HardenedBSD/eBones/kdb/krb_dbm.c

756 lines
17 KiB
C

/*
* Copyright 1988 by the Massachusetts Institute of Technology.
* For copying and distribution information, please see the file
* <Copyright.MIT>.
*
* from: krb_dbm.c,v 4.9 89/04/18 16:15:13 wesommer Exp $
* $Id: krb_dbm.c,v 1.1.1.1 1994/09/30 14:49:55 csgr Exp $
*/
#ifndef lint
static char rcsid[] =
"$Id: krb_dbm.c,v 1.1.1.1 1994/09/30 14:49:55 csgr Exp $";
#endif lint
#if defined(__FreeBSD__)
#define NDBM
#endif
#include <stdio.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/uio.h>
#include <sys/time.h>
#include <sys/stat.h>
#include <sys/resource.h>
#include <sys/errno.h>
#include <strings.h>
#include <des.h>
#include <sys/file.h>
#ifdef NDBM
#include <ndbm.h>
#else /*NDBM*/
#include <dbm.h>
#endif /*NDBM*/
/* before krb_db.h */
#include <krb.h>
#include <krb_db.h>
#define KERB_DB_MAX_RETRY 5
#ifdef DEBUG
extern int debug;
extern long kerb_debug;
extern char *progname;
#endif
extern char *malloc();
extern int errno;
static init = 0;
static char default_db_name[] = DBM_FILE;
static char *current_db_name = default_db_name;
static void encode_princ_key(), decode_princ_key();
static void encode_princ_contents(), decode_princ_contents();
static void kerb_dbl_fini();
static int kerb_dbl_lock();
static void kerb_dbl_unlock();
static struct timeval timestamp;/* current time of request */
static int non_blocking = 0;
/*
* This module contains all of the code which directly interfaces to
* the underlying representation of the Kerberos database; this
* implementation uses a DBM or NDBM indexed "file" (actually
* implemented as two separate files) to store the relations, plus a
* third file as a semaphore to allow the database to be replaced out
* from underneath the KDC server.
*/
/*
* Locking:
*
* There are two distinct locking protocols used. One is designed to
* lock against processes (the admin_server, for one) which make
* incremental changes to the database; the other is designed to lock
* against utilities (kdb_util, kpropd) which replace the entire
* database in one fell swoop.
*
* The first locking protocol is implemented using flock() in the
* krb_dbl_lock() and krb_dbl_unlock routines.
*
* The second locking protocol is necessary because DBM "files" are
* actually implemented as two separate files, and it is impossible to
* atomically rename two files simultaneously. It assumes that the
* database is replaced only very infrequently in comparison to the time
* needed to do a database read operation.
*
* A third file is used as a "version" semaphore; the modification
* time of this file is the "version number" of the database.
* At the start of a read operation, the reader checks the version
* number; at the end of the read operation, it checks again. If the
* version number changed, or if the semaphore was nonexistant at
* either time, the reader sleeps for a second to let things
* stabilize, and then tries again; if it does not succeed after
* KERB_DB_MAX_RETRY attempts, it gives up.
*
* On update, the semaphore file is deleted (if it exists) before any
* update takes place; at the end of the update, it is replaced, with
* a version number strictly greater than the version number which
* existed at the start of the update.
*
* If the system crashes in the middle of an update, the semaphore
* file is not automatically created on reboot; this is a feature, not
* a bug, since the database may be inconsistant. Note that the
* absence of a semaphore file does not prevent another _update_ from
* taking place later. Database replacements take place automatically
* only on slave servers; a crash in the middle of an update will be
* fixed by the next slave propagation. A crash in the middle of an
* update on the master would be somewhat more serious, but this would
* likely be noticed by an administrator, who could fix the problem and
* retry the operation.
*/
/* Macros to convert ndbm names to dbm names.
* Note that dbm_nextkey() cannot be simply converted using a macro, since
* it is invoked giving the database, and nextkey() needs the previous key.
*
* Instead, all routines call "dbm_next" instead.
*/
#ifndef NDBM
typedef char DBM;
#define dbm_open(file, flags, mode) ((dbminit(file) == 0)?"":((char *)0))
#define dbm_fetch(db, key) fetch(key)
#define dbm_store(db, key, content, flag) store(key, content)
#define dbm_firstkey(db) firstkey()
#define dbm_next(db,key) nextkey(key)
#define dbm_close(db) dbmclose()
#else
#define dbm_next(db,key) dbm_nextkey(db)
#endif
/*
* Utility routine: generate name of database file.
*/
static char *gen_dbsuffix(db_name, sfx)
char *db_name;
char *sfx;
{
char *dbsuffix;
if (sfx == NULL)
sfx = ".ok";
dbsuffix = malloc (strlen(db_name) + strlen(sfx) + 1);
strcpy(dbsuffix, db_name);
strcat(dbsuffix, sfx);
return dbsuffix;
}
/*
* initialization for data base routines.
*/
kerb_db_init()
{
init = 1;
return (0);
}
/*
* gracefully shut down database--must be called by ANY program that does
* a kerb_db_init
*/
kerb_db_fini()
{
}
/*
* Set the "name" of the current database to some alternate value.
*
* Passing a null pointer as "name" will set back to the default.
* If the alternate database doesn't exist, nothing is changed.
*/
kerb_db_set_name(name)
char *name;
{
DBM *db;
if (name == NULL)
name = default_db_name;
db = dbm_open(name, 0, 0);
if (db == NULL)
return errno;
dbm_close(db);
kerb_dbl_fini();
current_db_name = name;
return 0;
}
/*
* Return the last modification time of the database.
*/
long kerb_get_db_age()
{
struct stat st;
char *okname;
long age;
okname = gen_dbsuffix(current_db_name, ".ok");
if (stat (okname, &st) < 0)
age = 0;
else
age = st.st_mtime;
free (okname);
return age;
}
/*
* Remove the semaphore file; indicates that database is currently
* under renovation.
*
* This is only for use when moving the database out from underneath
* the server (for example, during slave updates).
*/
static long kerb_start_update(db_name)
char *db_name;
{
char *okname = gen_dbsuffix(db_name, ".ok");
long age = kerb_get_db_age();
if (unlink(okname) < 0
&& errno != ENOENT) {
age = -1;
}
free (okname);
return age;
}
static long kerb_end_update(db_name, age)
char *db_name;
long age;
{
int fd;
int retval = 0;
char *new_okname = gen_dbsuffix(db_name, ".ok#");
char *okname = gen_dbsuffix(db_name, ".ok");
fd = open (new_okname, O_CREAT|O_RDWR|O_TRUNC, 0600);
if (fd < 0)
retval = errno;
else {
struct stat st;
struct timeval tv[2];
/* make sure that semaphore is "after" previous value. */
if (fstat (fd, &st) == 0
&& st.st_mtime <= age) {
tv[0].tv_sec = st.st_atime;
tv[0].tv_usec = 0;
tv[1].tv_sec = age;
tv[1].tv_usec = 0;
/* set times.. */
utimes (new_okname, tv);
fsync(fd);
}
close(fd);
if (rename (new_okname, okname) < 0)
retval = errno;
}
free (new_okname);
free (okname);
return retval;
}
static long kerb_start_read()
{
return kerb_get_db_age();
}
static long kerb_end_read(age)
u_long age;
{
if (kerb_get_db_age() != age || age == -1) {
return -1;
}
return 0;
}
/*
* Create the database, assuming it's not there.
*/
kerb_db_create(db_name)
char *db_name;
{
char *okname = gen_dbsuffix(db_name, ".ok");
int fd;
register int ret = 0;
#ifdef NDBM
DBM *db;
db = dbm_open(db_name, O_RDWR|O_CREAT|O_EXCL, 0600);
if (db == NULL)
ret = errno;
else
dbm_close(db);
#else
char *dirname = gen_dbsuffix(db_name, ".dir");
char *pagname = gen_dbsuffix(db_name, ".pag");
fd = open(dirname, O_RDWR|O_CREAT|O_EXCL, 0600);
if (fd < 0)
ret = errno;
else {
close(fd);
fd = open (pagname, O_RDWR|O_CREAT|O_EXCL, 0600);
if (fd < 0)
ret = errno;
else
close(fd);
}
if (dbminit(db_name) < 0)
ret = errno;
#endif
if (ret == 0) {
fd = open (okname, O_CREAT|O_RDWR|O_TRUNC, 0600);
if (fd < 0)
ret = errno;
close(fd);
}
return ret;
}
/*
* "Atomically" rename the database in a way that locks out read
* access in the middle of the rename.
*
* Not perfect; if we crash in the middle of an update, we don't
* necessarily know to complete the transaction the rename, but...
*/
kerb_db_rename(from, to)
char *from;
char *to;
{
#ifndef __FreeBSD__
char *fromdir = gen_dbsuffix (from, ".dir");
char *todir = gen_dbsuffix (to, ".dir");
char *frompag = gen_dbsuffix (from , ".pag");
char *topag = gen_dbsuffix (to, ".pag");
#else
char *fromdb = gen_dbsuffix (from, ".db");
char *todb = gen_dbsuffix (to, ".db");
#endif
char *fromok = gen_dbsuffix(from, ".ok");
long trans = kerb_start_update(to);
int ok;
#ifndef __FreeBSD__
if ((rename (fromdir, todir) == 0)
&& (rename (frompag, topag) == 0)) {
#else
if (rename (fromdb, todb) == 0) {
#endif
(void) unlink (fromok);
ok = 1;
}
free (fromok);
#ifndef __FreeBSD__
free (fromdir);
free (todir);
free (frompag);
free (topag);
#else
free(fromdb);
free(todb);
#endif
if (ok)
return kerb_end_update(to, trans);
else
return -1;
}
/*
* look up a principal in the data base returns number of principals
* found , and whether there were more than requested.
*/
kerb_db_get_principal(name, inst, principal, max, more)
char *name; /* could have wild card */
char *inst; /* could have wild card */
Principal *principal;
unsigned int max; /* max number of name structs to return */
int *more; /* where there more than 'max' tuples? */
{
int found = 0, code;
extern int errorproc();
int wildp, wildi;
datum key, contents;
char testname[ANAME_SZ], testinst[INST_SZ];
u_long trans;
int try;
DBM *db;
if (!init)
kerb_db_init(); /* initialize database routines */
for (try = 0; try < KERB_DB_MAX_RETRY; try++) {
trans = kerb_start_read();
if ((code = kerb_dbl_lock(KERB_DBL_SHARED)) != 0)
return -1;
db = dbm_open(current_db_name, O_RDONLY, 0600);
*more = 0;
#ifdef DEBUG
if (kerb_debug & 2)
fprintf(stderr,
"%s: db_get_principal for %s %s max = %d",
progname, name, inst, max);
#endif
wildp = !strcmp(name, "*");
wildi = !strcmp(inst, "*");
if (!wildi && !wildp) { /* nothing's wild */
encode_princ_key(&key, name, inst);
contents = dbm_fetch(db, key);
if (contents.dptr == NULL) {
found = 0;
goto done;
}
decode_princ_contents(&contents, principal);
#ifdef DEBUG
if (kerb_debug & 1) {
fprintf(stderr, "\t found %s %s p_n length %d t_n length %d\n",
principal->name, principal->instance,
strlen(principal->name),
strlen(principal->instance));
}
#endif
found = 1;
goto done;
}
/* process wild cards by looping through entire database */
for (key = dbm_firstkey(db); key.dptr != NULL;
key = dbm_next(db, key)) {
decode_princ_key(&key, testname, testinst);
if ((wildp || !strcmp(testname, name)) &&
(wildi || !strcmp(testinst, inst))) { /* have a match */
if (found >= max) {
*more = 1;
goto done;
} else {
found++;
contents = dbm_fetch(db, key);
decode_princ_contents(&contents, principal);
#ifdef DEBUG
if (kerb_debug & 1) {
fprintf(stderr,
"\tfound %s %s p_n length %d t_n length %d\n",
principal->name, principal->instance,
strlen(principal->name),
strlen(principal->instance));
}
#endif
principal++; /* point to next */
}
}
}
done:
kerb_dbl_unlock(); /* unlock read lock */
dbm_close(db);
if (kerb_end_read(trans) == 0)
break;
found = -1;
if (!non_blocking)
sleep(1);
}
return (found);
}
/*
* Update a name in the data base. Returns number of names
* successfully updated.
*/
kerb_db_put_principal(principal, max)
Principal *principal;
unsigned int max; /* number of principal structs to
* update */
{
int found = 0, code;
u_long i;
extern int errorproc();
datum key, contents;
DBM *db;
gettimeofday(&timestamp, NULL);
if (!init)
kerb_db_init();
if ((code = kerb_dbl_lock(KERB_DBL_EXCLUSIVE)) != 0)
return -1;
db = dbm_open(current_db_name, O_RDWR, 0600);
#ifdef DEBUG
if (kerb_debug & 2)
fprintf(stderr, "%s: kerb_db_put_principal max = %d",
progname, max);
#endif
/* for each one, stuff temps, and do replace/append */
for (i = 0; i < max; i++) {
encode_princ_contents(&contents, principal);
encode_princ_key(&key, principal->name, principal->instance);
dbm_store(db, key, contents, DBM_REPLACE);
#ifdef DEBUG
if (kerb_debug & 1) {
fprintf(stderr, "\n put %s %s\n",
principal->name, principal->instance);
}
#endif
found++;
principal++; /* bump to next struct */
}
dbm_close(db);
kerb_dbl_unlock(); /* unlock database */
return (found);
}
static void
encode_princ_key(key, name, instance)
datum *key;
char *name, *instance;
{
static char keystring[ANAME_SZ + INST_SZ];
bzero(keystring, ANAME_SZ + INST_SZ);
strncpy(keystring, name, ANAME_SZ);
strncpy(&keystring[ANAME_SZ], instance, INST_SZ);
key->dptr = keystring;
key->dsize = ANAME_SZ + INST_SZ;
}
static void
decode_princ_key(key, name, instance)
datum *key;
char *name, *instance;
{
strncpy(name, key->dptr, ANAME_SZ);
strncpy(instance, key->dptr + ANAME_SZ, INST_SZ);
name[ANAME_SZ - 1] = '\0';
instance[INST_SZ - 1] = '\0';
}
static void
encode_princ_contents(contents, principal)
datum *contents;
Principal *principal;
{
contents->dsize = sizeof(*principal);
contents->dptr = (char *) principal;
}
static void
decode_princ_contents(contents, principal)
datum *contents;
Principal *principal;
{
bcopy(contents->dptr, (char *) principal, sizeof(*principal));
}
kerb_db_get_stat(s)
DB_stat *s;
{
gettimeofday(&timestamp, NULL);
s->cpu = 0;
s->elapsed = 0;
s->dio = 0;
s->pfault = 0;
s->t_stamp = timestamp.tv_sec;
s->n_retrieve = 0;
s->n_replace = 0;
s->n_append = 0;
s->n_get_stat = 0;
s->n_put_stat = 0;
/* update local copy too */
}
kerb_db_put_stat(s)
DB_stat *s;
{
}
delta_stat(a, b, c)
DB_stat *a, *b, *c;
{
/* c = a - b then b = a for the next time */
c->cpu = a->cpu - b->cpu;
c->elapsed = a->elapsed - b->elapsed;
c->dio = a->dio - b->dio;
c->pfault = a->pfault - b->pfault;
c->t_stamp = a->t_stamp - b->t_stamp;
c->n_retrieve = a->n_retrieve - b->n_retrieve;
c->n_replace = a->n_replace - b->n_replace;
c->n_append = a->n_append - b->n_append;
c->n_get_stat = a->n_get_stat - b->n_get_stat;
c->n_put_stat = a->n_put_stat - b->n_put_stat;
bcopy(a, b, sizeof(DB_stat));
return;
}
/*
* look up a dba in the data base returns number of dbas found , and
* whether there were more than requested.
*/
kerb_db_get_dba(dba_name, dba_inst, dba, max, more)
char *dba_name; /* could have wild card */
char *dba_inst; /* could have wild card */
Dba *dba;
unsigned int max; /* max number of name structs to return */
int *more; /* where there more than 'max' tuples? */
{
*more = 0;
return (0);
}
kerb_db_iterate (func, arg)
int (*func)();
char *arg; /* void *, really */
{
datum key, contents;
Principal *principal;
int code;
DBM *db;
kerb_db_init(); /* initialize and open the database */
if ((code = kerb_dbl_lock(KERB_DBL_SHARED)) != 0)
return code;
db = dbm_open(current_db_name, O_RDONLY, 0600);
for (key = dbm_firstkey (db); key.dptr != NULL; key = dbm_next(db, key)) {
contents = dbm_fetch (db, key);
/* XXX may not be properly aligned */
principal = (Principal *) contents.dptr;
if ((code = (*func)(arg, principal)) != 0)
return code;
}
dbm_close(db);
kerb_dbl_unlock();
return 0;
}
static int dblfd = -1;
static int mylock = 0;
static int inited = 0;
static kerb_dbl_init()
{
if (!inited) {
char *filename = gen_dbsuffix (current_db_name, ".ok");
if ((dblfd = open(filename, 0)) < 0) {
fprintf(stderr, "kerb_dbl_init: couldn't open %s\n", filename);
fflush(stderr);
perror("open");
exit(1);
}
free(filename);
inited++;
}
return (0);
}
static void kerb_dbl_fini()
{
close(dblfd);
dblfd = -1;
inited = 0;
mylock = 0;
}
static int kerb_dbl_lock(mode)
int mode;
{
int flock_mode;
if (!inited)
kerb_dbl_init();
if (mylock) { /* Detect lock call when lock already
* locked */
fprintf(stderr, "Kerberos locking error (mylock)\n");
fflush(stderr);
exit(1);
}
switch (mode) {
case KERB_DBL_EXCLUSIVE:
flock_mode = LOCK_EX;
break;
case KERB_DBL_SHARED:
flock_mode = LOCK_SH;
break;
default:
fprintf(stderr, "invalid lock mode %d\n", mode);
abort();
}
if (non_blocking)
flock_mode |= LOCK_NB;
if (flock(dblfd, flock_mode) < 0)
return errno;
mylock++;
return 0;
}
static void kerb_dbl_unlock()
{
if (!mylock) { /* lock already unlocked */
fprintf(stderr, "Kerberos database lock not locked when unlocking.\n");
fflush(stderr);
exit(1);
}
if (flock(dblfd, LOCK_UN) < 0) {
fprintf(stderr, "Kerberos database lock error. (unlocking)\n");
fflush(stderr);
perror("flock");
exit(1);
}
mylock = 0;
}
int kerb_db_set_lockmode(mode)
int mode;
{
int old = non_blocking;
non_blocking = mode;
return old;
}