mirror of
https://git.hardenedbsd.org/hardenedbsd/HardenedBSD.git
synced 2024-11-26 02:20:51 +01:00
a24d3c094e
the common name. While here move the macros to check these into pmap-v4.c as they're only used there. Sponsored by: DARPA, AFRL
383 lines
12 KiB
C
383 lines
12 KiB
C
/*-
|
|
* Copyright (c) 1991 Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* the Systems Programming Group of the University of Utah Computer
|
|
* Science Department and William Jolitz of UUNET Technologies Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* Derived from hp300 version by Mike Hibler, this version by William
|
|
* Jolitz uses a recursive map [a pde points to the page directory] to
|
|
* map the page tables using the pagetables themselves. This is done to
|
|
* reduce the impact on kernel virtual memory for lots of sparse address
|
|
* space, and to reduce the cost of memory to each process.
|
|
*
|
|
* from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
|
|
* from: @(#)pmap.h 7.4 (Berkeley) 5/12/91
|
|
* from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#ifndef _MACHINE_PMAP_V4_H_
|
|
#define _MACHINE_PMAP_V4_H_
|
|
|
|
#include <machine/pte-v4.h>
|
|
|
|
/*
|
|
* Pte related macros
|
|
*/
|
|
#define PTE_NOCACHE 1
|
|
#define PTE_CACHE 2
|
|
#define PTE_DEVICE PTE_NOCACHE
|
|
#define PTE_PAGETABLE 3
|
|
|
|
enum mem_type {
|
|
STRONG_ORD = 0,
|
|
DEVICE_NOSHARE,
|
|
DEVICE_SHARE,
|
|
NRML_NOCACHE,
|
|
NRML_IWT_OWT,
|
|
NRML_IWB_OWB,
|
|
NRML_IWBA_OWBA
|
|
};
|
|
|
|
#ifndef LOCORE
|
|
|
|
#include <sys/queue.h>
|
|
#include <sys/_cpuset.h>
|
|
#include <sys/_lock.h>
|
|
#include <sys/_mutex.h>
|
|
|
|
#define PDESIZE sizeof(pd_entry_t) /* for assembly files */
|
|
#define PTESIZE sizeof(pt_entry_t) /* for assembly files */
|
|
|
|
#define pmap_page_get_memattr(m) ((m)->md.pv_memattr)
|
|
#define pmap_page_is_mapped(m) (!TAILQ_EMPTY(&(m)->md.pv_list))
|
|
|
|
/*
|
|
* Pmap stuff
|
|
*/
|
|
|
|
/*
|
|
* This structure is used to hold a virtual<->physical address
|
|
* association and is used mostly by bootstrap code
|
|
*/
|
|
struct pv_addr {
|
|
SLIST_ENTRY(pv_addr) pv_list;
|
|
vm_offset_t pv_va;
|
|
vm_paddr_t pv_pa;
|
|
};
|
|
|
|
struct pv_entry;
|
|
struct pv_chunk;
|
|
|
|
struct md_page {
|
|
int pvh_attrs;
|
|
vm_memattr_t pv_memattr;
|
|
vm_offset_t pv_kva; /* first kernel VA mapping */
|
|
TAILQ_HEAD(,pv_entry) pv_list;
|
|
};
|
|
|
|
struct l1_ttable;
|
|
struct l2_dtable;
|
|
|
|
|
|
/*
|
|
* The number of L2 descriptor tables which can be tracked by an l2_dtable.
|
|
* A bucket size of 16 provides for 16MB of contiguous virtual address
|
|
* space per l2_dtable. Most processes will, therefore, require only two or
|
|
* three of these to map their whole working set.
|
|
*/
|
|
#define L2_BUCKET_LOG2 4
|
|
#define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2)
|
|
/*
|
|
* Given the above "L2-descriptors-per-l2_dtable" constant, the number
|
|
* of l2_dtable structures required to track all possible page descriptors
|
|
* mappable by an L1 translation table is given by the following constants:
|
|
*/
|
|
#define L2_LOG2 ((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
|
|
#define L2_SIZE (1 << L2_LOG2)
|
|
|
|
struct pmap {
|
|
struct mtx pm_mtx;
|
|
u_int8_t pm_domain;
|
|
struct l1_ttable *pm_l1;
|
|
struct l2_dtable *pm_l2[L2_SIZE];
|
|
cpuset_t pm_active; /* active on cpus */
|
|
struct pmap_statistics pm_stats; /* pmap statictics */
|
|
TAILQ_HEAD(,pv_entry) pm_pvlist; /* list of mappings in pmap */
|
|
};
|
|
|
|
typedef struct pmap *pmap_t;
|
|
|
|
#ifdef _KERNEL
|
|
extern struct pmap kernel_pmap_store;
|
|
#define kernel_pmap (&kernel_pmap_store)
|
|
|
|
#define PMAP_ASSERT_LOCKED(pmap) \
|
|
mtx_assert(&(pmap)->pm_mtx, MA_OWNED)
|
|
#define PMAP_LOCK(pmap) mtx_lock(&(pmap)->pm_mtx)
|
|
#define PMAP_LOCK_DESTROY(pmap) mtx_destroy(&(pmap)->pm_mtx)
|
|
#define PMAP_LOCK_INIT(pmap) mtx_init(&(pmap)->pm_mtx, "pmap", \
|
|
NULL, MTX_DEF | MTX_DUPOK)
|
|
#define PMAP_OWNED(pmap) mtx_owned(&(pmap)->pm_mtx)
|
|
#define PMAP_MTX(pmap) (&(pmap)->pm_mtx)
|
|
#define PMAP_TRYLOCK(pmap) mtx_trylock(&(pmap)->pm_mtx)
|
|
#define PMAP_UNLOCK(pmap) mtx_unlock(&(pmap)->pm_mtx)
|
|
#endif
|
|
|
|
/*
|
|
* For each vm_page_t, there is a list of all currently valid virtual
|
|
* mappings of that page. An entry is a pv_entry_t, the list is pv_list.
|
|
*/
|
|
typedef struct pv_entry {
|
|
vm_offset_t pv_va; /* virtual address for mapping */
|
|
TAILQ_ENTRY(pv_entry) pv_list;
|
|
int pv_flags; /* flags (wired, etc...) */
|
|
pmap_t pv_pmap; /* pmap where mapping lies */
|
|
TAILQ_ENTRY(pv_entry) pv_plist;
|
|
} *pv_entry_t;
|
|
|
|
/*
|
|
* pv_entries are allocated in chunks per-process. This avoids the
|
|
* need to track per-pmap assignments.
|
|
*/
|
|
#define _NPCM 8
|
|
#define _NPCPV 252
|
|
|
|
struct pv_chunk {
|
|
pmap_t pc_pmap;
|
|
TAILQ_ENTRY(pv_chunk) pc_list;
|
|
uint32_t pc_map[_NPCM]; /* bitmap; 1 = free */
|
|
uint32_t pc_dummy[3]; /* aligns pv_chunk to 4KB */
|
|
TAILQ_ENTRY(pv_chunk) pc_lru;
|
|
struct pv_entry pc_pventry[_NPCPV];
|
|
};
|
|
|
|
#ifdef _KERNEL
|
|
|
|
boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **);
|
|
|
|
/*
|
|
* virtual address to page table entry and
|
|
* to physical address. Likewise for alternate address space.
|
|
* Note: these work recursively, thus vtopte of a pte will give
|
|
* the corresponding pde that in turn maps it.
|
|
*/
|
|
|
|
/*
|
|
* The current top of kernel VM.
|
|
*/
|
|
extern vm_offset_t pmap_curmaxkvaddr;
|
|
|
|
/* Virtual address to page table entry */
|
|
static __inline pt_entry_t *
|
|
vtopte(vm_offset_t va)
|
|
{
|
|
pd_entry_t *pdep;
|
|
pt_entry_t *ptep;
|
|
|
|
if (pmap_get_pde_pte(kernel_pmap, va, &pdep, &ptep) == FALSE)
|
|
return (NULL);
|
|
return (ptep);
|
|
}
|
|
|
|
void pmap_bootstrap(vm_offset_t firstaddr, struct pv_addr *l1pt);
|
|
int pmap_change_attr(vm_offset_t, vm_size_t, int);
|
|
void pmap_kenter(vm_offset_t va, vm_paddr_t pa);
|
|
void pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa);
|
|
void pmap_kenter_user(vm_offset_t va, vm_paddr_t pa);
|
|
vm_paddr_t pmap_dump_kextract(vm_offset_t, pt2_entry_t *);
|
|
void pmap_kremove(vm_offset_t);
|
|
vm_page_t pmap_use_pt(pmap_t, vm_offset_t);
|
|
void pmap_debug(int);
|
|
void pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int);
|
|
void pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *);
|
|
vm_size_t pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int);
|
|
void
|
|
pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
|
|
int cache);
|
|
int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int);
|
|
|
|
/*
|
|
* Definitions for MMU domains
|
|
*/
|
|
#define PMAP_DOMAINS 15 /* 15 'user' domains (1-15) */
|
|
#define PMAP_DOMAIN_KERNEL 0 /* The kernel uses domain #0 */
|
|
|
|
/*
|
|
* The new pmap ensures that page-tables are always mapping Write-Thru.
|
|
* Thus, on some platforms we can run fast and loose and avoid syncing PTEs
|
|
* on every change.
|
|
*
|
|
* Unfortunately, not all CPUs have a write-through cache mode. So we
|
|
* define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
|
|
* and if there is the chance for PTE syncs to be needed, we define
|
|
* PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
|
|
* the code.
|
|
*/
|
|
extern int pmap_needs_pte_sync;
|
|
|
|
/*
|
|
* These macros define the various bit masks in the PTE.
|
|
*/
|
|
|
|
#define L1_S_CACHE_MASK (L1_S_B|L1_S_C)
|
|
#define L2_L_CACHE_MASK (L2_B|L2_C)
|
|
#define L2_S_PROT_U (L2_AP(AP_U))
|
|
#define L2_S_PROT_W (L2_AP(AP_W))
|
|
#define L2_S_PROT_MASK (L2_S_PROT_U|L2_S_PROT_W)
|
|
#define L2_S_CACHE_MASK (L2_B|L2_C)
|
|
#define L1_S_PROTO (L1_TYPE_S | L1_S_IMP)
|
|
#define L1_C_PROTO (L1_TYPE_C | L1_C_IMP2)
|
|
#define L2_L_PROTO (L2_TYPE_L)
|
|
#define L2_S_PROTO (L2_TYPE_S)
|
|
|
|
/*
|
|
* User-visible names for the ones that vary with MMU class.
|
|
*/
|
|
#define L2_AP(x) (L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
|
|
|
|
#if defined(CPU_XSCALE_81342)
|
|
#define CPU_XSCALE_CORE3
|
|
#define PMAP_NEEDS_PTE_SYNC 1
|
|
#define PMAP_INCLUDE_PTE_SYNC
|
|
#else
|
|
#define PMAP_NEEDS_PTE_SYNC 0
|
|
#endif
|
|
|
|
/*
|
|
* These macros return various bits based on kernel/user and protection.
|
|
* Note that the compiler will usually fold these at compile time.
|
|
*/
|
|
#define L1_S_PROT_U (L1_S_AP(AP_U))
|
|
#define L1_S_PROT_W (L1_S_AP(AP_W))
|
|
#define L1_S_PROT_MASK (L1_S_PROT_U|L1_S_PROT_W)
|
|
#define L1_S_WRITABLE(pd) ((pd) & L1_S_PROT_W)
|
|
|
|
#define L1_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
|
|
(((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
|
|
|
|
#define L2_L_PROT_U (L2_AP(AP_U))
|
|
#define L2_L_PROT_W (L2_AP(AP_W))
|
|
#define L2_L_PROT_MASK (L2_L_PROT_U|L2_L_PROT_W)
|
|
|
|
#define L2_L_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
|
|
(((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
|
|
|
|
#define L2_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
|
|
(((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
|
|
|
|
/*
|
|
* Macros to test if a mapping is mappable with an L1 Section mapping
|
|
* or an L2 Large Page mapping.
|
|
*/
|
|
#define L1_S_MAPPABLE_P(va, pa, size) \
|
|
((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
|
|
|
|
#define L2_L_MAPPABLE_P(va, pa, size) \
|
|
((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
|
|
|
|
/*
|
|
* Provide a fallback in case we were not able to determine it at
|
|
* compile-time.
|
|
*/
|
|
#ifndef PMAP_NEEDS_PTE_SYNC
|
|
#define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync
|
|
#define PMAP_INCLUDE_PTE_SYNC
|
|
#endif
|
|
|
|
#ifdef ARM_L2_PIPT
|
|
#define _sync_l2(pte, size) cpu_l2cache_wb_range(vtophys(pte), size)
|
|
#else
|
|
#define _sync_l2(pte, size) cpu_l2cache_wb_range(pte, size)
|
|
#endif
|
|
|
|
#define PTE_SYNC(pte) \
|
|
do { \
|
|
if (PMAP_NEEDS_PTE_SYNC) { \
|
|
cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
|
|
cpu_drain_writebuf(); \
|
|
_sync_l2((vm_offset_t)(pte), sizeof(pt_entry_t));\
|
|
} else \
|
|
cpu_drain_writebuf(); \
|
|
} while (/*CONSTCOND*/0)
|
|
|
|
#define PTE_SYNC_RANGE(pte, cnt) \
|
|
do { \
|
|
if (PMAP_NEEDS_PTE_SYNC) { \
|
|
cpu_dcache_wb_range((vm_offset_t)(pte), \
|
|
(cnt) << 2); /* * sizeof(pt_entry_t) */ \
|
|
cpu_drain_writebuf(); \
|
|
_sync_l2((vm_offset_t)(pte), \
|
|
(cnt) << 2); /* * sizeof(pt_entry_t) */ \
|
|
} else \
|
|
cpu_drain_writebuf(); \
|
|
} while (/*CONSTCOND*/0)
|
|
|
|
void pmap_pte_init_generic(void);
|
|
|
|
#define PTE_KERNEL 0
|
|
#define PTE_USER 1
|
|
|
|
/*
|
|
* Flags that indicate attributes of pages or mappings of pages.
|
|
*
|
|
* The PVF_MOD and PVF_REF flags are stored in the mdpage for each
|
|
* page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
|
|
* pv_entry's for each page. They live in the same "namespace" so
|
|
* that we can clear multiple attributes at a time.
|
|
*
|
|
* Note the "non-cacheable" flag generally means the page has
|
|
* multiple mappings in a given address space.
|
|
*/
|
|
#define PVF_MOD 0x01 /* page is modified */
|
|
#define PVF_REF 0x02 /* page is referenced */
|
|
#define PVF_WIRED 0x04 /* mapping is wired */
|
|
#define PVF_WRITE 0x08 /* mapping is writable */
|
|
#define PVF_EXEC 0x10 /* mapping is executable */
|
|
#define PVF_NC 0x20 /* mapping is non-cacheable */
|
|
#define PVF_MWC 0x40 /* mapping is used multiple times in userland */
|
|
#define PVF_UNMAN 0x80 /* mapping is unmanaged */
|
|
|
|
void vector_page_setprot(int);
|
|
|
|
#define SECTION_CACHE 0x1
|
|
#define SECTION_PT 0x2
|
|
void pmap_postinit(void);
|
|
|
|
#endif /* _KERNEL */
|
|
|
|
#endif /* !LOCORE */
|
|
|
|
#endif /* !_MACHINE_PMAP_V4_H_ */
|