|
//mtx_lock(&isrc_table_lock);
|
|
PIC_INIT_SECONDARY(intr_irq_root_dev);
|
|
//mtx_unlock(&isrc_table_lock);
|
|
}
|
|
#endif
|
|
|
|
#ifdef DDB
|
|
DB_SHOW_COMMAND_FLAGS(irqs, db_show_irqs, DB_CMD_MEMSAFE)
|
|
{
|
|
u_int i, irqsum;
|
|
u_long num;
|
|
struct intr_irqsrc *isrc;
|
|
|
|
for (irqsum = 0, i = 0; i < intr_nirq; i++) {
|
|
isrc = irq_sources[i];
|
|
if (isrc == NULL)
|
|
continue;
|
|
|
|
num = isrc->isrc_count != NULL ? isrc->isrc_count[0] : 0;
|
|
db_printf("irq%-3u <%s>: cpu %02lx%s cnt %lu\n", i,
|
|
isrc->isrc_name, isrc->isrc_cpu.__bits[0],
|
|
isrc->isrc_flags & INTR_ISRCF_BOUND ? " (bound)" : "", num);
|
|
irqsum += num;
|
|
}
|
|
db_printf("irq total %u\n", irqsum);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Interrupt mapping table functions.
|
|
*
|
|
* Please, keep this part separately, it can be transformed to
|
|
* extension of standard resources.
|
|
*/
|
|
struct intr_map_entry
|
|
{
|
|
device_t dev;
|
|
intptr_t xref;
|
|
struct intr_map_data *map_data;
|
|
struct intr_irqsrc *isrc;
|
|
/* XXX TODO DISCONECTED PICs */
|
|
/*int flags */
|
|
};
|
|
|
|
/* XXX Convert irq_map[] to dynamicaly expandable one. */
|
|
static struct intr_map_entry **irq_map;
|
|
static u_int irq_map_count;
|
|
static u_int irq_map_first_free_idx;
|
|
static struct mtx irq_map_lock;
|
|
|
|
static struct intr_irqsrc *
|
|
intr_map_get_isrc(u_int res_id)
|
|
{
|
|
struct intr_irqsrc *isrc;
|
|
|
|
isrc = NULL;
|
|
mtx_lock(&irq_map_lock);
|
|
if (res_id < irq_map_count && irq_map[res_id] != NULL)
|
|
isrc = irq_map[res_id]->isrc;
|
|
mtx_unlock(&irq_map_lock);
|
|
|
|
return (isrc);
|
|
}
|
|
|
|
static void
|
|
intr_map_set_isrc(u_int res_id, struct intr_irqsrc *isrc)
|
|
{
|
|
|
|
mtx_lock(&irq_map_lock);
|
|
if (res_id < irq_map_count && irq_map[res_id] != NULL)
|
|
irq_map[res_id]->isrc = isrc;
|
|
mtx_unlock(&irq_map_lock);
|
|
}
|
|
|
|
/*
|
|
* Get a copy of intr_map_entry data
|
|
*/
|
|
static struct intr_map_data *
|
|
intr_map_get_map_data(u_int res_id)
|
|
{
|
|
struct intr_map_data *data;
|
|
|
|
data = NULL;
|
|
mtx_lock(&irq_map_lock);
|
|
if (res_id >= irq_map_count || irq_map[res_id] == NULL)
|
|
panic("Attempt to copy invalid resource id: %u\n", res_id);
|
|
data = irq_map[res_id]->map_data;
|
|
mtx_unlock(&irq_map_lock);
|
|
|
|
return (data);
|
|
}
|
|
|
|
/*
|
|
* Get a copy of intr_map_entry data
|
|
*/
|
|
static void
|
|
intr_map_copy_map_data(u_int res_id, device_t *map_dev, intptr_t *map_xref,
|
|
struct intr_map_data **data)
|
|
{
|
|
size_t len;
|
|
|
|
len = 0;
|
|
mtx_lock(&irq_map_lock);
|
|
if (res_id >= irq_map_count || irq_map[res_id] == NULL)
|
|
panic("Attempt to copy invalid resource id: %u\n", res_id);
|
|
if (irq_map[res_id]->map_data != NULL)
|
|
len = irq_map[res_id]->map_data->len;
|
|
mtx_unlock(&irq_map_lock);
|
|
|
|
if (len == 0)
|
|
*data = NULL;
|
|
else
|
|
*data = malloc(len, M_INTRNG, M_WAITOK | M_ZERO);
|
|
mtx_lock(&irq_map_lock);
|
|
if (irq_map[res_id] == NULL)
|
|
panic("Attempt to copy invalid resource id: %u\n", res_id);
|
|
if (len != 0) {
|
|
if (len != irq_map[res_id]->map_data->len)
|
|
panic("Resource id: %u has changed.\n", res_id);
|
|
memcpy(*data, irq_map[res_id]->map_data, len);
|
|
}
|
|
*map_dev = irq_map[res_id]->dev;
|
|
*map_xref = irq_map[res_id]->xref;
|
|
mtx_unlock(&irq_map_lock);
|
|
}
|
|
|
|
/*
|
|
* Allocate and fill new entry in irq_map table.
|
|
*/
|
|
u_int
|
|
intr_map_irq(device_t dev, intptr_t xref, struct intr_map_data *data)
|
|
{
|
|
u_int i;
|
|
struct intr_map_entry *entry;
|
|
|
|
/* Prepare new entry first. */
|
|
entry = malloc(sizeof(*entry), M_INTRNG, M_WAITOK | M_ZERO);
|
|
|
|
entry->dev = dev;
|
|
entry->xref = xref;
|
|
entry->map_data = data;
|
|
entry->isrc = NULL;
|
|
|
|
mtx_lock(&irq_map_lock);
|
|
for (i = irq_map_first_free_idx; i < irq_map_count; i++) {
|
|
if (irq_map[i] == NULL) {
|
|
irq_map[i] = entry;
|
|
irq_map_first_free_idx = i + 1;
|
|
mtx_unlock(&irq_map_lock);
|
|
return (i);
|
|
}
|
|
}
|
|
for (i = 0; i < irq_map_first_free_idx; i++) {
|
|
if (irq_map[i] == NULL) {
|
|
irq_map[i] = entry;
|
|
irq_map_first_free_idx = i + 1;
|
|
mtx_unlock(&irq_map_lock);
|
|
return (i);
|
|
}
|
|
}
|
|
mtx_unlock(&irq_map_lock);
|
|
|
|
/* XXX Expand irq_map table */
|
|
panic("IRQ mapping table is full.");
|
|
}
|
|
|
|
/*
|
|
* Remove and free mapping entry.
|
|
*/
|
|
void
|
|
intr_unmap_irq(u_int res_id)
|
|
{
|
|
struct intr_map_entry *entry;
|
|
|
|
mtx_lock(&irq_map_lock);
|
|
if ((res_id >= irq_map_count) || (irq_map[res_id] == NULL))
|
|
panic("Attempt to unmap invalid resource id: %u\n", res_id);
|
|
entry = irq_map[res_id];
|
|
irq_map[res_id] = NULL;
|
|
irq_map_first_free_idx = res_id;
|
|
mtx_unlock(&irq_map_lock);
|
|
intr_free_intr_map_data(entry->map_data);
|
|
free(entry, M_INTRNG);
|
|
}
|
|
|
|
/*
|
|
* Clone mapping entry.
|
|
*/
|
|
u_int
|
|
intr_map_clone_irq(u_int old_res_id)
|
|
{
|
|
device_t map_dev;
|
|
intptr_t map_xref;
|
|
struct intr_map_data *data;
|
|
|
|
intr_map_copy_map_data(old_res_id, &map_dev, &map_xref, &data);
|
|
return (intr_map_irq(map_dev, map_xref, data));
|
|
}
|
|
|
|
static void
|
|
intr_map_init(void *dummy __unused)
|
|
{
|
|
|
|
mtx_init(&irq_map_lock, "intr map table", NULL, MTX_DEF);
|
|
|
|
irq_map_count = 2 * intr_nirq;
|
|
irq_map = mallocarray(irq_map_count, sizeof(struct intr_map_entry*),
|
|
M_INTRNG, M_WAITOK | M_ZERO);
|
|
}
|
|
SYSINIT(intr_map_init, SI_SUB_INTR, SI_ORDER_FIRST, intr_map_init, NULL);
|
|
|
|
#ifdef SMP
|
|
/* Virtualization for interrupt source IPI counter increment. */
|
|
static inline void
|
|
intr_ipi_increment_count(u_long *counter, u_int cpu)
|
|
{
|
|
|
|
KASSERT(cpu < mp_maxid + 1, ("%s: too big cpu %u", __func__, cpu));
|
|
counter[cpu]++;
|
|
}
|
|
|
|
/*
|
|
* Virtualization for interrupt source IPI counters setup.
|
|
*/
|
|
static u_long *
|
|
intr_ipi_setup_counters(const char *name)
|
|
{
|
|
u_int index, i;
|
|
char str[INTRNAME_LEN];
|
|
|
|
mtx_lock(&isrc_table_lock);
|
|
|
|
/*
|
|
* We should never have a problem finding mp_maxid + 1 contiguous
|
|
* counters, in practice. Interrupts will be allocated sequentially
|
|
* during boot, so the array should fill from low to high index. Once
|
|
* reserved, the IPI counters will never be released. Similarly, we
|
|
* will not need to allocate more IPIs once the system is running.
|
|
*/
|
|
bit_ffc_area(intrcnt_bitmap, nintrcnt, mp_maxid + 1, &index);
|
|
if (index == -1)
|
|
panic("Failed to allocate %d counters. Array exhausted?",
|
|
mp_maxid + 1);
|
|
bit_nset(intrcnt_bitmap, index, index + mp_maxid);
|
|
for (i = 0; i < mp_maxid + 1; i++) {
|
|
snprintf(str, INTRNAME_LEN, "cpu%d:%s", i, name);
|
|
intrcnt_setname(str, index + i);
|
|
}
|
|
mtx_unlock(&isrc_table_lock);
|
|
return (&intrcnt[index]);
|
|
}
|
|
|
|
/*
|
|
* Lookup IPI source.
|
|
*/
|
|
static struct intr_ipi *
|
|
intr_ipi_lookup(u_int ipi)
|
|
{
|
|
|
|
if (ipi >= INTR_IPI_COUNT)
|
|
panic("%s: no such IPI %u", __func__, ipi);
|
|
|
|
return (&ipi_sources[ipi]);
|
|
}
|
|
|
|
int
|
|
intr_ipi_pic_register(device_t dev, u_int priority)
|
|
{
|
|
if (intr_ipi_dev_frozen) {
|
|
device_printf(dev, "IPI device already frozen");
|
|
return (EBUSY);
|
|
}
|
|
|
|
if (intr_ipi_dev == NULL || priority > intr_ipi_dev_priority)
|
|
intr_ipi_dev = dev;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Setup IPI handler on interrupt controller.
|
|
*
|
|
* Not SMP coherent.
|
|
*/
|
|
void
|
|
intr_ipi_setup(u_int ipi, const char *name, intr_ipi_handler_t *hand,
|
|
void *arg)
|
|
{
|
|
struct intr_irqsrc *isrc;
|
|
struct intr_ipi *ii;
|
|
int error;
|
|
|
|
if (!intr_ipi_dev_frozen) {
|
|
if (intr_ipi_dev == NULL)
|
|
panic("%s: no IPI PIC attached", __func__);
|
|
|
|
intr_ipi_dev_frozen = true;
|
|
device_printf(intr_ipi_dev, "using for IPIs\n");
|
|
}
|
|
|
|
KASSERT(hand != NULL, ("%s: ipi %u no handler", __func__, ipi));
|
|
|
|
error = PIC_IPI_SETUP(intr_ipi_dev, ipi, &isrc);
|
|
if (error != 0)
|
|
return;
|
|
|
|
isrc->isrc_handlers++;
|
|
|
|
ii = intr_ipi_lookup(ipi);
|
|
KASSERT(ii->ii_count == NULL, ("%s: ipi %u reused", __func__, ipi));
|
|
|
|
ii->ii_handler = hand;
|
|
ii->ii_handler_arg = arg;
|
|
ii->ii_isrc = isrc;
|
|
strlcpy(ii->ii_name, name, INTR_IPI_NAMELEN);
|
|
ii->ii_count = intr_ipi_setup_counters(name);
|
|
|
|
PIC_ENABLE_INTR(intr_ipi_dev, isrc);
|
|
}
|
|
|
|
void
|
|
intr_ipi_send(cpuset_t cpus, u_int ipi)
|
|
{
|
|
struct intr_ipi *ii;
|
|
|
|
KASSERT(intr_ipi_dev_frozen,
|
|
("%s: IPI device not yet frozen", __func__));
|
|
|
|
ii = intr_ipi_lookup(ipi);
|
|
if (ii->ii_count == NULL)
|
|
panic("%s: not setup IPI %u", __func__, ipi);
|
|
|
|
/*
|
|
* XXX: Surely needed on other architectures too? Either way should be
|
|
* some kind of MI hook defined in an MD header, or the responsibility
|
|
* of the MD caller if not widespread.
|
|
*/
|
|
#ifdef __aarch64__
|
|
/*
|
|
* Ensure that this CPU's stores will be visible to IPI
|
|
* recipients before starting to send the interrupts.
|
|
*/
|
|
dsb(ishst);
|
|
#endif
|
|
|
|
PIC_IPI_SEND(intr_ipi_dev, ii->ii_isrc, cpus, ipi);
|
|
}
|
|
|
|
/*
|
|
* interrupt controller dispatch function for IPIs. It should
|
|
* be called straight from the interrupt controller, when associated
|
|
* interrupt source is learned. Or from anybody who has an interrupt
|
|
* source mapped.
|
|
*/
|
|
void
|
|
intr_ipi_dispatch(u_int ipi)
|
|
{
|
|
struct intr_ipi *ii;
|
|
|
|
ii = intr_ipi_lookup(ipi);
|
|
if (ii->ii_count == NULL)
|
|
panic("%s: not setup IPI %u", __func__, ipi);
|
|
|
|
intr_ipi_increment_count(ii->ii_count, PCPU_GET(cpuid));
|
|
|
|
ii->ii_handler(ii->ii_handler_arg);
|
|
}
|
|
#endif
|