HardenedBSD/sys/contrib/ncsw/etc/ncsw_mem.c
Justin Hibbits 0aeed3e993 Add support for the Freescale dTSEC DPAA-based ethernet controller.
Freescale's QorIQ line includes a new ethernet controller, based on their
Datapath Acceleration Architecture (DPAA).  This uses a combination of a Frame
manager, Buffer manager, and Queue manager to improve performance across all
interfaces by being able to pass data directly between hardware acceleration
interfaces.

As part of this import, Freescale's Netcomm Software (ncsw) driver is imported.
This was an attempt by Freescale to create an OS-agnostic sub-driver for
managing the hardware, using shims to interface to the OS-specific APIs.  This
work was abandoned, and Freescale's primary work is in the Linux driver (dual
BSD/GPL license).  Hence, this was imported directly to sys/contrib, rather than
going through the vendor area.  Going forward, FreeBSD-specific changes may be
made to the ncsw code, diverging from the upstream in potentially incompatible
ways.  An alternative could be to import the Linux driver itself, using the
linuxKPI layer, as that would maintain parity with the vendor-maintained driver.
However, the Linux driver has not been evaluated for reliability yet, and may
have issues with the import, whereas the ncsw-based driver in this commit was
completed by Semihalf 4 years ago, and is very stable.

Other SoC modules based on DPAA, which could be added in the future:
* Security and Encryption engine (SEC4.x, SEC5.x)
* RAID engine

Additional work to be done:
* Implement polling mode
* Test vlan support
* Add support for the Pattern Matching Engine, which can do regular expression
  matching on packets.

This driver has been tested on the P5020 QorIQ SoC.  Others listed in the
dtsec(4) manual page are expected to work as the same DPAA engine is included in
all.

Obtained from:	Semihalf
Relnotes:	Yes
Sponsored by:	Alex Perez/Inertial Computing
2016-02-29 03:38:00 +00:00

764 lines
23 KiB
C

/******************************************************************************
© 1995-2003, 2004, 2005-2011 Freescale Semiconductor, Inc.
All rights reserved.
This is proprietary source code of Freescale Semiconductor Inc.,
and its use is subject to the NetComm Device Drivers EULA.
The copyright notice above does not evidence any actual or intended
publication of such source code.
ALTERNATIVELY, redistribution and use in source and binary forms, with
or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Freescale Semiconductor nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************/
#include "error_ext.h"
#include "part_ext.h"
#include "std_ext.h"
#include "string_ext.h"
#include "mem_ext.h"
#include "mem.h"
#include "xx_ext.h"
#define PAD_ALIGNMENT(align, x) (((x)%(align)) ? ((align)-((x)%(align))) : 0)
#define ALIGN_BLOCK(p_Block, prefixSize, alignment) \
do { \
p_Block += (prefixSize); \
p_Block += PAD_ALIGNMENT((alignment), (uintptr_t)(p_Block)); \
} while (0)
#if defined(__GNUC__)
#define GET_CALLER_ADDR \
__asm__ ("mflr %0" : "=r" (callerAddr))
#elif defined(__MWERKS__)
/* NOTE: This implementation is only valid for CodeWarrior for PowerPC */
#define GET_CALLER_ADDR \
__asm__("add %0, 0, %0" : : "r" (callerAddr))
#endif /* defined(__GNUC__) */
/*****************************************************************************/
static __inline__ void * MemGet(t_MemorySegment *p_Mem)
{
uint8_t *p_Block;
/* check if there is an available block */
if (p_Mem->current == p_Mem->num)
{
p_Mem->getFailures++;
return NULL;
}
/* get the block */
p_Block = p_Mem->p_BlocksStack[p_Mem->current];
#ifdef DEBUG
p_Mem->p_BlocksStack[p_Mem->current] = NULL;
#endif /* DEBUG */
/* advance current index */
p_Mem->current++;
return (void *)p_Block;
}
/*****************************************************************************/
static __inline__ t_Error MemPut(t_MemorySegment *p_Mem, void *p_Block)
{
/* check if blocks stack is full */
if (p_Mem->current > 0)
{
/* decrease current index */
p_Mem->current--;
/* put the block */
p_Mem->p_BlocksStack[p_Mem->current] = (uint8_t *)p_Block;
return E_OK;
}
RETURN_ERROR(MAJOR, E_FULL, NO_MSG);
}
#ifdef DEBUG_MEM_LEAKS
/*****************************************************************************/
static t_Error InitMemDebugDatabase(t_MemorySegment *p_Mem)
{
p_Mem->p_MemDbg = (void *)XX_Malloc(sizeof(t_MemDbg) * p_Mem->num);
if (!p_Mem->p_MemDbg)
{
RETURN_ERROR(MAJOR, E_NO_MEMORY, ("Memory debug object"));
}
memset(p_Mem->p_MemDbg, ILLEGAL_BASE, sizeof(t_MemDbg) * p_Mem->num);
return E_OK;
}
/*****************************************************************************/
static t_Error DebugMemGet(t_Handle h_Mem, void *p_Block, uintptr_t ownerAddress)
{
t_MemorySegment *p_Mem = (t_MemorySegment *)h_Mem;
t_MemDbg *p_MemDbg = (t_MemDbg *)p_Mem->p_MemDbg;
uint32_t blockIndex;
ASSERT_COND(ownerAddress != ILLEGAL_BASE);
/* Find block num */
if (p_Mem->consecutiveMem)
{
blockIndex =
(((uint8_t *)p_Block - (p_Mem->p_Bases[0] + p_Mem->blockOffset)) / p_Mem->blockSize);
}
else
{
blockIndex = *(uint32_t *)((uint8_t *)p_Block - 4);
}
ASSERT_COND(blockIndex < p_Mem->num);
ASSERT_COND(p_MemDbg[blockIndex].ownerAddress == ILLEGAL_BASE);
p_MemDbg[blockIndex].ownerAddress = ownerAddress;
return E_OK;
}
/*****************************************************************************/
static t_Error DebugMemPut(t_Handle h_Mem, void *p_Block)
{
t_MemorySegment *p_Mem = (t_MemorySegment *)h_Mem;
t_MemDbg *p_MemDbg = (t_MemDbg *)p_Mem->p_MemDbg;
uint32_t blockIndex;
uint8_t *p_Temp;
/* Find block num */
if (p_Mem->consecutiveMem)
{
blockIndex =
(((uint8_t *)p_Block - (p_Mem->p_Bases[0] + p_Mem->blockOffset)) / p_Mem->blockSize);
if (blockIndex >= p_Mem->num)
{
RETURN_ERROR(MAJOR, E_INVALID_ADDRESS,
("Freed address (0x%08x) does not belong to this pool", p_Block));
}
}
else
{
blockIndex = *(uint32_t *)((uint8_t *)p_Block - 4);
if (blockIndex >= p_Mem->num)
{
RETURN_ERROR(MAJOR, E_INVALID_ADDRESS,
("Freed address (0x%08x) does not belong to this pool", p_Block));
}
/* Verify that the block matches the corresponding base */
p_Temp = p_Mem->p_Bases[blockIndex];
ALIGN_BLOCK(p_Temp, p_Mem->prefixSize, p_Mem->alignment);
if (p_Temp == p_Mem->p_Bases[blockIndex])
p_Temp += p_Mem->alignment;
if (p_Temp != p_Block)
{
RETURN_ERROR(MAJOR, E_INVALID_ADDRESS,
("Freed address (0x%08x) does not belong to this pool", p_Block));
}
}
if (p_MemDbg[blockIndex].ownerAddress == ILLEGAL_BASE)
{
RETURN_ERROR(MAJOR, E_ALREADY_FREE,
("Attempt to free unallocated address (0x%08x)", p_Block));
}
p_MemDbg[blockIndex].ownerAddress = (uintptr_t)ILLEGAL_BASE;
return E_OK;
}
#endif /* DEBUG_MEM_LEAKS */
/*****************************************************************************/
uint32_t MEM_ComputePartitionSize(uint32_t num,
uint16_t dataSize,
uint16_t prefixSize,
uint16_t postfixSize,
uint16_t alignment)
{
uint32_t blockSize = 0, pad1 = 0, pad2 = 0;
/* Make sure that the alignment is at least 4 */
if (alignment < 4)
{
alignment = 4;
}
pad1 = (uint32_t)PAD_ALIGNMENT(4, prefixSize);
/* Block size not including 2nd padding */
blockSize = pad1 + prefixSize + dataSize + postfixSize;
pad2 = PAD_ALIGNMENT(alignment, blockSize);
/* Block size including 2nd padding */
blockSize += pad2;
return ((num * blockSize) + alignment);
}
/*****************************************************************************/
t_Error MEM_Init(char name[],
t_Handle *p_Handle,
uint32_t num,
uint16_t dataSize,
uint16_t prefixSize,
uint16_t postfixSize,
uint16_t alignment)
{
uint8_t *p_Memory;
uint32_t allocSize;
t_Error errCode;
allocSize = MEM_ComputePartitionSize(num,
dataSize,
prefixSize,
postfixSize,
alignment);
p_Memory = (uint8_t *)XX_Malloc(allocSize);
if (!p_Memory)
{
RETURN_ERROR(MAJOR, E_NO_MEMORY, ("Memory segment"));
}
errCode = MEM_InitByAddress(name,
p_Handle,
num,
dataSize,
prefixSize,
postfixSize,
alignment,
p_Memory);
if (errCode != E_OK)
{
RETURN_ERROR(MAJOR, errCode, NO_MSG);
}
((t_MemorySegment *)(*p_Handle))->allocOwner = e_MEM_ALLOC_OWNER_LOCAL;
return E_OK;
}
/*****************************************************************************/
t_Error MEM_InitByAddress(char name[],
t_Handle *p_Handle,
uint32_t num,
uint16_t dataSize,
uint16_t prefixSize,
uint16_t postfixSize,
uint16_t alignment,
uint8_t *p_Memory)
{
t_MemorySegment *p_Mem;
uint32_t i, blockSize;
uint16_t alignPad, endPad;
uint8_t *p_Blocks;
/* prepare in case of error */
*p_Handle = NULL;
if (!p_Memory)
{
RETURN_ERROR(MAJOR, E_NULL_POINTER, ("Memory blocks"));
}
p_Blocks = p_Memory;
/* make sure that the alignment is at least 4 and power of 2 */
if (alignment < 4)
{
alignment = 4;
}
else if (!POWER_OF_2(alignment))
{
RETURN_ERROR(MAJOR, E_INVALID_VALUE, ("Alignment (should be power of 2)"));
}
/* first allocate the segment descriptor */
p_Mem = (t_MemorySegment *)XX_Malloc(sizeof(t_MemorySegment));
if (!p_Mem)
{
RETURN_ERROR(MAJOR, E_NO_MEMORY, ("Memory segment structure"));
}
/* allocate the blocks stack */
p_Mem->p_BlocksStack = (uint8_t **)XX_Malloc(num * sizeof(uint8_t*));
if (!p_Mem->p_BlocksStack)
{
XX_Free(p_Mem);
RETURN_ERROR(MAJOR, E_NO_MEMORY, ("Memory segment block pointers stack"));
}
/* allocate the blocks bases array */
p_Mem->p_Bases = (uint8_t **)XX_Malloc(sizeof(uint8_t*));
if (!p_Mem->p_Bases)
{
MEM_Free(p_Mem);
RETURN_ERROR(MAJOR, E_NO_MEMORY, ("Memory segment base pointers array"));
}
memset(p_Mem->p_Bases, 0, sizeof(uint8_t*));
/* store info about this segment */
p_Mem->num = num;
p_Mem->current = 0;
p_Mem->dataSize = dataSize;
p_Mem->p_Bases[0] = p_Blocks;
p_Mem->getFailures = 0;
p_Mem->allocOwner = e_MEM_ALLOC_OWNER_EXTERNAL;
p_Mem->consecutiveMem = TRUE;
p_Mem->prefixSize = prefixSize;
p_Mem->postfixSize = postfixSize;
p_Mem->alignment = alignment;
/* store name */
strncpy(p_Mem->name, name, MEM_MAX_NAME_LENGTH-1);
p_Mem->h_Spinlock = XX_InitSpinlock();
if (!p_Mem->h_Spinlock)
{
MEM_Free(p_Mem);
RETURN_ERROR(MAJOR, E_INVALID_STATE, ("Can't create spinlock!"));
}
alignPad = (uint16_t)PAD_ALIGNMENT(4, prefixSize);
/* Make sure the entire size is a multiple of alignment */
endPad = (uint16_t)PAD_ALIGNMENT(alignment, (alignPad + prefixSize + dataSize + postfixSize));
/* The following manipulation places the data of block[0] in an aligned address,
since block size is aligned the following block datas will all be aligned */
ALIGN_BLOCK(p_Blocks, prefixSize, alignment);
blockSize = (uint32_t)(alignPad + prefixSize + dataSize + postfixSize + endPad);
/* initialize the blocks */
for (i=0; i < num; i++)
{
p_Mem->p_BlocksStack[i] = p_Blocks;
p_Blocks += blockSize;
}
/* return handle to caller */
*p_Handle = (t_Handle)p_Mem;
#ifdef DEBUG_MEM_LEAKS
{
t_Error errCode = InitMemDebugDatabase(p_Mem);
if (errCode != E_OK)
RETURN_ERROR(MAJOR, errCode, NO_MSG);
p_Mem->blockOffset = (uint32_t)(p_Mem->p_BlocksStack[0] - p_Mem->p_Bases[0]);
p_Mem->blockSize = blockSize;
}
#endif /* DEBUG_MEM_LEAKS */
return E_OK;
}
/*****************************************************************************/
t_Error MEM_InitSmart(char name[],
t_Handle *p_Handle,
uint32_t num,
uint16_t dataSize,
uint16_t prefixSize,
uint16_t postfixSize,
uint16_t alignment,
uint8_t memPartitionId,
bool consecutiveMem)
{
t_MemorySegment *p_Mem;
uint32_t i, blockSize;
uint16_t alignPad, endPad;
/* prepare in case of error */
*p_Handle = NULL;
/* make sure that size is always a multiple of 4 */
if (dataSize & 3)
{
dataSize &= ~3;
dataSize += 4;
}
/* make sure that the alignment is at least 4 and power of 2 */
if (alignment < 4)
{
alignment = 4;
}
else if (!POWER_OF_2(alignment))
{
RETURN_ERROR(MAJOR, E_INVALID_VALUE, ("Alignment (should be power of 2)"));
}
/* first allocate the segment descriptor */
p_Mem = (t_MemorySegment *)XX_Malloc(sizeof(t_MemorySegment));
if (!p_Mem)
{
RETURN_ERROR(MAJOR, E_NO_MEMORY, ("Memory segment structure"));
}
/* allocate the blocks stack */
p_Mem->p_BlocksStack = (uint8_t **)XX_Malloc(num * sizeof(uint8_t*));
if (!p_Mem->p_BlocksStack)
{
MEM_Free(p_Mem);
RETURN_ERROR(MAJOR, E_NO_MEMORY, ("Memory segment block pointers stack"));
}
/* allocate the blocks bases array */
p_Mem->p_Bases = (uint8_t **)XX_Malloc((consecutiveMem ? 1 : num) * sizeof(uint8_t*));
if (!p_Mem->p_Bases)
{
MEM_Free(p_Mem);
RETURN_ERROR(MAJOR, E_NO_MEMORY, ("Memory segment base pointers array"));
}
memset(p_Mem->p_Bases, 0, (consecutiveMem ? 1 : num) * sizeof(uint8_t*));
/* store info about this segment */
p_Mem->num = num;
p_Mem->current = 0;
p_Mem->dataSize = dataSize;
p_Mem->getFailures = 0;
p_Mem->allocOwner = e_MEM_ALLOC_OWNER_LOCAL_SMART;
p_Mem->consecutiveMem = consecutiveMem;
p_Mem->prefixSize = prefixSize;
p_Mem->postfixSize = postfixSize;
p_Mem->alignment = alignment;
p_Mem->h_Spinlock = XX_InitSpinlock();
if (!p_Mem->h_Spinlock)
{
MEM_Free(p_Mem);
RETURN_ERROR(MAJOR, E_INVALID_STATE, ("Can't create spinlock!"));
}
alignPad = (uint16_t)PAD_ALIGNMENT(4, prefixSize);
/* Make sure the entire size is a multiple of alignment */
endPad = (uint16_t)PAD_ALIGNMENT(alignment, alignPad + prefixSize + dataSize + postfixSize);
/* Calculate blockSize */
blockSize = (uint32_t)(alignPad + prefixSize + dataSize + postfixSize + endPad);
/* Now allocate the blocks */
if (p_Mem->consecutiveMem)
{
/* |alignment - 1| bytes at most will be discarded in the beginning of the
received segment for alignment reasons, therefore the allocation is of:
(alignment + (num * block size)). */
uint8_t *p_Blocks = (uint8_t *)
XX_MallocSmart((uint32_t)((num * blockSize) + alignment), memPartitionId, 1);
if (!p_Blocks)
{
MEM_Free(p_Mem);
RETURN_ERROR(MAJOR, E_NO_MEMORY, ("Memory segment blocks"));
}
/* Store the memory segment address */
p_Mem->p_Bases[0] = p_Blocks;
/* The following manipulation places the data of block[0] in an aligned address,
since block size is aligned the following block datas will all be aligned.*/
ALIGN_BLOCK(p_Blocks, prefixSize, alignment);
/* initialize the blocks */
for (i = 0; i < num; i++)
{
p_Mem->p_BlocksStack[i] = p_Blocks;
p_Blocks += blockSize;
}
#ifdef DEBUG_MEM_LEAKS
p_Mem->blockOffset = (uint32_t)(p_Mem->p_BlocksStack[0] - p_Mem->p_Bases[0]);
p_Mem->blockSize = blockSize;
#endif /* DEBUG_MEM_LEAKS */
}
else
{
/* |alignment - 1| bytes at most will be discarded in the beginning of the
received segment for alignment reasons, therefore the allocation is of:
(alignment + block size). */
for (i = 0; i < num; i++)
{
uint8_t *p_Block = (uint8_t *)
XX_MallocSmart((uint32_t)(blockSize + alignment), memPartitionId, 1);
if (!p_Block)
{
MEM_Free(p_Mem);
RETURN_ERROR(MAJOR, E_NO_MEMORY, ("Memory segment blocks"));
}
/* Store the memory segment address */
p_Mem->p_Bases[i] = p_Block;
/* The following places the data of each block in an aligned address */
ALIGN_BLOCK(p_Block, prefixSize, alignment);
#ifdef DEBUG_MEM_LEAKS
/* Need 4 bytes before the meaningful bytes to store the block index.
We know we have them because alignment is at least 4 bytes. */
if (p_Block == p_Mem->p_Bases[i])
p_Block += alignment;
*(uint32_t *)(p_Block - 4) = i;
#endif /* DEBUG_MEM_LEAKS */
p_Mem->p_BlocksStack[i] = p_Block;
}
}
/* store name */
strncpy(p_Mem->name, name, MEM_MAX_NAME_LENGTH-1);
/* return handle to caller */
*p_Handle = (t_Handle)p_Mem;
#ifdef DEBUG_MEM_LEAKS
{
t_Error errCode = InitMemDebugDatabase(p_Mem);
if (errCode != E_OK)
RETURN_ERROR(MAJOR, errCode, NO_MSG);
}
#endif /* DEBUG_MEM_LEAKS */
return E_OK;
}
/*****************************************************************************/
void MEM_Free(t_Handle h_Mem)
{
t_MemorySegment *p_Mem = (t_MemorySegment*)h_Mem;
uint32_t num, i;
/* Check MEM leaks */
MEM_CheckLeaks(h_Mem);
if (p_Mem)
{
num = p_Mem->consecutiveMem ? 1 : p_Mem->num;
if (p_Mem->allocOwner == e_MEM_ALLOC_OWNER_LOCAL_SMART)
{
for (i=0; i < num; i++)
{
if (p_Mem->p_Bases[i])
{
XX_FreeSmart(p_Mem->p_Bases[i]);
}
}
}
else if (p_Mem->allocOwner == e_MEM_ALLOC_OWNER_LOCAL)
{
for (i=0; i < num; i++)
{
if (p_Mem->p_Bases[i])
{
XX_Free(p_Mem->p_Bases[i]);
}
}
}
if (p_Mem->h_Spinlock)
XX_FreeSpinlock(p_Mem->h_Spinlock);
if (p_Mem->p_Bases)
XX_Free(p_Mem->p_Bases);
if (p_Mem->p_BlocksStack)
XX_Free(p_Mem->p_BlocksStack);
#ifdef DEBUG_MEM_LEAKS
if (p_Mem->p_MemDbg)
XX_Free(p_Mem->p_MemDbg);
#endif /* DEBUG_MEM_LEAKS */
XX_Free(p_Mem);
}
}
/*****************************************************************************/
void * MEM_Get(t_Handle h_Mem)
{
t_MemorySegment *p_Mem = (t_MemorySegment *)h_Mem;
uint8_t *p_Block;
uint32_t intFlags;
#ifdef DEBUG_MEM_LEAKS
uintptr_t callerAddr = 0;
GET_CALLER_ADDR;
#endif /* DEBUG_MEM_LEAKS */
ASSERT_COND(h_Mem);
intFlags = XX_LockIntrSpinlock(p_Mem->h_Spinlock);
/* check if there is an available block */
if ((p_Block = (uint8_t *)MemGet(p_Mem)) == NULL)
{
XX_UnlockIntrSpinlock(p_Mem->h_Spinlock, intFlags);
return NULL;
}
#ifdef DEBUG_MEM_LEAKS
DebugMemGet(p_Mem, p_Block, callerAddr);
#endif /* DEBUG_MEM_LEAKS */
XX_UnlockIntrSpinlock(p_Mem->h_Spinlock, intFlags);
return (void *)p_Block;
}
/*****************************************************************************/
uint16_t MEM_GetN(t_Handle h_Mem, uint32_t num, void *array[])
{
t_MemorySegment *p_Mem = (t_MemorySegment *)h_Mem;
uint32_t availableBlocks;
register uint32_t i;
uint32_t intFlags;
#ifdef DEBUG_MEM_LEAKS
uintptr_t callerAddr = 0;
GET_CALLER_ADDR;
#endif /* DEBUG_MEM_LEAKS */
ASSERT_COND(h_Mem);
intFlags = XX_LockIntrSpinlock(p_Mem->h_Spinlock);
/* check how many blocks are available */
availableBlocks = (uint32_t)(p_Mem->num - p_Mem->current);
if (num > availableBlocks)
{
num = availableBlocks;
}
for (i=0; i < num; i++)
{
/* get pointer to block */
if ((array[i] = MemGet(p_Mem)) == NULL)
{
break;
}
#ifdef DEBUG_MEM_LEAKS
DebugMemGet(p_Mem, array[i], callerAddr);
#endif /* DEBUG_MEM_LEAKS */
}
XX_UnlockIntrSpinlock(p_Mem->h_Spinlock, intFlags);
return (uint16_t)i;
}
/*****************************************************************************/
t_Error MEM_Put(t_Handle h_Mem, void *p_Block)
{
t_MemorySegment *p_Mem = (t_MemorySegment *)h_Mem;
t_Error rc;
uint32_t intFlags;
ASSERT_COND(h_Mem);
intFlags = XX_LockIntrSpinlock(p_Mem->h_Spinlock);
/* check if blocks stack is full */
if ((rc = MemPut(p_Mem, p_Block)) != E_OK)
{
XX_UnlockIntrSpinlock(p_Mem->h_Spinlock, intFlags);
RETURN_ERROR(MAJOR, rc, NO_MSG);
}
#ifdef DEBUG_MEM_LEAKS
DebugMemPut(p_Mem, p_Block);
#endif /* DEBUG_MEM_LEAKS */
XX_UnlockIntrSpinlock(p_Mem->h_Spinlock, intFlags);
return E_OK;
}
#ifdef DEBUG_MEM_LEAKS
/*****************************************************************************/
void MEM_CheckLeaks(t_Handle h_Mem)
{
t_MemorySegment *p_Mem = (t_MemorySegment *)h_Mem;
t_MemDbg *p_MemDbg = (t_MemDbg *)p_Mem->p_MemDbg;
uint8_t *p_Block;
int i;
ASSERT_COND(h_Mem);
if (p_Mem->consecutiveMem)
{
for (i=0; i < p_Mem->num; i++)
{
if (p_MemDbg[i].ownerAddress != ILLEGAL_BASE)
{
/* Find the block address */
p_Block = ((p_Mem->p_Bases[0] + p_Mem->blockOffset) +
(i * p_Mem->blockSize));
XX_Print("MEM leak: 0x%08x, Caller address: 0x%08x\n",
p_Block, p_MemDbg[i].ownerAddress);
}
}
}
else
{
for (i=0; i < p_Mem->num; i++)
{
if (p_MemDbg[i].ownerAddress != ILLEGAL_BASE)
{
/* Find the block address */
p_Block = p_Mem->p_Bases[i];
ALIGN_BLOCK(p_Block, p_Mem->prefixSize, p_Mem->alignment);
if (p_Block == p_Mem->p_Bases[i])
p_Block += p_Mem->alignment;
XX_Print("MEM leak: 0x%08x, Caller address: 0x%08x\n",
p_Block, p_MemDbg[i].ownerAddress);
}
}
}
}
#endif /* DEBUG_MEM_LEAKS */