HardenedBSD/sys/vm/vm_map.h
David Greenman 0d94caffca These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.

The majority of the merged VM/cache work is by John Dyson.

The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.

vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme.  The scheme is almost fully compatible with the old filesystem
interface.  Significant improvement in the number of opportunities for write
clustering.

vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache.  Fixup of vfs_cluster to eliminate the bogus pagemove stuff.

vm_object.c:
Yet more improvements in the collapse code.  Elimination of some windows that
can cause list corruption.

vm_pageout.c:
Fixed it, it really works better now.  Somehow in 2.0, some "enhancements"
broke the code.  This code has been reworked from the ground-up.

vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.

pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.

vm_glue.c
Much simpler and more effective swapping code.  No more gratuitous swapping.

proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.

swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency.  Now the
code doesn't need it anymore.

machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.

machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.

ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache.  Add "bypass" support for sneaking in on
busy buffers.

Submitted by:	John Dyson and David Greenman
1995-01-09 16:06:02 +00:00

217 lines
8.6 KiB
C

/*
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)vm_map.h 8.3 (Berkeley) 3/15/94
*
*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*
* $Id: vm_map.h,v 1.3 1994/08/02 07:55:26 davidg Exp $
*/
/*
* Virtual memory map module definitions.
*/
#ifndef _VM_MAP_
#define _VM_MAP_
/*
* Types defined:
*
* vm_map_t the high-level address map data structure.
* vm_map_entry_t an entry in an address map.
* vm_map_version_t a timestamp of a map, for use with vm_map_lookup
*/
/*
* Objects which live in maps may be either VM objects, or
* another map (called a "sharing map") which denotes read-write
* sharing with other maps.
*/
union vm_map_object {
struct vm_object *vm_object; /* object object */
struct vm_map *share_map; /* share map */
struct vm_map *sub_map; /* belongs to another map */
};
/*
* Address map entries consist of start and end addresses,
* a VM object (or sharing map) and offset into that object,
* and user-exported inheritance and protection information.
* Also included is control information for virtual copy operations.
*/
struct vm_map_entry {
struct vm_map_entry *prev; /* previous entry */
struct vm_map_entry *next; /* next entry */
vm_offset_t start; /* start address */
vm_offset_t end; /* end address */
union vm_map_object object; /* object I point to */
vm_offset_t offset; /* offset into object */
boolean_t is_a_map:1, /* Is "object" a map? */
is_sub_map:1, /* Is "object" a submap? */
/* Only in sharing maps: */
copy_on_write:1, /* is data copy-on-write */
needs_copy:1; /* does object need to be copied */
/* Only in task maps: */
vm_prot_t protection; /* protection code */
vm_prot_t max_protection; /* maximum protection */
vm_inherit_t inheritance; /* inheritance */
int wired_count; /* can be paged if = 0 */
};
/*
* Maps are doubly-linked lists of map entries, kept sorted
* by address. A single hint is provided to start
* searches again from the last successful search,
* insertion, or removal.
*/
struct vm_map {
struct pmap *pmap; /* Physical map */
lock_data_t lock; /* Lock for map data */
struct vm_map_entry header; /* List of entries */
int nentries; /* Number of entries */
vm_size_t size; /* virtual size */
boolean_t is_main_map; /* Am I a main map? */
int ref_count; /* Reference count */
simple_lock_data_t ref_lock; /* Lock for ref_count field */
vm_map_entry_t hint; /* hint for quick lookups */
simple_lock_data_t hint_lock; /* lock for hint storage */
vm_map_entry_t first_free; /* First free space hint */
boolean_t entries_pageable; /* map entries pageable?? */
unsigned int timestamp; /* Version number */
#define min_offset header.start
#define max_offset header.end
};
/*
* Map versions are used to validate a previous lookup attempt.
*
* Since lookup operations may involve both a main map and
* a sharing map, it is necessary to have a timestamp from each.
* [If the main map timestamp has changed, the share_map and
* associated timestamp are no longer valid; the map version
* does not include a reference for the imbedded share_map.]
*/
typedef struct {
int main_timestamp;
vm_map_t share_map;
int share_timestamp;
} vm_map_version_t;
/*
* Macros: vm_map_lock, etc.
* Function:
* Perform locking on the data portion of a map.
*/
#define vm_map_lock(map) { \
lock_write(&(map)->lock); \
(map)->timestamp++; \
}
#define vm_map_unlock(map) lock_write_done(&(map)->lock)
#define vm_map_lock_read(map) lock_read(&(map)->lock)
#define vm_map_unlock_read(map) lock_read_done(&(map)->lock)
/*
* Functions implemented as macros
*/
#define vm_map_min(map) ((map)->min_offset)
#define vm_map_max(map) ((map)->max_offset)
#define vm_map_pmap(map) ((map)->pmap)
/* XXX: number of kernel maps and entries to statically allocate */
#define MAX_KMAP 10
#define MAX_KMAPENT 128
#ifdef KERNEL
boolean_t vm_map_check_protection __P((vm_map_t, vm_offset_t, vm_offset_t, vm_prot_t));
int vm_map_copy __P((vm_map_t, vm_map_t, vm_offset_t, vm_size_t, vm_offset_t, boolean_t, boolean_t));
void vm_map_copy_entry __P((vm_map_t, vm_map_t, vm_map_entry_t, vm_map_entry_t));
struct pmap;
vm_map_t vm_map_create __P((struct pmap *, vm_offset_t, vm_offset_t, boolean_t));
void vm_map_deallocate __P((vm_map_t));
int vm_map_delete __P((vm_map_t, vm_offset_t, vm_offset_t));
vm_map_entry_t vm_map_entry_create __P((vm_map_t));
void vm_map_entry_delete __P((vm_map_t, vm_map_entry_t));
void vm_map_entry_dispose __P((vm_map_t, vm_map_entry_t));
void vm_map_entry_unwire __P((vm_map_t, vm_map_entry_t));
int vm_map_find __P((vm_map_t, vm_object_t, vm_offset_t, vm_offset_t *, vm_size_t, boolean_t));
int vm_map_findspace __P((vm_map_t, vm_offset_t, vm_size_t, vm_offset_t *));
int vm_map_inherit __P((vm_map_t, vm_offset_t, vm_offset_t, vm_inherit_t));
void vm_map_init __P((struct vm_map *, vm_offset_t, vm_offset_t, boolean_t));
int vm_map_insert __P((vm_map_t, vm_object_t, vm_offset_t, vm_offset_t, vm_offset_t));
int vm_map_lookup __P((vm_map_t *, vm_offset_t, vm_prot_t, vm_map_entry_t *, vm_object_t *,
vm_offset_t *, vm_prot_t *, boolean_t *, boolean_t *));
void vm_map_lookup_done __P((vm_map_t, vm_map_entry_t));
boolean_t vm_map_lookup_entry __P((vm_map_t, vm_offset_t, vm_map_entry_t *));
int vm_map_pageable __P((vm_map_t, vm_offset_t, vm_offset_t, boolean_t));
int vm_map_clean __P((vm_map_t, vm_offset_t, vm_offset_t, boolean_t, boolean_t));
void vm_map_print __P((vm_map_t, boolean_t));
int vm_map_protect __P((vm_map_t, vm_offset_t, vm_offset_t, vm_prot_t, boolean_t));
void vm_map_reference __P((vm_map_t));
int vm_map_remove __P((vm_map_t, vm_offset_t, vm_offset_t));
void vm_map_simplify __P((vm_map_t, vm_offset_t));
void vm_map_simplify_entry __P((vm_map_t, vm_map_entry_t));
void vm_map_startup __P((void));
int vm_map_submap __P((vm_map_t, vm_offset_t, vm_offset_t, vm_map_t));
#endif
#endif /* _VM_MAP_ */