mirror of
https://git.hardenedbsd.org/hardenedbsd/HardenedBSD.git
synced 2024-12-28 05:55:27 +01:00
b9a6fb9343
MFC after: 2 weeks
577 lines
13 KiB
C
577 lines
13 KiB
C
/*-
|
|
* Copyright (c) 2014 John Baldwin
|
|
* Copyright (c) 2014, 2016 The FreeBSD Foundation
|
|
*
|
|
* Portions of this software were developed by Konstantin Belousov
|
|
* under sponsorship from the FreeBSD Foundation.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/capsicum.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/procctl.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/syscallsubr.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/wait.h>
|
|
|
|
static int
|
|
protect_setchild(struct thread *td, struct proc *p, int flags)
|
|
{
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
if (p->p_flag & P_SYSTEM || p_cansched(td, p) != 0)
|
|
return (0);
|
|
if (flags & PPROT_SET) {
|
|
p->p_flag |= P_PROTECTED;
|
|
if (flags & PPROT_INHERIT)
|
|
p->p_flag2 |= P2_INHERIT_PROTECTED;
|
|
} else {
|
|
p->p_flag &= ~P_PROTECTED;
|
|
p->p_flag2 &= ~P2_INHERIT_PROTECTED;
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
protect_setchildren(struct thread *td, struct proc *top, int flags)
|
|
{
|
|
struct proc *p;
|
|
int ret;
|
|
|
|
p = top;
|
|
ret = 0;
|
|
sx_assert(&proctree_lock, SX_LOCKED);
|
|
for (;;) {
|
|
ret |= protect_setchild(td, p, flags);
|
|
PROC_UNLOCK(p);
|
|
/*
|
|
* If this process has children, descend to them next,
|
|
* otherwise do any siblings, and if done with this level,
|
|
* follow back up the tree (but not past top).
|
|
*/
|
|
if (!LIST_EMPTY(&p->p_children))
|
|
p = LIST_FIRST(&p->p_children);
|
|
else for (;;) {
|
|
if (p == top) {
|
|
PROC_LOCK(p);
|
|
return (ret);
|
|
}
|
|
if (LIST_NEXT(p, p_sibling)) {
|
|
p = LIST_NEXT(p, p_sibling);
|
|
break;
|
|
}
|
|
p = p->p_pptr;
|
|
}
|
|
PROC_LOCK(p);
|
|
}
|
|
}
|
|
|
|
static int
|
|
protect_set(struct thread *td, struct proc *p, int flags)
|
|
{
|
|
int error, ret;
|
|
|
|
switch (PPROT_OP(flags)) {
|
|
case PPROT_SET:
|
|
case PPROT_CLEAR:
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
if ((PPROT_FLAGS(flags) & ~(PPROT_DESCEND | PPROT_INHERIT)) != 0)
|
|
return (EINVAL);
|
|
|
|
error = priv_check(td, PRIV_VM_MADV_PROTECT);
|
|
if (error)
|
|
return (error);
|
|
|
|
if (flags & PPROT_DESCEND)
|
|
ret = protect_setchildren(td, p, flags);
|
|
else
|
|
ret = protect_setchild(td, p, flags);
|
|
if (ret == 0)
|
|
return (EPERM);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
reap_acquire(struct thread *td, struct proc *p)
|
|
{
|
|
|
|
sx_assert(&proctree_lock, SX_XLOCKED);
|
|
if (p != curproc)
|
|
return (EPERM);
|
|
if ((p->p_treeflag & P_TREE_REAPER) != 0)
|
|
return (EBUSY);
|
|
p->p_treeflag |= P_TREE_REAPER;
|
|
/*
|
|
* We do not reattach existing children and the whole tree
|
|
* under them to us, since p->p_reaper already seen them.
|
|
*/
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
reap_release(struct thread *td, struct proc *p)
|
|
{
|
|
|
|
sx_assert(&proctree_lock, SX_XLOCKED);
|
|
if (p != curproc)
|
|
return (EPERM);
|
|
if (p == initproc)
|
|
return (EINVAL);
|
|
if ((p->p_treeflag & P_TREE_REAPER) == 0)
|
|
return (EINVAL);
|
|
reaper_abandon_children(p, false);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
reap_status(struct thread *td, struct proc *p,
|
|
struct procctl_reaper_status *rs)
|
|
{
|
|
struct proc *reap, *p2, *first_p;
|
|
|
|
sx_assert(&proctree_lock, SX_LOCKED);
|
|
bzero(rs, sizeof(*rs));
|
|
if ((p->p_treeflag & P_TREE_REAPER) == 0) {
|
|
reap = p->p_reaper;
|
|
} else {
|
|
reap = p;
|
|
rs->rs_flags |= REAPER_STATUS_OWNED;
|
|
}
|
|
if (reap == initproc)
|
|
rs->rs_flags |= REAPER_STATUS_REALINIT;
|
|
rs->rs_reaper = reap->p_pid;
|
|
rs->rs_descendants = 0;
|
|
rs->rs_children = 0;
|
|
if (!LIST_EMPTY(&reap->p_reaplist)) {
|
|
first_p = LIST_FIRST(&reap->p_children);
|
|
if (first_p == NULL)
|
|
first_p = LIST_FIRST(&reap->p_reaplist);
|
|
rs->rs_pid = first_p->p_pid;
|
|
LIST_FOREACH(p2, &reap->p_reaplist, p_reapsibling) {
|
|
if (proc_realparent(p2) == reap)
|
|
rs->rs_children++;
|
|
rs->rs_descendants++;
|
|
}
|
|
} else {
|
|
rs->rs_pid = -1;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
reap_getpids(struct thread *td, struct proc *p, struct procctl_reaper_pids *rp)
|
|
{
|
|
struct proc *reap, *p2;
|
|
struct procctl_reaper_pidinfo *pi, *pip;
|
|
u_int i, n;
|
|
int error;
|
|
|
|
sx_assert(&proctree_lock, SX_LOCKED);
|
|
PROC_UNLOCK(p);
|
|
reap = (p->p_treeflag & P_TREE_REAPER) == 0 ? p->p_reaper : p;
|
|
n = i = 0;
|
|
error = 0;
|
|
LIST_FOREACH(p2, &reap->p_reaplist, p_reapsibling)
|
|
n++;
|
|
sx_unlock(&proctree_lock);
|
|
if (rp->rp_count < n)
|
|
n = rp->rp_count;
|
|
pi = malloc(n * sizeof(*pi), M_TEMP, M_WAITOK);
|
|
sx_slock(&proctree_lock);
|
|
LIST_FOREACH(p2, &reap->p_reaplist, p_reapsibling) {
|
|
if (i == n)
|
|
break;
|
|
pip = &pi[i];
|
|
bzero(pip, sizeof(*pip));
|
|
pip->pi_pid = p2->p_pid;
|
|
pip->pi_subtree = p2->p_reapsubtree;
|
|
pip->pi_flags = REAPER_PIDINFO_VALID;
|
|
if (proc_realparent(p2) == reap)
|
|
pip->pi_flags |= REAPER_PIDINFO_CHILD;
|
|
i++;
|
|
}
|
|
sx_sunlock(&proctree_lock);
|
|
error = copyout(pi, rp->rp_pids, i * sizeof(*pi));
|
|
free(pi, M_TEMP);
|
|
sx_slock(&proctree_lock);
|
|
PROC_LOCK(p);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
reap_kill(struct thread *td, struct proc *p, struct procctl_reaper_kill *rk)
|
|
{
|
|
struct proc *reap, *p2;
|
|
ksiginfo_t ksi;
|
|
int error, error1;
|
|
|
|
sx_assert(&proctree_lock, SX_LOCKED);
|
|
if (IN_CAPABILITY_MODE(td))
|
|
return (ECAPMODE);
|
|
if (rk->rk_sig <= 0 || rk->rk_sig > _SIG_MAXSIG)
|
|
return (EINVAL);
|
|
if ((rk->rk_flags & ~(REAPER_KILL_CHILDREN | REAPER_KILL_SUBTREE)) != 0)
|
|
return (EINVAL);
|
|
PROC_UNLOCK(p);
|
|
reap = (p->p_treeflag & P_TREE_REAPER) == 0 ? p->p_reaper : p;
|
|
ksiginfo_init(&ksi);
|
|
ksi.ksi_signo = rk->rk_sig;
|
|
ksi.ksi_code = SI_USER;
|
|
ksi.ksi_pid = td->td_proc->p_pid;
|
|
ksi.ksi_uid = td->td_ucred->cr_ruid;
|
|
error = ESRCH;
|
|
rk->rk_killed = 0;
|
|
rk->rk_fpid = -1;
|
|
for (p2 = (rk->rk_flags & REAPER_KILL_CHILDREN) != 0 ?
|
|
LIST_FIRST(&reap->p_children) : LIST_FIRST(&reap->p_reaplist);
|
|
p2 != NULL;
|
|
p2 = (rk->rk_flags & REAPER_KILL_CHILDREN) != 0 ?
|
|
LIST_NEXT(p2, p_sibling) : LIST_NEXT(p2, p_reapsibling)) {
|
|
if ((rk->rk_flags & REAPER_KILL_SUBTREE) != 0 &&
|
|
p2->p_reapsubtree != rk->rk_subtree)
|
|
continue;
|
|
PROC_LOCK(p2);
|
|
error1 = p_cansignal(td, p2, rk->rk_sig);
|
|
if (error1 == 0) {
|
|
pksignal(p2, rk->rk_sig, &ksi);
|
|
rk->rk_killed++;
|
|
error = error1;
|
|
} else if (error == ESRCH) {
|
|
error = error1;
|
|
rk->rk_fpid = p2->p_pid;
|
|
}
|
|
PROC_UNLOCK(p2);
|
|
/* Do not end the loop on error, signal everything we can. */
|
|
}
|
|
PROC_LOCK(p);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
trace_ctl(struct thread *td, struct proc *p, int state)
|
|
{
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
|
|
/*
|
|
* Ktrace changes p_traceflag from or to zero under the
|
|
* process lock, so the test does not need to acquire ktrace
|
|
* mutex.
|
|
*/
|
|
if ((p->p_flag & P_TRACED) != 0 || p->p_traceflag != 0)
|
|
return (EBUSY);
|
|
|
|
switch (state) {
|
|
case PROC_TRACE_CTL_ENABLE:
|
|
if (td->td_proc != p)
|
|
return (EPERM);
|
|
p->p_flag2 &= ~(P2_NOTRACE | P2_NOTRACE_EXEC);
|
|
break;
|
|
case PROC_TRACE_CTL_DISABLE_EXEC:
|
|
p->p_flag2 |= P2_NOTRACE_EXEC | P2_NOTRACE;
|
|
break;
|
|
case PROC_TRACE_CTL_DISABLE:
|
|
if ((p->p_flag2 & P2_NOTRACE_EXEC) != 0) {
|
|
KASSERT((p->p_flag2 & P2_NOTRACE) != 0,
|
|
("dandling P2_NOTRACE_EXEC"));
|
|
if (td->td_proc != p)
|
|
return (EPERM);
|
|
p->p_flag2 &= ~P2_NOTRACE_EXEC;
|
|
} else {
|
|
p->p_flag2 |= P2_NOTRACE;
|
|
}
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
trace_status(struct thread *td, struct proc *p, int *data)
|
|
{
|
|
|
|
if ((p->p_flag2 & P2_NOTRACE) != 0) {
|
|
KASSERT((p->p_flag & P_TRACED) == 0,
|
|
("%d traced but tracing disabled", p->p_pid));
|
|
*data = -1;
|
|
} else if ((p->p_flag & P_TRACED) != 0) {
|
|
*data = p->p_pptr->p_pid;
|
|
} else {
|
|
*data = 0;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
trapcap_ctl(struct thread *td, struct proc *p, int state)
|
|
{
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
|
|
switch (state) {
|
|
case PROC_TRAPCAP_CTL_ENABLE:
|
|
p->p_flag2 |= P2_TRAPCAP;
|
|
break;
|
|
case PROC_TRAPCAP_CTL_DISABLE:
|
|
p->p_flag2 &= ~P2_TRAPCAP;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
trapcap_status(struct thread *td, struct proc *p, int *data)
|
|
{
|
|
|
|
*data = (p->p_flag2 & P2_TRAPCAP) != 0 ? PROC_TRAPCAP_CTL_ENABLE :
|
|
PROC_TRAPCAP_CTL_DISABLE;
|
|
return (0);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct procctl_args {
|
|
idtype_t idtype;
|
|
id_t id;
|
|
int com;
|
|
void *data;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
sys_procctl(struct thread *td, struct procctl_args *uap)
|
|
{
|
|
void *data;
|
|
union {
|
|
struct procctl_reaper_status rs;
|
|
struct procctl_reaper_pids rp;
|
|
struct procctl_reaper_kill rk;
|
|
} x;
|
|
int error, error1, flags;
|
|
|
|
switch (uap->com) {
|
|
case PROC_SPROTECT:
|
|
case PROC_TRACE_CTL:
|
|
case PROC_TRAPCAP_CTL:
|
|
error = copyin(uap->data, &flags, sizeof(flags));
|
|
if (error != 0)
|
|
return (error);
|
|
data = &flags;
|
|
break;
|
|
case PROC_REAP_ACQUIRE:
|
|
case PROC_REAP_RELEASE:
|
|
if (uap->data != NULL)
|
|
return (EINVAL);
|
|
data = NULL;
|
|
break;
|
|
case PROC_REAP_STATUS:
|
|
data = &x.rs;
|
|
break;
|
|
case PROC_REAP_GETPIDS:
|
|
error = copyin(uap->data, &x.rp, sizeof(x.rp));
|
|
if (error != 0)
|
|
return (error);
|
|
data = &x.rp;
|
|
break;
|
|
case PROC_REAP_KILL:
|
|
error = copyin(uap->data, &x.rk, sizeof(x.rk));
|
|
if (error != 0)
|
|
return (error);
|
|
data = &x.rk;
|
|
break;
|
|
case PROC_TRACE_STATUS:
|
|
case PROC_TRAPCAP_STATUS:
|
|
data = &flags;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
error = kern_procctl(td, uap->idtype, uap->id, uap->com, data);
|
|
switch (uap->com) {
|
|
case PROC_REAP_STATUS:
|
|
if (error == 0)
|
|
error = copyout(&x.rs, uap->data, sizeof(x.rs));
|
|
break;
|
|
case PROC_REAP_KILL:
|
|
error1 = copyout(&x.rk, uap->data, sizeof(x.rk));
|
|
if (error == 0)
|
|
error = error1;
|
|
break;
|
|
case PROC_TRACE_STATUS:
|
|
case PROC_TRAPCAP_STATUS:
|
|
if (error == 0)
|
|
error = copyout(&flags, uap->data, sizeof(flags));
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
kern_procctl_single(struct thread *td, struct proc *p, int com, void *data)
|
|
{
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
switch (com) {
|
|
case PROC_SPROTECT:
|
|
return (protect_set(td, p, *(int *)data));
|
|
case PROC_REAP_ACQUIRE:
|
|
return (reap_acquire(td, p));
|
|
case PROC_REAP_RELEASE:
|
|
return (reap_release(td, p));
|
|
case PROC_REAP_STATUS:
|
|
return (reap_status(td, p, data));
|
|
case PROC_REAP_GETPIDS:
|
|
return (reap_getpids(td, p, data));
|
|
case PROC_REAP_KILL:
|
|
return (reap_kill(td, p, data));
|
|
case PROC_TRACE_CTL:
|
|
return (trace_ctl(td, p, *(int *)data));
|
|
case PROC_TRACE_STATUS:
|
|
return (trace_status(td, p, data));
|
|
case PROC_TRAPCAP_CTL:
|
|
return (trapcap_ctl(td, p, *(int *)data));
|
|
case PROC_TRAPCAP_STATUS:
|
|
return (trapcap_status(td, p, data));
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
}
|
|
|
|
int
|
|
kern_procctl(struct thread *td, idtype_t idtype, id_t id, int com, void *data)
|
|
{
|
|
struct pgrp *pg;
|
|
struct proc *p;
|
|
int error, first_error, ok;
|
|
bool tree_locked;
|
|
|
|
switch (com) {
|
|
case PROC_REAP_ACQUIRE:
|
|
case PROC_REAP_RELEASE:
|
|
case PROC_REAP_STATUS:
|
|
case PROC_REAP_GETPIDS:
|
|
case PROC_REAP_KILL:
|
|
case PROC_TRACE_STATUS:
|
|
case PROC_TRAPCAP_STATUS:
|
|
if (idtype != P_PID)
|
|
return (EINVAL);
|
|
}
|
|
|
|
switch (com) {
|
|
case PROC_SPROTECT:
|
|
case PROC_REAP_STATUS:
|
|
case PROC_REAP_GETPIDS:
|
|
case PROC_REAP_KILL:
|
|
case PROC_TRACE_CTL:
|
|
case PROC_TRAPCAP_CTL:
|
|
sx_slock(&proctree_lock);
|
|
tree_locked = true;
|
|
break;
|
|
case PROC_REAP_ACQUIRE:
|
|
case PROC_REAP_RELEASE:
|
|
sx_xlock(&proctree_lock);
|
|
tree_locked = true;
|
|
break;
|
|
case PROC_TRACE_STATUS:
|
|
case PROC_TRAPCAP_STATUS:
|
|
tree_locked = false;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
switch (idtype) {
|
|
case P_PID:
|
|
p = pfind(id);
|
|
if (p == NULL) {
|
|
error = ESRCH;
|
|
break;
|
|
}
|
|
error = p_cansee(td, p);
|
|
if (error == 0)
|
|
error = kern_procctl_single(td, p, com, data);
|
|
PROC_UNLOCK(p);
|
|
break;
|
|
case P_PGID:
|
|
/*
|
|
* Attempt to apply the operation to all members of the
|
|
* group. Ignore processes in the group that can't be
|
|
* seen. Ignore errors so long as at least one process is
|
|
* able to complete the request successfully.
|
|
*/
|
|
pg = pgfind(id);
|
|
if (pg == NULL) {
|
|
error = ESRCH;
|
|
break;
|
|
}
|
|
PGRP_UNLOCK(pg);
|
|
ok = 0;
|
|
first_error = 0;
|
|
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
|
|
PROC_LOCK(p);
|
|
if (p->p_state == PRS_NEW || p_cansee(td, p) != 0) {
|
|
PROC_UNLOCK(p);
|
|
continue;
|
|
}
|
|
error = kern_procctl_single(td, p, com, data);
|
|
PROC_UNLOCK(p);
|
|
if (error == 0)
|
|
ok = 1;
|
|
else if (first_error == 0)
|
|
first_error = error;
|
|
}
|
|
if (ok)
|
|
error = 0;
|
|
else if (first_error != 0)
|
|
error = first_error;
|
|
else
|
|
/*
|
|
* Was not able to see any processes in the
|
|
* process group.
|
|
*/
|
|
error = ESRCH;
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
if (tree_locked)
|
|
sx_unlock(&proctree_lock);
|
|
return (error);
|
|
}
|