HardenedBSD/sys/kern/kern_procctl.c
Brooks Davis 6bb132ba1e Reduce reliance on sys/sysproto.h pollution
Add sys/errno.h, sys/malloc.h, sys/queue.h, and vm/uma.h as needed.

sys/sysproto.h currently includes sys/acl.h which currently includes
sys/param.h, sys/queue.h, and vm/uma.h which in turn bring in
sys/errno.h sys/malloc.h.

Reviewed by:	kib
Differential Revision:	https://reviews.freebsd.org/D44465
2024-04-15 21:35:40 +01:00

1275 lines
31 KiB
C

/*-
* Copyright (c) 2014 John Baldwin
* Copyright (c) 2014, 2016 The FreeBSD Foundation
*
* Portions of this software were developed by Konstantin Belousov
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "opt_ktrace.h"
#include <sys/param.h>
#include <sys/_unrhdr.h>
#include <sys/systm.h>
#include <sys/capsicum.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mman.h>
#include <sys/mutex.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/procctl.h>
#include <sys/sx.h>
#include <sys/syscallsubr.h>
#include <sys/sysproto.h>
#include <sys/taskqueue.h>
#include <sys/wait.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_extern.h>
static int
protect_setchild(struct thread *td, struct proc *p, int flags)
{
PROC_LOCK_ASSERT(p, MA_OWNED);
if (p->p_flag & P_SYSTEM || p_cansched(td, p) != 0)
return (0);
if (flags & PPROT_SET) {
p->p_flag |= P_PROTECTED;
if (flags & PPROT_INHERIT)
p->p_flag2 |= P2_INHERIT_PROTECTED;
} else {
p->p_flag &= ~P_PROTECTED;
p->p_flag2 &= ~P2_INHERIT_PROTECTED;
}
return (1);
}
static int
protect_setchildren(struct thread *td, struct proc *top, int flags)
{
struct proc *p;
int ret;
p = top;
ret = 0;
sx_assert(&proctree_lock, SX_LOCKED);
for (;;) {
ret |= protect_setchild(td, p, flags);
PROC_UNLOCK(p);
/*
* If this process has children, descend to them next,
* otherwise do any siblings, and if done with this level,
* follow back up the tree (but not past top).
*/
if (!LIST_EMPTY(&p->p_children))
p = LIST_FIRST(&p->p_children);
else for (;;) {
if (p == top) {
PROC_LOCK(p);
return (ret);
}
if (LIST_NEXT(p, p_sibling)) {
p = LIST_NEXT(p, p_sibling);
break;
}
p = p->p_pptr;
}
PROC_LOCK(p);
}
}
static int
protect_set(struct thread *td, struct proc *p, void *data)
{
int error, flags, ret;
flags = *(int *)data;
switch (PPROT_OP(flags)) {
case PPROT_SET:
case PPROT_CLEAR:
break;
default:
return (EINVAL);
}
if ((PPROT_FLAGS(flags) & ~(PPROT_DESCEND | PPROT_INHERIT)) != 0)
return (EINVAL);
error = priv_check(td, PRIV_VM_MADV_PROTECT);
if (error)
return (error);
if (flags & PPROT_DESCEND)
ret = protect_setchildren(td, p, flags);
else
ret = protect_setchild(td, p, flags);
if (ret == 0)
return (EPERM);
return (0);
}
static int
reap_acquire(struct thread *td, struct proc *p, void *data __unused)
{
sx_assert(&proctree_lock, SX_XLOCKED);
if (p != td->td_proc)
return (EPERM);
if ((p->p_treeflag & P_TREE_REAPER) != 0)
return (EBUSY);
p->p_treeflag |= P_TREE_REAPER;
/*
* We do not reattach existing children and the whole tree
* under them to us, since p->p_reaper already seen them.
*/
return (0);
}
static int
reap_release(struct thread *td, struct proc *p, void *data __unused)
{
sx_assert(&proctree_lock, SX_XLOCKED);
if (p != td->td_proc)
return (EPERM);
if (p == initproc)
return (EINVAL);
if ((p->p_treeflag & P_TREE_REAPER) == 0)
return (EINVAL);
reaper_abandon_children(p, false);
return (0);
}
static int
reap_status(struct thread *td, struct proc *p, void *data)
{
struct proc *reap, *p2, *first_p;
struct procctl_reaper_status *rs;
rs = data;
sx_assert(&proctree_lock, SX_LOCKED);
if ((p->p_treeflag & P_TREE_REAPER) == 0) {
reap = p->p_reaper;
} else {
reap = p;
rs->rs_flags |= REAPER_STATUS_OWNED;
}
if (reap == initproc)
rs->rs_flags |= REAPER_STATUS_REALINIT;
rs->rs_reaper = reap->p_pid;
rs->rs_descendants = 0;
rs->rs_children = 0;
if (!LIST_EMPTY(&reap->p_reaplist)) {
first_p = LIST_FIRST(&reap->p_children);
if (first_p == NULL)
first_p = LIST_FIRST(&reap->p_reaplist);
rs->rs_pid = first_p->p_pid;
LIST_FOREACH(p2, &reap->p_reaplist, p_reapsibling) {
if (proc_realparent(p2) == reap)
rs->rs_children++;
rs->rs_descendants++;
}
} else {
rs->rs_pid = -1;
}
return (0);
}
static int
reap_getpids(struct thread *td, struct proc *p, void *data)
{
struct proc *reap, *p2;
struct procctl_reaper_pidinfo *pi, *pip;
struct procctl_reaper_pids *rp;
u_int i, n;
int error;
rp = data;
sx_assert(&proctree_lock, SX_LOCKED);
PROC_UNLOCK(p);
reap = (p->p_treeflag & P_TREE_REAPER) == 0 ? p->p_reaper : p;
n = i = 0;
error = 0;
LIST_FOREACH(p2, &reap->p_reaplist, p_reapsibling)
n++;
sx_unlock(&proctree_lock);
if (rp->rp_count < n)
n = rp->rp_count;
pi = malloc(n * sizeof(*pi), M_TEMP, M_WAITOK);
sx_slock(&proctree_lock);
LIST_FOREACH(p2, &reap->p_reaplist, p_reapsibling) {
if (i == n)
break;
pip = &pi[i];
bzero(pip, sizeof(*pip));
pip->pi_pid = p2->p_pid;
pip->pi_subtree = p2->p_reapsubtree;
pip->pi_flags = REAPER_PIDINFO_VALID;
if (proc_realparent(p2) == reap)
pip->pi_flags |= REAPER_PIDINFO_CHILD;
if ((p2->p_treeflag & P_TREE_REAPER) != 0)
pip->pi_flags |= REAPER_PIDINFO_REAPER;
if ((p2->p_flag & P_STOPPED) != 0)
pip->pi_flags |= REAPER_PIDINFO_STOPPED;
if (p2->p_state == PRS_ZOMBIE)
pip->pi_flags |= REAPER_PIDINFO_ZOMBIE;
else if ((p2->p_flag & P_WEXIT) != 0)
pip->pi_flags |= REAPER_PIDINFO_EXITING;
i++;
}
sx_sunlock(&proctree_lock);
error = copyout(pi, rp->rp_pids, i * sizeof(*pi));
free(pi, M_TEMP);
sx_slock(&proctree_lock);
PROC_LOCK(p);
return (error);
}
struct reap_kill_proc_work {
struct ucred *cr;
struct proc *target;
ksiginfo_t *ksi;
struct procctl_reaper_kill *rk;
int *error;
struct task t;
};
static void
reap_kill_proc_locked(struct reap_kill_proc_work *w)
{
int error1;
bool need_stop;
PROC_LOCK_ASSERT(w->target, MA_OWNED);
PROC_ASSERT_HELD(w->target);
error1 = cr_cansignal(w->cr, w->target, w->rk->rk_sig);
if (error1 != 0) {
if (*w->error == ESRCH) {
w->rk->rk_fpid = w->target->p_pid;
*w->error = error1;
}
return;
}
/*
* The need_stop indicates if the target process needs to be
* suspended before being signalled. This is needed when we
* guarantee that all processes in subtree are signalled,
* avoiding the race with some process not yet fully linked
* into all structures during fork, ignored by iterator, and
* then escaping signalling.
*
* The thread cannot usefully stop itself anyway, and if other
* thread of the current process forks while the current
* thread signals the whole subtree, it is an application
* race.
*/
if ((w->target->p_flag & (P_KPROC | P_SYSTEM | P_STOPPED)) == 0)
need_stop = thread_single(w->target, SINGLE_ALLPROC) == 0;
else
need_stop = false;
(void)pksignal(w->target, w->rk->rk_sig, w->ksi);
w->rk->rk_killed++;
*w->error = error1;
if (need_stop)
thread_single_end(w->target, SINGLE_ALLPROC);
}
static void
reap_kill_proc_work(void *arg, int pending __unused)
{
struct reap_kill_proc_work *w;
w = arg;
PROC_LOCK(w->target);
if ((w->target->p_flag2 & P2_WEXIT) == 0)
reap_kill_proc_locked(w);
PROC_UNLOCK(w->target);
sx_xlock(&proctree_lock);
w->target = NULL;
wakeup(&w->target);
sx_xunlock(&proctree_lock);
}
struct reap_kill_tracker {
struct proc *parent;
TAILQ_ENTRY(reap_kill_tracker) link;
};
TAILQ_HEAD(reap_kill_tracker_head, reap_kill_tracker);
static void
reap_kill_sched(struct reap_kill_tracker_head *tracker, struct proc *p2)
{
struct reap_kill_tracker *t;
PROC_LOCK(p2);
if ((p2->p_flag2 & P2_WEXIT) != 0) {
PROC_UNLOCK(p2);
return;
}
_PHOLD_LITE(p2);
PROC_UNLOCK(p2);
t = malloc(sizeof(struct reap_kill_tracker), M_TEMP, M_WAITOK);
t->parent = p2;
TAILQ_INSERT_TAIL(tracker, t, link);
}
static void
reap_kill_sched_free(struct reap_kill_tracker *t)
{
PRELE(t->parent);
free(t, M_TEMP);
}
static void
reap_kill_children(struct thread *td, struct proc *reaper,
struct procctl_reaper_kill *rk, ksiginfo_t *ksi, int *error)
{
struct proc *p2;
int error1;
LIST_FOREACH(p2, &reaper->p_children, p_sibling) {
PROC_LOCK(p2);
if ((p2->p_flag2 & P2_WEXIT) == 0) {
error1 = p_cansignal(td, p2, rk->rk_sig);
if (error1 != 0) {
if (*error == ESRCH) {
rk->rk_fpid = p2->p_pid;
*error = error1;
}
/*
* Do not end the loop on error,
* signal everything we can.
*/
} else {
(void)pksignal(p2, rk->rk_sig, ksi);
rk->rk_killed++;
}
}
PROC_UNLOCK(p2);
}
}
static bool
reap_kill_subtree_once(struct thread *td, struct proc *p, struct proc *reaper,
struct unrhdr *pids, struct reap_kill_proc_work *w)
{
struct reap_kill_tracker_head tracker;
struct reap_kill_tracker *t;
struct proc *p2;
int r, xlocked;
bool res, st;
res = false;
TAILQ_INIT(&tracker);
reap_kill_sched(&tracker, reaper);
while ((t = TAILQ_FIRST(&tracker)) != NULL) {
TAILQ_REMOVE(&tracker, t, link);
/*
* Since reap_kill_proc() drops proctree_lock sx, it
* is possible that the tracked reaper is no longer.
* In this case the subtree is reparented to the new
* reaper, which should handle it.
*/
if ((t->parent->p_treeflag & P_TREE_REAPER) == 0) {
reap_kill_sched_free(t);
res = true;
continue;
}
LIST_FOREACH(p2, &t->parent->p_reaplist, p_reapsibling) {
if (t->parent == reaper &&
(w->rk->rk_flags & REAPER_KILL_SUBTREE) != 0 &&
p2->p_reapsubtree != w->rk->rk_subtree)
continue;
if ((p2->p_treeflag & P_TREE_REAPER) != 0)
reap_kill_sched(&tracker, p2);
/*
* Handle possible pid reuse. If we recorded
* p2 as killed but its p_flag2 does not
* confirm it, that means that the process
* terminated and its id was reused by other
* process in the reaper subtree.
*
* Unlocked read of p2->p_flag2 is fine, it is
* our thread that set the tested flag.
*/
if (alloc_unr_specific(pids, p2->p_pid) != p2->p_pid &&
(atomic_load_int(&p2->p_flag2) &
(P2_REAPKILLED | P2_WEXIT)) != 0)
continue;
if (p2 == td->td_proc) {
if ((p2->p_flag & P_HADTHREADS) != 0 &&
(p2->p_flag2 & P2_WEXIT) == 0) {
xlocked = sx_xlocked(&proctree_lock);
sx_unlock(&proctree_lock);
st = true;
} else {
st = false;
}
PROC_LOCK(p2);
/*
* sapblk ensures that only one thread
* in the system sets this flag.
*/
p2->p_flag2 |= P2_REAPKILLED;
if (st)
r = thread_single(p2, SINGLE_NO_EXIT);
(void)pksignal(p2, w->rk->rk_sig, w->ksi);
w->rk->rk_killed++;
if (st && r == 0)
thread_single_end(p2, SINGLE_NO_EXIT);
PROC_UNLOCK(p2);
if (st) {
if (xlocked)
sx_xlock(&proctree_lock);
else
sx_slock(&proctree_lock);
}
} else {
PROC_LOCK(p2);
if ((p2->p_flag2 & P2_WEXIT) == 0) {
_PHOLD_LITE(p2);
p2->p_flag2 |= P2_REAPKILLED;
PROC_UNLOCK(p2);
w->target = p2;
taskqueue_enqueue(taskqueue_thread,
&w->t);
while (w->target != NULL) {
sx_sleep(&w->target,
&proctree_lock, PWAIT,
"reapst", 0);
}
PROC_LOCK(p2);
_PRELE(p2);
}
PROC_UNLOCK(p2);
}
res = true;
}
reap_kill_sched_free(t);
}
return (res);
}
static void
reap_kill_subtree(struct thread *td, struct proc *p, struct proc *reaper,
struct reap_kill_proc_work *w)
{
struct unrhdr pids;
void *ihandle;
struct proc *p2;
int pid;
/*
* pids records processes which were already signalled, to
* avoid doubling signals to them if iteration needs to be
* repeated.
*/
init_unrhdr(&pids, 1, PID_MAX, UNR_NO_MTX);
PROC_LOCK(td->td_proc);
if ((td->td_proc->p_flag2 & P2_WEXIT) != 0) {
PROC_UNLOCK(td->td_proc);
goto out;
}
PROC_UNLOCK(td->td_proc);
while (reap_kill_subtree_once(td, p, reaper, &pids, w))
;
ihandle = create_iter_unr(&pids);
while ((pid = next_iter_unr(ihandle)) != -1) {
p2 = pfind(pid);
if (p2 != NULL) {
p2->p_flag2 &= ~P2_REAPKILLED;
PROC_UNLOCK(p2);
}
}
free_iter_unr(ihandle);
out:
clean_unrhdr(&pids);
clear_unrhdr(&pids);
}
static bool
reap_kill_sapblk(struct thread *td __unused, void *data)
{
struct procctl_reaper_kill *rk;
rk = data;
return ((rk->rk_flags & REAPER_KILL_CHILDREN) == 0);
}
static int
reap_kill(struct thread *td, struct proc *p, void *data)
{
struct reap_kill_proc_work w;
struct proc *reaper;
ksiginfo_t ksi;
struct procctl_reaper_kill *rk;
int error;
rk = data;
sx_assert(&proctree_lock, SX_LOCKED);
if (CAP_TRACING(td))
ktrcapfail(CAPFAIL_SIGNAL, &rk->rk_sig);
if (IN_CAPABILITY_MODE(td))
return (ECAPMODE);
if (rk->rk_sig <= 0 || rk->rk_sig > _SIG_MAXSIG ||
(rk->rk_flags & ~(REAPER_KILL_CHILDREN |
REAPER_KILL_SUBTREE)) != 0 || (rk->rk_flags &
(REAPER_KILL_CHILDREN | REAPER_KILL_SUBTREE)) ==
(REAPER_KILL_CHILDREN | REAPER_KILL_SUBTREE))
return (EINVAL);
PROC_UNLOCK(p);
reaper = (p->p_treeflag & P_TREE_REAPER) == 0 ? p->p_reaper : p;
ksiginfo_init(&ksi);
ksi.ksi_signo = rk->rk_sig;
ksi.ksi_code = SI_USER;
ksi.ksi_pid = td->td_proc->p_pid;
ksi.ksi_uid = td->td_ucred->cr_ruid;
error = ESRCH;
rk->rk_killed = 0;
rk->rk_fpid = -1;
if ((rk->rk_flags & REAPER_KILL_CHILDREN) != 0) {
reap_kill_children(td, reaper, rk, &ksi, &error);
} else {
w.cr = crhold(td->td_ucred);
w.ksi = &ksi;
w.rk = rk;
w.error = &error;
TASK_INIT(&w.t, 0, reap_kill_proc_work, &w);
/*
* Prevent swapout, since w, ksi, and possibly rk, are
* allocated on the stack. We sleep in
* reap_kill_subtree_once() waiting for task to
* complete single-threading.
*/
PHOLD(td->td_proc);
reap_kill_subtree(td, p, reaper, &w);
PRELE(td->td_proc);
crfree(w.cr);
}
PROC_LOCK(p);
return (error);
}
static int
trace_ctl(struct thread *td, struct proc *p, void *data)
{
int state;
PROC_LOCK_ASSERT(p, MA_OWNED);
state = *(int *)data;
/*
* Ktrace changes p_traceflag from or to zero under the
* process lock, so the test does not need to acquire ktrace
* mutex.
*/
if ((p->p_flag & P_TRACED) != 0 || p->p_traceflag != 0)
return (EBUSY);
switch (state) {
case PROC_TRACE_CTL_ENABLE:
if (td->td_proc != p)
return (EPERM);
p->p_flag2 &= ~(P2_NOTRACE | P2_NOTRACE_EXEC);
break;
case PROC_TRACE_CTL_DISABLE_EXEC:
p->p_flag2 |= P2_NOTRACE_EXEC | P2_NOTRACE;
break;
case PROC_TRACE_CTL_DISABLE:
if ((p->p_flag2 & P2_NOTRACE_EXEC) != 0) {
KASSERT((p->p_flag2 & P2_NOTRACE) != 0,
("dandling P2_NOTRACE_EXEC"));
if (td->td_proc != p)
return (EPERM);
p->p_flag2 &= ~P2_NOTRACE_EXEC;
} else {
p->p_flag2 |= P2_NOTRACE;
}
break;
default:
return (EINVAL);
}
return (0);
}
static int
trace_status(struct thread *td, struct proc *p, void *data)
{
int *status;
status = data;
if ((p->p_flag2 & P2_NOTRACE) != 0) {
KASSERT((p->p_flag & P_TRACED) == 0,
("%d traced but tracing disabled", p->p_pid));
*status = -1;
} else if ((p->p_flag & P_TRACED) != 0) {
*status = p->p_pptr->p_pid;
} else {
*status = 0;
}
return (0);
}
static int
trapcap_ctl(struct thread *td, struct proc *p, void *data)
{
int state;
PROC_LOCK_ASSERT(p, MA_OWNED);
state = *(int *)data;
switch (state) {
case PROC_TRAPCAP_CTL_ENABLE:
p->p_flag2 |= P2_TRAPCAP;
break;
case PROC_TRAPCAP_CTL_DISABLE:
p->p_flag2 &= ~P2_TRAPCAP;
break;
default:
return (EINVAL);
}
return (0);
}
static int
trapcap_status(struct thread *td, struct proc *p, void *data)
{
int *status;
status = data;
*status = (p->p_flag2 & P2_TRAPCAP) != 0 ? PROC_TRAPCAP_CTL_ENABLE :
PROC_TRAPCAP_CTL_DISABLE;
return (0);
}
static int
no_new_privs_ctl(struct thread *td, struct proc *p, void *data)
{
int state;
PROC_LOCK_ASSERT(p, MA_OWNED);
state = *(int *)data;
if (state != PROC_NO_NEW_PRIVS_ENABLE)
return (EINVAL);
p->p_flag2 |= P2_NO_NEW_PRIVS;
return (0);
}
static int
no_new_privs_status(struct thread *td, struct proc *p, void *data)
{
*(int *)data = (p->p_flag2 & P2_NO_NEW_PRIVS) != 0 ?
PROC_NO_NEW_PRIVS_ENABLE : PROC_NO_NEW_PRIVS_DISABLE;
return (0);
}
static int
protmax_ctl(struct thread *td, struct proc *p, void *data)
{
int state;
PROC_LOCK_ASSERT(p, MA_OWNED);
state = *(int *)data;
switch (state) {
case PROC_PROTMAX_FORCE_ENABLE:
p->p_flag2 &= ~P2_PROTMAX_DISABLE;
p->p_flag2 |= P2_PROTMAX_ENABLE;
break;
case PROC_PROTMAX_FORCE_DISABLE:
p->p_flag2 |= P2_PROTMAX_DISABLE;
p->p_flag2 &= ~P2_PROTMAX_ENABLE;
break;
case PROC_PROTMAX_NOFORCE:
p->p_flag2 &= ~(P2_PROTMAX_ENABLE | P2_PROTMAX_DISABLE);
break;
default:
return (EINVAL);
}
return (0);
}
static int
protmax_status(struct thread *td, struct proc *p, void *data)
{
int d;
switch (p->p_flag2 & (P2_PROTMAX_ENABLE | P2_PROTMAX_DISABLE)) {
case 0:
d = PROC_PROTMAX_NOFORCE;
break;
case P2_PROTMAX_ENABLE:
d = PROC_PROTMAX_FORCE_ENABLE;
break;
case P2_PROTMAX_DISABLE:
d = PROC_PROTMAX_FORCE_DISABLE;
break;
}
if (kern_mmap_maxprot(p, PROT_READ) == PROT_READ)
d |= PROC_PROTMAX_ACTIVE;
*(int *)data = d;
return (0);
}
static int
aslr_ctl(struct thread *td, struct proc *p, void *data)
{
int state;
PROC_LOCK_ASSERT(p, MA_OWNED);
state = *(int *)data;
switch (state) {
case PROC_ASLR_FORCE_ENABLE:
p->p_flag2 &= ~P2_ASLR_DISABLE;
p->p_flag2 |= P2_ASLR_ENABLE;
break;
case PROC_ASLR_FORCE_DISABLE:
p->p_flag2 |= P2_ASLR_DISABLE;
p->p_flag2 &= ~P2_ASLR_ENABLE;
break;
case PROC_ASLR_NOFORCE:
p->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE);
break;
default:
return (EINVAL);
}
return (0);
}
static int
aslr_status(struct thread *td, struct proc *p, void *data)
{
struct vmspace *vm;
int d;
switch (p->p_flag2 & (P2_ASLR_ENABLE | P2_ASLR_DISABLE)) {
case 0:
d = PROC_ASLR_NOFORCE;
break;
case P2_ASLR_ENABLE:
d = PROC_ASLR_FORCE_ENABLE;
break;
case P2_ASLR_DISABLE:
d = PROC_ASLR_FORCE_DISABLE;
break;
}
if ((p->p_flag & P_WEXIT) == 0) {
_PHOLD(p);
PROC_UNLOCK(p);
vm = vmspace_acquire_ref(p);
if (vm != NULL) {
if ((vm->vm_map.flags & MAP_ASLR) != 0)
d |= PROC_ASLR_ACTIVE;
vmspace_free(vm);
}
PROC_LOCK(p);
_PRELE(p);
}
*(int *)data = d;
return (0);
}
static int
stackgap_ctl(struct thread *td, struct proc *p, void *data)
{
int state;
PROC_LOCK_ASSERT(p, MA_OWNED);
state = *(int *)data;
if ((state & ~(PROC_STACKGAP_ENABLE | PROC_STACKGAP_DISABLE |
PROC_STACKGAP_ENABLE_EXEC | PROC_STACKGAP_DISABLE_EXEC)) != 0)
return (EINVAL);
switch (state & (PROC_STACKGAP_ENABLE | PROC_STACKGAP_DISABLE)) {
case PROC_STACKGAP_ENABLE:
if ((p->p_flag2 & P2_STKGAP_DISABLE) != 0)
return (EINVAL);
break;
case PROC_STACKGAP_DISABLE:
p->p_flag2 |= P2_STKGAP_DISABLE;
break;
case 0:
break;
default:
return (EINVAL);
}
switch (state & (PROC_STACKGAP_ENABLE_EXEC |
PROC_STACKGAP_DISABLE_EXEC)) {
case PROC_STACKGAP_ENABLE_EXEC:
p->p_flag2 &= ~P2_STKGAP_DISABLE_EXEC;
break;
case PROC_STACKGAP_DISABLE_EXEC:
p->p_flag2 |= P2_STKGAP_DISABLE_EXEC;
break;
case 0:
break;
default:
return (EINVAL);
}
return (0);
}
static int
stackgap_status(struct thread *td, struct proc *p, void *data)
{
int d;
PROC_LOCK_ASSERT(p, MA_OWNED);
d = (p->p_flag2 & P2_STKGAP_DISABLE) != 0 ? PROC_STACKGAP_DISABLE :
PROC_STACKGAP_ENABLE;
d |= (p->p_flag2 & P2_STKGAP_DISABLE_EXEC) != 0 ?
PROC_STACKGAP_DISABLE_EXEC : PROC_STACKGAP_ENABLE_EXEC;
*(int *)data = d;
return (0);
}
static int
wxmap_ctl(struct thread *td, struct proc *p, void *data)
{
struct vmspace *vm;
vm_map_t map;
int state;
PROC_LOCK_ASSERT(p, MA_OWNED);
if ((p->p_flag & P_WEXIT) != 0)
return (ESRCH);
state = *(int *)data;
switch (state) {
case PROC_WX_MAPPINGS_PERMIT:
p->p_flag2 |= P2_WXORX_DISABLE;
_PHOLD(p);
PROC_UNLOCK(p);
vm = vmspace_acquire_ref(p);
if (vm != NULL) {
map = &vm->vm_map;
vm_map_lock(map);
map->flags &= ~MAP_WXORX;
vm_map_unlock(map);
vmspace_free(vm);
}
PROC_LOCK(p);
_PRELE(p);
break;
case PROC_WX_MAPPINGS_DISALLOW_EXEC:
p->p_flag2 |= P2_WXORX_ENABLE_EXEC;
break;
default:
return (EINVAL);
}
return (0);
}
static int
wxmap_status(struct thread *td, struct proc *p, void *data)
{
struct vmspace *vm;
int d;
PROC_LOCK_ASSERT(p, MA_OWNED);
if ((p->p_flag & P_WEXIT) != 0)
return (ESRCH);
d = 0;
if ((p->p_flag2 & P2_WXORX_DISABLE) != 0)
d |= PROC_WX_MAPPINGS_PERMIT;
if ((p->p_flag2 & P2_WXORX_ENABLE_EXEC) != 0)
d |= PROC_WX_MAPPINGS_DISALLOW_EXEC;
_PHOLD(p);
PROC_UNLOCK(p);
vm = vmspace_acquire_ref(p);
if (vm != NULL) {
if ((vm->vm_map.flags & MAP_WXORX) != 0)
d |= PROC_WXORX_ENFORCE;
vmspace_free(vm);
}
PROC_LOCK(p);
_PRELE(p);
*(int *)data = d;
return (0);
}
static int
pdeathsig_ctl(struct thread *td, struct proc *p, void *data)
{
int signum;
signum = *(int *)data;
if (p != td->td_proc || (signum != 0 && !_SIG_VALID(signum)))
return (EINVAL);
p->p_pdeathsig = signum;
return (0);
}
static int
pdeathsig_status(struct thread *td, struct proc *p, void *data)
{
if (p != td->td_proc)
return (EINVAL);
*(int *)data = p->p_pdeathsig;
return (0);
}
enum {
PCTL_SLOCKED,
PCTL_XLOCKED,
PCTL_UNLOCKED,
};
struct procctl_cmd_info {
int lock_tree;
bool one_proc : 1;
bool esrch_is_einval : 1;
bool copyout_on_error : 1;
bool no_nonnull_data : 1;
bool need_candebug : 1;
int copyin_sz;
int copyout_sz;
int (*exec)(struct thread *, struct proc *, void *);
bool (*sapblk)(struct thread *, void *);
};
static const struct procctl_cmd_info procctl_cmds_info[] = {
[PROC_SPROTECT] =
{ .lock_tree = PCTL_SLOCKED, .one_proc = false,
.esrch_is_einval = false, .no_nonnull_data = false,
.need_candebug = false,
.copyin_sz = sizeof(int), .copyout_sz = 0,
.exec = protect_set, .copyout_on_error = false, },
[PROC_REAP_ACQUIRE] =
{ .lock_tree = PCTL_XLOCKED, .one_proc = true,
.esrch_is_einval = false, .no_nonnull_data = true,
.need_candebug = false,
.copyin_sz = 0, .copyout_sz = 0,
.exec = reap_acquire, .copyout_on_error = false, },
[PROC_REAP_RELEASE] =
{ .lock_tree = PCTL_XLOCKED, .one_proc = true,
.esrch_is_einval = false, .no_nonnull_data = true,
.need_candebug = false,
.copyin_sz = 0, .copyout_sz = 0,
.exec = reap_release, .copyout_on_error = false, },
[PROC_REAP_STATUS] =
{ .lock_tree = PCTL_SLOCKED, .one_proc = true,
.esrch_is_einval = false, .no_nonnull_data = false,
.need_candebug = false,
.copyin_sz = 0,
.copyout_sz = sizeof(struct procctl_reaper_status),
.exec = reap_status, .copyout_on_error = false, },
[PROC_REAP_GETPIDS] =
{ .lock_tree = PCTL_SLOCKED, .one_proc = true,
.esrch_is_einval = false, .no_nonnull_data = false,
.need_candebug = false,
.copyin_sz = sizeof(struct procctl_reaper_pids),
.copyout_sz = 0,
.exec = reap_getpids, .copyout_on_error = false, },
[PROC_REAP_KILL] =
{ .lock_tree = PCTL_SLOCKED, .one_proc = true,
.esrch_is_einval = false, .no_nonnull_data = false,
.need_candebug = false,
.copyin_sz = sizeof(struct procctl_reaper_kill),
.copyout_sz = sizeof(struct procctl_reaper_kill),
.exec = reap_kill, .copyout_on_error = true,
.sapblk = reap_kill_sapblk, },
[PROC_TRACE_CTL] =
{ .lock_tree = PCTL_SLOCKED, .one_proc = false,
.esrch_is_einval = false, .no_nonnull_data = false,
.need_candebug = true,
.copyin_sz = sizeof(int), .copyout_sz = 0,
.exec = trace_ctl, .copyout_on_error = false, },
[PROC_TRACE_STATUS] =
{ .lock_tree = PCTL_UNLOCKED, .one_proc = true,
.esrch_is_einval = false, .no_nonnull_data = false,
.need_candebug = false,
.copyin_sz = 0, .copyout_sz = sizeof(int),
.exec = trace_status, .copyout_on_error = false, },
[PROC_TRAPCAP_CTL] =
{ .lock_tree = PCTL_SLOCKED, .one_proc = false,
.esrch_is_einval = false, .no_nonnull_data = false,
.need_candebug = true,
.copyin_sz = sizeof(int), .copyout_sz = 0,
.exec = trapcap_ctl, .copyout_on_error = false, },
[PROC_TRAPCAP_STATUS] =
{ .lock_tree = PCTL_UNLOCKED, .one_proc = true,
.esrch_is_einval = false, .no_nonnull_data = false,
.need_candebug = false,
.copyin_sz = 0, .copyout_sz = sizeof(int),
.exec = trapcap_status, .copyout_on_error = false, },
[PROC_PDEATHSIG_CTL] =
{ .lock_tree = PCTL_UNLOCKED, .one_proc = true,
.esrch_is_einval = true, .no_nonnull_data = false,
.need_candebug = false,
.copyin_sz = sizeof(int), .copyout_sz = 0,
.exec = pdeathsig_ctl, .copyout_on_error = false, },
[PROC_PDEATHSIG_STATUS] =
{ .lock_tree = PCTL_UNLOCKED, .one_proc = true,
.esrch_is_einval = true, .no_nonnull_data = false,
.need_candebug = false,
.copyin_sz = 0, .copyout_sz = sizeof(int),
.exec = pdeathsig_status, .copyout_on_error = false, },
[PROC_ASLR_CTL] =
{ .lock_tree = PCTL_UNLOCKED, .one_proc = true,
.esrch_is_einval = false, .no_nonnull_data = false,
.need_candebug = true,
.copyin_sz = sizeof(int), .copyout_sz = 0,
.exec = aslr_ctl, .copyout_on_error = false, },
[PROC_ASLR_STATUS] =
{ .lock_tree = PCTL_UNLOCKED, .one_proc = true,
.esrch_is_einval = false, .no_nonnull_data = false,
.need_candebug = false,
.copyin_sz = 0, .copyout_sz = sizeof(int),
.exec = aslr_status, .copyout_on_error = false, },
[PROC_PROTMAX_CTL] =
{ .lock_tree = PCTL_UNLOCKED, .one_proc = true,
.esrch_is_einval = false, .no_nonnull_data = false,
.need_candebug = true,
.copyin_sz = sizeof(int), .copyout_sz = 0,
.exec = protmax_ctl, .copyout_on_error = false, },
[PROC_PROTMAX_STATUS] =
{ .lock_tree = PCTL_UNLOCKED, .one_proc = true,
.esrch_is_einval = false, .no_nonnull_data = false,
.need_candebug = false,
.copyin_sz = 0, .copyout_sz = sizeof(int),
.exec = protmax_status, .copyout_on_error = false, },
[PROC_STACKGAP_CTL] =
{ .lock_tree = PCTL_UNLOCKED, .one_proc = true,
.esrch_is_einval = false, .no_nonnull_data = false,
.need_candebug = true,
.copyin_sz = sizeof(int), .copyout_sz = 0,
.exec = stackgap_ctl, .copyout_on_error = false, },
[PROC_STACKGAP_STATUS] =
{ .lock_tree = PCTL_UNLOCKED, .one_proc = true,
.esrch_is_einval = false, .no_nonnull_data = false,
.need_candebug = false,
.copyin_sz = 0, .copyout_sz = sizeof(int),
.exec = stackgap_status, .copyout_on_error = false, },
[PROC_NO_NEW_PRIVS_CTL] =
{ .lock_tree = PCTL_SLOCKED, .one_proc = true,
.esrch_is_einval = false, .no_nonnull_data = false,
.need_candebug = true,
.copyin_sz = sizeof(int), .copyout_sz = 0,
.exec = no_new_privs_ctl, .copyout_on_error = false, },
[PROC_NO_NEW_PRIVS_STATUS] =
{ .lock_tree = PCTL_UNLOCKED, .one_proc = true,
.esrch_is_einval = false, .no_nonnull_data = false,
.need_candebug = false,
.copyin_sz = 0, .copyout_sz = sizeof(int),
.exec = no_new_privs_status, .copyout_on_error = false, },
[PROC_WXMAP_CTL] =
{ .lock_tree = PCTL_UNLOCKED, .one_proc = true,
.esrch_is_einval = false, .no_nonnull_data = false,
.need_candebug = true,
.copyin_sz = sizeof(int), .copyout_sz = 0,
.exec = wxmap_ctl, .copyout_on_error = false, },
[PROC_WXMAP_STATUS] =
{ .lock_tree = PCTL_UNLOCKED, .one_proc = true,
.esrch_is_einval = false, .no_nonnull_data = false,
.need_candebug = false,
.copyin_sz = 0, .copyout_sz = sizeof(int),
.exec = wxmap_status, .copyout_on_error = false, },
};
int
sys_procctl(struct thread *td, struct procctl_args *uap)
{
union {
struct procctl_reaper_status rs;
struct procctl_reaper_pids rp;
struct procctl_reaper_kill rk;
int flags;
} x;
const struct procctl_cmd_info *cmd_info;
int error, error1;
if (uap->com >= PROC_PROCCTL_MD_MIN)
return (cpu_procctl(td, uap->idtype, uap->id,
uap->com, uap->data));
if (uap->com <= 0 || uap->com >= nitems(procctl_cmds_info))
return (EINVAL);
cmd_info = &procctl_cmds_info[uap->com];
bzero(&x, sizeof(x));
if (cmd_info->copyin_sz > 0) {
error = copyin(uap->data, &x, cmd_info->copyin_sz);
if (error != 0)
return (error);
} else if (cmd_info->no_nonnull_data && uap->data != NULL) {
return (EINVAL);
}
error = kern_procctl(td, uap->idtype, uap->id, uap->com, &x);
if (cmd_info->copyout_sz > 0 && (error == 0 ||
cmd_info->copyout_on_error)) {
error1 = copyout(&x, uap->data, cmd_info->copyout_sz);
if (error == 0)
error = error1;
}
return (error);
}
static int
kern_procctl_single(struct thread *td, struct proc *p, int com, void *data)
{
PROC_LOCK_ASSERT(p, MA_OWNED);
return (procctl_cmds_info[com].exec(td, p, data));
}
int
kern_procctl(struct thread *td, idtype_t idtype, id_t id, int com, void *data)
{
struct pgrp *pg;
struct proc *p;
const struct procctl_cmd_info *cmd_info;
int error, first_error, ok;
bool sapblk;
MPASS(com > 0 && com < nitems(procctl_cmds_info));
cmd_info = &procctl_cmds_info[com];
if (idtype != P_PID && cmd_info->one_proc)
return (EINVAL);
sapblk = false;
if (cmd_info->sapblk != NULL) {
sapblk = cmd_info->sapblk(td, data);
if (sapblk && !stop_all_proc_block())
return (ERESTART);
}
switch (cmd_info->lock_tree) {
case PCTL_XLOCKED:
sx_xlock(&proctree_lock);
break;
case PCTL_SLOCKED:
sx_slock(&proctree_lock);
break;
default:
break;
}
switch (idtype) {
case P_PID:
if (id == 0) {
p = td->td_proc;
error = 0;
PROC_LOCK(p);
} else {
p = pfind(id);
if (p == NULL) {
error = cmd_info->esrch_is_einval ?
EINVAL : ESRCH;
break;
}
error = cmd_info->need_candebug ? p_candebug(td, p) :
p_cansee(td, p);
}
if (error == 0)
error = kern_procctl_single(td, p, com, data);
PROC_UNLOCK(p);
break;
case P_PGID:
/*
* Attempt to apply the operation to all members of the
* group. Ignore processes in the group that can't be
* seen. Ignore errors so long as at least one process is
* able to complete the request successfully.
*/
pg = pgfind(id);
if (pg == NULL) {
error = ESRCH;
break;
}
PGRP_UNLOCK(pg);
ok = 0;
first_error = 0;
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
PROC_LOCK(p);
if (p->p_state == PRS_NEW ||
p->p_state == PRS_ZOMBIE ||
(cmd_info->need_candebug ? p_candebug(td, p) :
p_cansee(td, p)) != 0) {
PROC_UNLOCK(p);
continue;
}
error = kern_procctl_single(td, p, com, data);
PROC_UNLOCK(p);
if (error == 0)
ok = 1;
else if (first_error == 0)
first_error = error;
}
if (ok)
error = 0;
else if (first_error != 0)
error = first_error;
else
/*
* Was not able to see any processes in the
* process group.
*/
error = ESRCH;
break;
default:
error = EINVAL;
break;
}
switch (cmd_info->lock_tree) {
case PCTL_XLOCKED:
sx_xunlock(&proctree_lock);
break;
case PCTL_SLOCKED:
sx_sunlock(&proctree_lock);
break;
default:
break;
}
if (sapblk)
stop_all_proc_unblock();
return (error);
}