mirror of
https://git.hardenedbsd.org/hardenedbsd/HardenedBSD.git
synced 2024-11-19 09:44:30 +01:00
764 lines
28 KiB
C
764 lines
28 KiB
C
#ifndef _SOUNDCARD_H_
|
|
#define _SOUNDCARD_H_
|
|
/*
|
|
* Copyright by Hannu Savolainen 1993
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* If you make modifications to this file, please contact me before
|
|
* distributing the modified version. There is already enough
|
|
* divercity in the world.
|
|
*
|
|
* Regards,
|
|
* Hannu Savolainen
|
|
* hannu@voxware.pp.fi, Hannu.Savolainen@helsinki.fi
|
|
*/
|
|
|
|
#define SOUND_VERSION 205
|
|
#define VOXWARE
|
|
|
|
#include <sys/ioctl.h>
|
|
|
|
/*
|
|
* Supported card ID numbers (Should be somewhere else?)
|
|
*/
|
|
|
|
#define SNDCARD_ADLIB 1
|
|
#define SNDCARD_SB 2
|
|
#define SNDCARD_PAS 3
|
|
#define SNDCARD_GUS 4
|
|
#define SNDCARD_MPU401 5
|
|
#define SNDCARD_SB16 6
|
|
#define SNDCARD_SB16MIDI 7
|
|
|
|
/***********************************
|
|
* IOCTL Commands for /dev/sequencer
|
|
*/
|
|
|
|
#ifndef _IOWR
|
|
/* @(#)ioctlp.h */
|
|
|
|
/* Ioctl's have the command encoded in the lower word,
|
|
* and the size of any in or out parameters in the upper
|
|
* word. The high 2 bits of the upper word are used
|
|
* to encode the in/out status of the parameter; for now
|
|
* we restrict parameters to at most 128 bytes.
|
|
*/
|
|
/* #define IOCTYPE (0xff<<8) */
|
|
#define IOCPARM_MASK 0x7f /* parameters must be < 128 bytes */
|
|
#define IOC_VOID 0x00000000 /* no parameters */
|
|
#define IOC_OUT 0x20000000 /* copy out parameters */
|
|
#define IOC_IN 0x40000000 /* copy in parameters */
|
|
#define IOC_INOUT (IOC_IN|IOC_OUT)
|
|
/* the 0x20000000 is so we can distinguish new ioctl's from old */
|
|
#define _IO(x,y) ((int)(IOC_VOID|(x<<8)|y))
|
|
#define _IOR(x,y,t) ((int)(IOC_OUT|((sizeof(t)&IOCPARM_MASK)<<16)|(x<<8)|y))
|
|
#define _IOW(x,y,t) ((int)(IOC_IN|((sizeof(t)&IOCPARM_MASK)<<16)|(x<<8)|y))
|
|
/* this should be _IORW, but stdio got there first */
|
|
#define _IOWR(x,y,t) ((int)(IOC_INOUT|((sizeof(t)&IOCPARM_MASK)<<16)|(x<<8)|y))
|
|
#endif /* !_IOWR */
|
|
|
|
#define SNDCTL_SEQ_RESET _IO ('Q', 0)
|
|
#define SNDCTL_SEQ_SYNC _IO ('Q', 1)
|
|
#define SNDCTL_SYNTH_INFO _IOWR('Q', 2, struct synth_info)
|
|
#define SNDCTL_SEQ_CTRLRATE _IOWR('Q', 3, int) /* Set/get timer resolution (HZ) */
|
|
#define SNDCTL_SEQ_GETOUTCOUNT _IOR ('Q', 4, int)
|
|
#define SNDCTL_SEQ_GETINCOUNT _IOR ('Q', 5, int)
|
|
#define SNDCTL_SEQ_PERCMODE _IOW ('Q', 6, int)
|
|
#define SNDCTL_FM_LOAD_INSTR _IOW ('Q', 7, struct sbi_instrument) /* Valid for FM only */
|
|
#define SNDCTL_SEQ_TESTMIDI _IOW ('Q', 8, int)
|
|
#define SNDCTL_SEQ_RESETSAMPLES _IOW ('Q', 9, int)
|
|
#define SNDCTL_SEQ_NRSYNTHS _IOR ('Q',10, int)
|
|
#define SNDCTL_SEQ_NRMIDIS _IOR ('Q',11, int)
|
|
#define SNDCTL_MIDI_INFO _IOWR('Q',12, struct midi_info)
|
|
#define SNDCTL_SEQ_TRESHOLD _IOW ('Q',13, int)
|
|
#define SNDCTL_SYNTH_MEMAVL _IOWR('Q',14, int) /* in=dev#, out=memsize */
|
|
#define SNDCTL_FM_4OP_ENABLE _IOW ('Q',15, int) /* in=dev# */
|
|
#define SNDCTL_PMGR_ACCESS _IOWR('Q',16, struct patmgr_info)
|
|
|
|
/*
|
|
* Sample loading mechanism for internal synthesizers (/dev/sequencer)
|
|
* The following patch_info structure has been designed to support
|
|
* Gravis UltraSound. It tries to be universal format for uploading
|
|
* sample based patches but is propably too limited.
|
|
*/
|
|
|
|
struct patch_info {
|
|
short key; /* Use GUS_PATCH here */
|
|
#define GUS_PATCH 0x04fd
|
|
#define OBSOLETE_GUS_PATCH 0x02fd
|
|
short device_no; /* Synthesizer number */
|
|
short instr_no; /* Midi pgm# */
|
|
|
|
unsigned long mode;
|
|
/*
|
|
* The least significant byte has the same format than the GUS .PAT
|
|
* files
|
|
*/
|
|
#define WAVE_16_BITS 0x01 /* bit 0 = 8 or 16 bit wave data. */
|
|
#define WAVE_UNSIGNED 0x02 /* bit 1 = Signed - Unsigned data. */
|
|
#define WAVE_LOOPING 0x04 /* bit 2 = looping enabled-1. */
|
|
#define WAVE_BIDIR_LOOP 0x08 /* bit 3 = Set is bidirectional looping. */
|
|
#define WAVE_LOOP_BACK 0x10 /* bit 4 = Set is looping backward. */
|
|
#define WAVE_SUSTAIN_ON 0x20 /* bit 5 = Turn sustaining on. (Env. pts. 3)*/
|
|
#define WAVE_ENVELOPES 0x40 /* bit 6 = Enable envelopes - 1 */
|
|
/* (use the env_rate/env_offs fields). */
|
|
/* Linux specific bits */
|
|
#define WAVE_VIBRATO 0x00010000 /* The vibrato info is valid */
|
|
#define WAVE_TREMOLO 0x00020000 /* The tremolo info is valid */
|
|
#define WAVE_SCALE 0x00040000 /* The scaling info is valid */
|
|
/* Other bits must be zeroed */
|
|
|
|
long len; /* Size of the wave data in bytes */
|
|
long loop_start, loop_end; /* Byte offsets from the beginning */
|
|
|
|
/*
|
|
* The base_freq and base_note fields are used when computing the
|
|
* playback speed for a note. The base_note defines the tone frequency
|
|
* which is heard if the sample is played using the base_freq as the
|
|
* playback speed.
|
|
*
|
|
* The low_note and high_note fields define the minimum and maximum note
|
|
* frequencies for which this sample is valid. It is possible to define
|
|
* more than one samples for a instrument number at the same time. The
|
|
* low_note and high_note fields are used to select the most suitable one.
|
|
*
|
|
* The fields base_note, high_note and low_note should contain
|
|
* the note frequency multiplied by 1000. For example value for the
|
|
* middle A is 440*1000.
|
|
*/
|
|
|
|
unsigned int base_freq;
|
|
unsigned long base_note;
|
|
unsigned long high_note;
|
|
unsigned long low_note;
|
|
int panning; /* -128=left, 127=right */
|
|
int detuning;
|
|
|
|
/* New fields introduced in version 1.99.5 */
|
|
|
|
/* Envelope. Enabled by mode bit WAVE_ENVELOPES */
|
|
unsigned char env_rate[ 6 ]; /* GUS HW ramping rate */
|
|
unsigned char env_offset[ 6 ]; /* 255 == 100% */
|
|
|
|
/*
|
|
* The tremolo, vibrato and scale info are not supported yet.
|
|
* Enable by setting the mode bits WAVE_TREMOLO, WAVE_VIBRATO or
|
|
* WAVE_SCALE
|
|
*/
|
|
|
|
unsigned char tremolo_sweep;
|
|
unsigned char tremolo_rate;
|
|
unsigned char tremolo_depth;
|
|
|
|
unsigned char vibrato_sweep;
|
|
unsigned char vibrato_rate;
|
|
unsigned char vibrato_depth;
|
|
|
|
int scale_frequency;
|
|
unsigned int scale_factor; /* from 0 to 2048 or 0 to 2 */
|
|
|
|
int volume;
|
|
int spare[4];
|
|
char data[1]; /* The waveform data starts here */
|
|
};
|
|
|
|
|
|
/*
|
|
* Patch management interface (/dev/sequencer, /dev/patmgr#)
|
|
* Don't use these calls if you want to maintain compatibility with
|
|
* the future versions of the driver.
|
|
*/
|
|
|
|
#define PS_NO_PATCHES 0 /* No patch support on device */
|
|
#define PS_MGR_NOT_OK 1 /* Plain patch support (no mgr) */
|
|
#define PS_MGR_OK 2 /* Patch manager supported */
|
|
#define PS_MANAGED 3 /* Patch manager running */
|
|
|
|
#define SNDCTL_PMGR_IFACE _IOWR('P', 1, struct patmgr_info)
|
|
|
|
/*
|
|
* The patmgr_info is a fixed size structure which is used for two
|
|
* different purposes. The intended use is for communication between
|
|
* the application using /dev/sequencer and the patch manager daemon
|
|
* associated with a synthesizer device (ioctl(SNDCTL_PMGR_ACCESS)).
|
|
*
|
|
* This structure is also used with ioctl(SNDCTL_PGMR_IFACE) which allows
|
|
* a patch manager daemon to read and write device parameters. This
|
|
* ioctl available through /dev/sequencer also. Avoid using it since it's
|
|
* extremely hardware dependent. In addition access trough /dev/sequencer
|
|
* may confuse the patch manager daemon.
|
|
*/
|
|
|
|
struct patmgr_info { /* Note! size must be < 4k since kmalloc() is used */
|
|
unsigned long key; /* Don't worry. Reserved for communication
|
|
between the patch manager and the driver. */
|
|
#define PM_K_EVENT 1 /* Event from the /dev/sequencer driver */
|
|
#define PM_K_COMMAND 2 /* Request from a application */
|
|
#define PM_K_RESPONSE 3 /* From patmgr to application */
|
|
#define PM_ERROR 4 /* Error returned by the patmgr */
|
|
int device;
|
|
int command;
|
|
|
|
/*
|
|
* Commands 0x000 to 0xfff reserved for patch manager programs
|
|
*/
|
|
#define PM_GET_DEVTYPE 1 /* Returns type of the patch mgr interface of dev */
|
|
#define PMTYPE_FM2 1 /* 2 OP fm */
|
|
#define PMTYPE_FM4 2 /* Mixed 4 or 2 op FM (OPL-3) */
|
|
#define PMTYPE_WAVE 3 /* Wave table synthesizer (GUS) */
|
|
#define PM_GET_NRPGM 2 /* Returns max # of midi programs in parm1 */
|
|
#define PM_GET_PGMMAP 3 /* Returns map of loaded midi programs in data8 */
|
|
#define PM_GET_PGM_PATCHES 4 /* Return list of patches of a program (parm1) */
|
|
#define PM_GET_PATCH 5 /* Return patch header of patch parm1 */
|
|
#define PM_SET_PATCH 6 /* Set patch header of patch parm1 */
|
|
#define PM_READ_PATCH 7 /* Read patch (wave) data */
|
|
#define PM_WRITE_PATCH 8 /* Write patch (wave) data */
|
|
|
|
/*
|
|
* Commands 0x1000 to 0xffff are for communication between the patch manager
|
|
* and the client
|
|
*/
|
|
#define _PM_LOAD_PATCH 0x100
|
|
|
|
/*
|
|
* Commands above 0xffff reserved for device specific use
|
|
*/
|
|
|
|
long parm1;
|
|
long parm2;
|
|
long parm3;
|
|
|
|
union {
|
|
unsigned char data8[4000];
|
|
unsigned short data16[2000];
|
|
unsigned long data32[1000];
|
|
struct patch_info patch;
|
|
} data;
|
|
};
|
|
|
|
/*
|
|
* When a patch manager daemon is present, it will be informed by the
|
|
* driver when something important happens. For example when the
|
|
* /dev/sequencer is opened or closed. A record with key == PM_K_EVENT is
|
|
* returned. The command field contains the event type:
|
|
*/
|
|
#define PM_E_OPENED 1 /* /dev/sequencer opened */
|
|
#define PM_E_CLOSED 2 /* /dev/sequencer closed */
|
|
#define PM_E_PATCH_RESET 3 /* SNDCTL_RESETSAMPLES called */
|
|
#define PM_E_PATCH_LOADED 4 /* A patch has been loaded by appl */
|
|
|
|
/*
|
|
* /dev/sequencer input events.
|
|
*
|
|
* The data written to the /dev/sequencer is a stream of events. Events
|
|
* are records of 4 or 8 bytes. The first byte defines the size.
|
|
* Any number of events can be written with a write call. There
|
|
* is a set of macros for sending these events. Use these macros if you
|
|
* want to maximize portability of your program.
|
|
*
|
|
* Events SEQ_WAIT, SEQ_MIDIPUTC and SEQ_ECHO. Are also input events.
|
|
* (All input events are currently 4 bytes long. Be prepared to support
|
|
* 8 byte events also. If you receive any event having first byte >= 0xf0,
|
|
* it's a 8 byte event.
|
|
*
|
|
* The events are documented at the end of this file.
|
|
*
|
|
* Normal events (4 bytes)
|
|
* There is also a 8 byte version of most of the 4 byte events. The
|
|
* 8 byte one is recommended.
|
|
*/
|
|
#define SEQ_NOTEOFF 0
|
|
#define SEQ_FMNOTEOFF SEQ_NOTEOFF /* Just old name */
|
|
#define SEQ_NOTEON 1
|
|
#define SEQ_FMNOTEON SEQ_NOTEON
|
|
#define SEQ_WAIT 2
|
|
#define SEQ_PGMCHANGE 3
|
|
#define SEQ_FMPGMCHANGE SEQ_PGMCHANGE
|
|
#define SEQ_SYNCTIMER 4
|
|
#define SEQ_MIDIPUTC 5
|
|
#define SEQ_DRUMON 6 /*** OBSOLETE ***/
|
|
#define SEQ_DRUMOFF 7 /*** OBSOLETE ***/
|
|
#define SEQ_ECHO 8 /* For synching programs with output */
|
|
#define SEQ_AFTERTOUCH 9
|
|
#define SEQ_CONTROLLER 10
|
|
#define CTRL_PITCH_BENDER 255
|
|
#define CTRL_PITCH_BENDER_RANGE 254
|
|
#define CTRL_EXPRESSION 253
|
|
#define CTRL_MAIN_VOLUME 252
|
|
#define SEQ_BALANCE 11
|
|
#define SEQ_VOLMODE 12
|
|
|
|
/*
|
|
* Volume mode decides how volumes are used
|
|
*/
|
|
|
|
#define VOL_METHOD_ADAGIO 1
|
|
#define VOL_METHOD_LINEAR 2
|
|
|
|
/*
|
|
* Note! SEQ_WAIT, SEQ_MIDIPUTC and SEQ_ECHO are used also as
|
|
* input events.
|
|
*/
|
|
|
|
/*
|
|
* Event codes 0xf0 to 0xfc are reserved for future extensions.
|
|
*/
|
|
|
|
#define SEQ_FULLSIZE 0xfd /* Long events */
|
|
/*
|
|
* SEQ_FULLSIZE events are used for loading patches/samples to the
|
|
* synthesizer devices. These events are passed directly to the driver
|
|
* of the associated synthesizer device. There is no limit to the size
|
|
* of the extended events. These events are not queued but executed
|
|
* immediately when the write() is called (execution can take several
|
|
* seconds of time).
|
|
*
|
|
* When a SEQ_FULLSIZE message is written to the device, it must
|
|
* be written using exactly one write() call. Other events cannot
|
|
* be mixed to the same write.
|
|
*
|
|
* For FM synths (YM3812/OPL3) use struct sbi_instrument and write it to the
|
|
* /dev/sequencer. Don't write other data together with the instrument structure
|
|
* Set the key field of the structure to FM_PATCH. The device field is used to
|
|
* route the patch to the corresponding device.
|
|
*
|
|
* For Gravis UltraSound use struct patch_info. Initialize the key field
|
|
* to GUS_PATCH.
|
|
*/
|
|
#define SEQ_PRIVATE 0xfe /* Low level HW dependent events (8 bytes) */
|
|
#define SEQ_EXTENDED 0xff /* Extended events (8 bytes) */
|
|
|
|
/*
|
|
* Extended events for synthesizers (8 bytes)
|
|
*
|
|
* Format:
|
|
*
|
|
* b0 = SEQ_EXTENDED
|
|
* b1 = command
|
|
* b2 = device
|
|
* b3-b7 = parameters
|
|
*
|
|
* Command b3 b4 b5 b6 b7
|
|
* ----------------------------------------------------------------------------
|
|
* SEQ_NOTEON voice note volume 0 0
|
|
* SEQ_NOTEOFF voice note volume 0 0
|
|
* SEQ_PGMCHANGE voice pgm 0 0 0
|
|
* SEQ_DRUMON (voice) drum# volume 0 0
|
|
* SEQ_DRUMOFF (voice) drum# volume 0 0
|
|
*/
|
|
|
|
/*
|
|
* Record for FM patches
|
|
*/
|
|
|
|
typedef unsigned char sbi_instr_data[32];
|
|
|
|
struct sbi_instrument {
|
|
unsigned short key; /* Initialize to FM_PATCH or OPL3_PATCH */
|
|
#define FM_PATCH 0x01fd
|
|
#define OPL3_PATCH 0x03fd
|
|
short device; /* Synth# (0-4) */
|
|
int channel; /* Program# to be initialized */
|
|
sbi_instr_data operators; /* Register settings for operator cells (.SBI format) */
|
|
};
|
|
|
|
struct synth_info { /* Read only */
|
|
char name[30];
|
|
int device; /* 0-N. INITIALIZE BEFORE CALLING */
|
|
int synth_type;
|
|
#define SYNTH_TYPE_FM 0
|
|
#define SYNTH_TYPE_SAMPLE 1
|
|
|
|
int synth_subtype;
|
|
#define FM_TYPE_ADLIB 0x00
|
|
#define FM_TYPE_OPL3 0x01
|
|
|
|
#define SAMPLE_TYPE_GUS 0x10
|
|
|
|
int perc_mode; /* No longer supported */
|
|
int nr_voices;
|
|
int nr_drums; /* Obsolete field */
|
|
int instr_bank_size;
|
|
unsigned long capabilities;
|
|
#define SYNTH_CAP_PERCMODE 0x00000001 /* No longer used */
|
|
#define SYNTH_CAP_OPL3 0x00000002 /* Set if OPL3 supported */
|
|
int dummies[19]; /* Reserve space */
|
|
};
|
|
|
|
struct midi_info {
|
|
char name[30];
|
|
int device; /* 0-N. INITIALIZE BEFORE CALLING */
|
|
unsigned long capabilities; /* To be defined later */
|
|
int dev_type;
|
|
int dummies[18]; /* Reserve space */
|
|
};
|
|
|
|
/********************************************
|
|
* IOCTL commands for /dev/dsp and /dev/audio
|
|
*/
|
|
|
|
#define SNDCTL_DSP_RESET _IO ('P', 0)
|
|
#define SNDCTL_DSP_SYNC _IO ('P', 1)
|
|
#define SNDCTL_DSP_SPEED _IOWR('P', 2, int)
|
|
#define SNDCTL_DSP_STEREO _IOWR('P', 3, int)
|
|
#define SNDCTL_DSP_GETBLKSIZE _IOWR('P', 4, int)
|
|
#define SNDCTL_DSP_SAMPLESIZE _IOWR('P', 5, int) /* 8, 12 or 16 */
|
|
#define SOUND_PCM_WRITE_CHANNELS _IOWR('P', 6, int)
|
|
#define SOUND_PCM_WRITE_FILTER _IOWR('P', 7, int)
|
|
#define SNDCTL_DSP_POST _IO ('P', 8)
|
|
#define SNDCTL_DSP_SUBDIVIDE _IOWR('P', 9, int)
|
|
|
|
#define SOUND_PCM_READ_RATE _IOR ('P', 2, int)
|
|
#define SOUND_PCM_READ_CHANNELS _IOR ('P', 6, int)
|
|
#define SOUND_PCM_READ_BITS _IOR ('P', 5, int)
|
|
#define SOUND_PCM_READ_FILTER _IOR ('P', 7, int)
|
|
|
|
/* Some alias names */
|
|
#define SOUND_PCM_WRITE_BITS SNDCTL_DSP_SAMPLESIZE
|
|
#define SOUND_PCM_WRITE_RATE SNDCTL_DSP_SPEED
|
|
#define SOUND_PCM_POST SNDCTL_DSP_POST
|
|
#define SOUND_PCM_RESET SNDCTL_DSP_RESET
|
|
#define SOUND_PCM_SYNC SNDCTL_DSP_SYNC
|
|
#define SOUND_PCM_SUBDIVIDE SNDCTL_DSP_SUBDIVIDE
|
|
|
|
/*********************************************
|
|
* IOCTL commands for /dev/mixer
|
|
*/
|
|
|
|
/*
|
|
* Mixer devices
|
|
*
|
|
* There can be up to 20 different analog mixer channels. The
|
|
* SOUND_MIXER_NRDEVICES gives the currently supported maximum.
|
|
* The SOUND_MIXER_READ_DEVMASK returns a bitmask which tells
|
|
* the devices supported by the particular mixer.
|
|
*/
|
|
|
|
#define SOUND_MIXER_NRDEVICES 12
|
|
#define SOUND_MIXER_VOLUME 0
|
|
#define SOUND_MIXER_BASS 1
|
|
#define SOUND_MIXER_TREBLE 2
|
|
#define SOUND_MIXER_SYNTH 3
|
|
#define SOUND_MIXER_PCM 4
|
|
#define SOUND_MIXER_SPEAKER 5
|
|
#define SOUND_MIXER_LINE 6
|
|
#define SOUND_MIXER_MIC 7
|
|
#define SOUND_MIXER_CD 8
|
|
#define SOUND_MIXER_IMIX 9 /* Recording monitor */
|
|
#define SOUND_MIXER_ALTPCM 10
|
|
#define SOUND_MIXER_RECLEV 11 /* Recording level */
|
|
|
|
/* Some on/off settings (SOUND_SPECIAL_MIN - SOUND_SPECIAL_MAX) */
|
|
/* Not counted to SOUND_MIXER_NRDEVICES, but use the same number space */
|
|
#define SOUND_ONOFF_MIN 28
|
|
#define SOUND_ONOFF_MAX 30
|
|
#define SOUND_MIXER_MUTE 28 /* 0 or 1 */
|
|
#define SOUND_MIXER_ENHANCE 29 /* Enhanced stereo (0, 40, 60 or 80) */
|
|
#define SOUND_MIXER_LOUD 30 /* 0 or 1 */
|
|
|
|
/* Note! Number 31 cannot be used since the sign bit is reserved */
|
|
|
|
#define SOUND_DEVICE_LABELS {"Vol ", "Bass ", "Trebl", "Synth", "Pcm ", "Spkr ", "Line ", \
|
|
"Mic ", "CD ", "Mix ", "Pcm2 ", "rec"}
|
|
|
|
#define SOUND_DEVICE_NAMES {"vol", "bass", "treble", "synth", "pcm", "speaker", "line", \
|
|
"mic", "cd", "mix", "pcm2", "rec"}
|
|
|
|
/* Device bitmask identifiers */
|
|
|
|
#define SOUND_MIXER_RECSRC 0xff /* Arg contains a bit for each recording source */
|
|
#define SOUND_MIXER_DEVMASK 0xfe /* Arg contains a bit for each supported device */
|
|
#define SOUND_MIXER_RECMASK 0xfd /* Arg contains a bit for each supported recording source */
|
|
#define SOUND_MIXER_CAPS 0xfc
|
|
#define SOUND_CAP_EXCL_INPUT 0x00000001 /* Only one recording source at a time */
|
|
#define SOUND_MIXER_STEREODEVS 0xfb /* Mixer channels supporting stereo */
|
|
|
|
/* Device mask bits */
|
|
|
|
#define SOUND_MASK_VOLUME (1 << SOUND_MIXER_VOLUME)
|
|
#define SOUND_MASK_BASS (1 << SOUND_MIXER_BASS)
|
|
#define SOUND_MASK_TREBLE (1 << SOUND_MIXER_TREBLE)
|
|
#define SOUND_MASK_SYNTH (1 << SOUND_MIXER_SYNTH)
|
|
#define SOUND_MASK_PCM (1 << SOUND_MIXER_PCM)
|
|
#define SOUND_MASK_SPEAKER (1 << SOUND_MIXER_SPEAKER)
|
|
#define SOUND_MASK_LINE (1 << SOUND_MIXER_LINE)
|
|
#define SOUND_MASK_MIC (1 << SOUND_MIXER_MIC)
|
|
#define SOUND_MASK_CD (1 << SOUND_MIXER_CD)
|
|
#define SOUND_MASK_IMIX (1 << SOUND_MIXER_IMIX)
|
|
#define SOUND_MASK_ALTPCM (1 << SOUND_MIXER_ALTPCM)
|
|
#define SOUND_MASK_RECLEV (1 << SOUND_MIXER_RECLEV)
|
|
|
|
#define SOUND_MASK_MUTE (1 << SOUND_MIXER_MUTE)
|
|
#define SOUND_MASK_ENHANCE (1 << SOUND_MIXER_ENHANCE)
|
|
#define SOUND_MASK_LOUD (1 << SOUND_MIXER_LOUD)
|
|
|
|
#define MIXER_READ(dev) _IOR('M', dev, int)
|
|
#define SOUND_MIXER_READ_VOLUME MIXER_READ(SOUND_MIXER_VOLUME)
|
|
#define SOUND_MIXER_READ_BASS MIXER_READ(SOUND_MIXER_BASS)
|
|
#define SOUND_MIXER_READ_TREBLE MIXER_READ(SOUND_MIXER_TREBLE)
|
|
#define SOUND_MIXER_READ_SYNTH MIXER_READ(SOUND_MIXER_SYNTH)
|
|
#define SOUND_MIXER_READ_PCM MIXER_READ(SOUND_MIXER_PCM)
|
|
#define SOUND_MIXER_READ_SPEAKER MIXER_READ(SOUND_MIXER_SPEAKER)
|
|
#define SOUND_MIXER_READ_LINE MIXER_READ(SOUND_MIXER_LINE)
|
|
#define SOUND_MIXER_READ_MIC MIXER_READ(SOUND_MIXER_MIC)
|
|
#define SOUND_MIXER_READ_CD MIXER_READ(SOUND_MIXER_CD)
|
|
#define SOUND_MIXER_READ_IMIX MIXER_READ(SOUND_MIXER_IMIX)
|
|
#define SOUND_MIXER_READ_ALTPCM MIXER_READ(SOUND_MIXER_ALTPCM)
|
|
#define SOUND_MIXER_READ_RECLEV MIXER_READ(SOUND_MIXER_RECLEV)
|
|
#define SOUND_MIXER_READ_MUTE MIXER_READ(SOUND_MIXER_MUTE)
|
|
#define SOUND_MIXER_READ_ENHANCE MIXER_READ(SOUND_MIXER_ENHANCE)
|
|
#define SOUND_MIXER_READ_LOUD MIXER_READ(SOUND_MIXER_LOUD)
|
|
|
|
#define SOUND_MIXER_READ_RECSRC MIXER_READ(SOUND_MIXER_RECSRC)
|
|
#define SOUND_MIXER_READ_DEVMASK MIXER_READ(SOUND_MIXER_DEVMASK)
|
|
#define SOUND_MIXER_READ_RECMASK MIXER_READ(SOUND_MIXER_RECMASK)
|
|
#define SOUND_MIXER_READ_STEREODEVS MIXER_READ(SOUND_MIXER_STEREODEVS)
|
|
#define SOUND_MIXER_READ_CAPS MIXER_READ(SOUND_MIXER_CAPS)
|
|
|
|
#define MIXER_WRITE(dev) _IOWR('M', dev, int)
|
|
#define SOUND_MIXER_WRITE_VOLUME MIXER_WRITE(SOUND_MIXER_VOLUME)
|
|
#define SOUND_MIXER_WRITE_BASS MIXER_WRITE(SOUND_MIXER_BASS)
|
|
#define SOUND_MIXER_WRITE_TREBLE MIXER_WRITE(SOUND_MIXER_TREBLE)
|
|
#define SOUND_MIXER_WRITE_SYNTH MIXER_WRITE(SOUND_MIXER_SYNTH)
|
|
#define SOUND_MIXER_WRITE_PCM MIXER_WRITE(SOUND_MIXER_PCM)
|
|
#define SOUND_MIXER_WRITE_SPEAKER MIXER_WRITE(SOUND_MIXER_SPEAKER)
|
|
#define SOUND_MIXER_WRITE_LINE MIXER_WRITE(SOUND_MIXER_LINE)
|
|
#define SOUND_MIXER_WRITE_MIC MIXER_WRITE(SOUND_MIXER_MIC)
|
|
#define SOUND_MIXER_WRITE_CD MIXER_WRITE(SOUND_MIXER_CD)
|
|
#define SOUND_MIXER_WRITE_IMIX MIXER_WRITE(SOUND_MIXER_IMIX)
|
|
#define SOUND_MIXER_WRITE_ALTPCM MIXER_WRITE(SOUND_MIXER_ALTPCM)
|
|
#define SOUND_MIXER_WRITE_RECLEV MIXER_WRITE(SOUND_MIXER_RECLEV)
|
|
#define SOUND_MIXER_WRITE_MUTE MIXER_WRITE(SOUND_MIXER_MUTE)
|
|
#define SOUND_MIXER_WRITE_ENHANCE MIXER_WRITE(SOUND_MIXER_ENHANCE)
|
|
#define SOUND_MIXER_WRITE_LOUD MIXER_WRITE(SOUND_MIXER_LOUD)
|
|
|
|
#define SOUND_MIXER_WRITE_RECSRC MIXER_WRITE(SOUND_MIXER_RECSRC)
|
|
|
|
/*
|
|
* The following mixer ioctl calls are compatible with the BSD driver by
|
|
* Steve Haehnichen <shaehnic@ucsd.edu>
|
|
*
|
|
* Since this interface is entirely SB specific, it will be dropped in the
|
|
* near future.
|
|
*/
|
|
|
|
typedef unsigned char S_BYTE;
|
|
typedef unsigned char S_FLAG;
|
|
struct stereo_vol
|
|
{
|
|
S_BYTE l; /* Left volume */
|
|
S_BYTE r; /* Right volume */
|
|
};
|
|
|
|
#define MIXER_IOCTL_SET_LEVELS _IOW ('s', 20, struct sb_mixer_levels)
|
|
#define MIXER_IOCTL_SET_PARAMS _IOW ('s', 21, struct sb_mixer_params)
|
|
#define MIXER_IOCTL_READ_LEVELS _IOR ('s', 22, struct sb_mixer_levels)
|
|
#define MIXER_IOCTL_READ_PARAMS _IOR ('s', 23, struct sb_mixer_params)
|
|
#define MIXER_IOCTL_RESET _IO ('s', 24)
|
|
|
|
/*
|
|
* Mixer volume levels for MIXER_IOCTL_SET_VOL & MIXER_IOCTL_READ_VOL
|
|
*/
|
|
struct sb_mixer_levels
|
|
{
|
|
struct stereo_vol master; /* Master volume */
|
|
struct stereo_vol voc; /* DSP Voice volume */
|
|
struct stereo_vol fm; /* FM volume */
|
|
struct stereo_vol line; /* Line-in volume */
|
|
struct stereo_vol cd; /* CD audio */
|
|
S_BYTE mic; /* Microphone level */
|
|
};
|
|
|
|
/*
|
|
* Mixer parameters for MIXER_IOCTL_SET_PARAMS & MIXER_IOCTL_READ_PARAMS
|
|
*/
|
|
struct sb_mixer_params
|
|
{
|
|
S_BYTE record_source; /* Recording source (See SRC_xxx below) */
|
|
S_FLAG hifreq_filter; /* Filter frequency (hi/low) */
|
|
S_FLAG filter_input; /* ANFI input filter */
|
|
S_FLAG filter_output; /* DNFI output filter */
|
|
S_FLAG dsp_stereo; /* 1 if DSP is in Stereo mode */
|
|
};
|
|
|
|
#define SRC_MIC 1 /* Select Microphone recording source */
|
|
#define SRC_CD 3 /* Select CD recording source */
|
|
#define SRC_LINE 7 /* Use Line-in for recording source */
|
|
|
|
#if !defined(KERNEL) && !defined(INKERNEL)
|
|
/*
|
|
* Some convenience macros to simplify programming of the
|
|
* /dev/sequencer interface
|
|
*
|
|
* These macros define the API which should be used when possible.
|
|
*/
|
|
|
|
void seqbuf_dump(void); /* This function must be provided by programs */
|
|
|
|
/* Sample seqbuf_dump() implementation:
|
|
*
|
|
* SEQ_DEFINEBUF (2048); -- Defines a buffer for 2048 bytes
|
|
*
|
|
* int seqfd; -- The file descriptor for /dev/sequencer.
|
|
*
|
|
* void
|
|
* seqbuf_dump ()
|
|
* {
|
|
* if (_seqbufptr)
|
|
* if (write (seqfd, _seqbuf, _seqbufptr) == -1)
|
|
* {
|
|
* perror ("write /dev/sequencer");
|
|
* exit (-1);
|
|
* }
|
|
* _seqbufptr = 0;
|
|
* }
|
|
*/
|
|
|
|
#define SEQ_DEFINEBUF(len) unsigned char _seqbuf[len]; int _seqbuflen = len; int _seqbufptr = 0
|
|
#define SEQ_DECLAREBUF() extern unsigned char _seqbuf[]; extern int _seqbuflen;extern int _seqbufptr
|
|
#define SEQ_PM_DEFINES struct patmgr_info _pm_info
|
|
#define _SEQ_NEEDBUF(len) if ((_seqbufptr+(len)) > _seqbuflen) seqbuf_dump()
|
|
#define _SEQ_ADVBUF(len) _seqbufptr += len
|
|
#define SEQ_DUMPBUF seqbuf_dump
|
|
#define PM_LOAD_PATCH(dev, bank, pgm) (SEQ_DUMPBUF(), _pm_info.command = _PM_LOAD_PATCH, \
|
|
_pm_info.device=dev, _pm_info.data.data8[0]=pgm, \
|
|
_pm_info.parm1 = bank, _pm_info.parm2 = 1, \
|
|
ioctl(seqfd, SNDCTL_PMGR_ACCESS, &_pm_info))
|
|
#define PM_LOAD_PATCHES(dev, bank, pgm) (SEQ_DUMPBUF(), _pm_info.command = _PM_LOAD_PATCH, \
|
|
_pm_info.device=dev, memcpy(_pm_info.data.data8, pgm, 128), \
|
|
_pm_info.parm1 = bank, _pm_info.parm2 = 128, \
|
|
ioctl(seqfd, SNDCTL_PMGR_ACCESS, &_pm_info))
|
|
|
|
#define SEQ_VOLUME_MODE(dev, mode) {_SEQ_NEEDBUF(8);\
|
|
_seqbuf[_seqbufptr] = SEQ_EXTENDED;\
|
|
_seqbuf[_seqbufptr+1] = SEQ_VOLMODE;\
|
|
_seqbuf[_seqbufptr+2] = (dev);\
|
|
_seqbuf[_seqbufptr+3] = (mode);\
|
|
_seqbuf[_seqbufptr+4] = 0;\
|
|
_seqbuf[_seqbufptr+5] = 0;\
|
|
_seqbuf[_seqbufptr+6] = 0;\
|
|
_seqbuf[_seqbufptr+7] = 0;\
|
|
_SEQ_ADVBUF(8);}
|
|
|
|
#define SEQ_START_NOTE(dev, voice, note, vol) {_SEQ_NEEDBUF(8);\
|
|
_seqbuf[_seqbufptr] = SEQ_EXTENDED;\
|
|
_seqbuf[_seqbufptr+1] = SEQ_NOTEON;\
|
|
_seqbuf[_seqbufptr+2] = (dev);\
|
|
_seqbuf[_seqbufptr+3] = (voice);\
|
|
_seqbuf[_seqbufptr+4] = (note);\
|
|
_seqbuf[_seqbufptr+5] = (vol);\
|
|
_seqbuf[_seqbufptr+6] = 0;\
|
|
_seqbuf[_seqbufptr+7] = 0;\
|
|
_SEQ_ADVBUF(8);}
|
|
|
|
#define SEQ_STOP_NOTE(dev, voice, note, vol) {_SEQ_NEEDBUF(8);\
|
|
_seqbuf[_seqbufptr] = SEQ_EXTENDED;\
|
|
_seqbuf[_seqbufptr+1] = SEQ_NOTEOFF;\
|
|
_seqbuf[_seqbufptr+2] = (dev);\
|
|
_seqbuf[_seqbufptr+3] = (voice);\
|
|
_seqbuf[_seqbufptr+4] = (note);\
|
|
_seqbuf[_seqbufptr+5] = (vol);\
|
|
_seqbuf[_seqbufptr+6] = 0;\
|
|
_seqbuf[_seqbufptr+7] = 0;\
|
|
_SEQ_ADVBUF(8);}
|
|
|
|
#define SEQ_CHN_PRESSURE(dev, voice, pressure) {_SEQ_NEEDBUF(8);\
|
|
_seqbuf[_seqbufptr] = SEQ_EXTENDED;\
|
|
_seqbuf[_seqbufptr+1] = SEQ_AFTERTOUCH;\
|
|
_seqbuf[_seqbufptr+2] = (dev);\
|
|
_seqbuf[_seqbufptr+3] = (voice);\
|
|
_seqbuf[_seqbufptr+4] = (pressure);\
|
|
_seqbuf[_seqbufptr+5] = 0;\
|
|
_seqbuf[_seqbufptr+6] = 0;\
|
|
_seqbuf[_seqbufptr+7] = 0;\
|
|
_SEQ_ADVBUF(8);}
|
|
|
|
#define SEQ_PANNING(dev, voice, pos) {_SEQ_NEEDBUF(8);\
|
|
_seqbuf[_seqbufptr] = SEQ_EXTENDED;\
|
|
_seqbuf[_seqbufptr+1] = SEQ_BALANCE;\
|
|
_seqbuf[_seqbufptr+2] = (dev);\
|
|
_seqbuf[_seqbufptr+3] = (voice);\
|
|
(char)_seqbuf[_seqbufptr+4] = (pos);\
|
|
_seqbuf[_seqbufptr+5] = 0;\
|
|
_seqbuf[_seqbufptr+6] = 0;\
|
|
_seqbuf[_seqbufptr+7] = 0;\
|
|
_SEQ_ADVBUF(8);}
|
|
|
|
#define SEQ_CONTROL(dev, voice, controller, value) {_SEQ_NEEDBUF(8);\
|
|
_seqbuf[_seqbufptr] = SEQ_EXTENDED;\
|
|
_seqbuf[_seqbufptr+1] = SEQ_CONTROLLER;\
|
|
_seqbuf[_seqbufptr+2] = (dev);\
|
|
_seqbuf[_seqbufptr+3] = (voice);\
|
|
_seqbuf[_seqbufptr+4] = (controller);\
|
|
*(short *)&_seqbuf[_seqbufptr+5] = (value);\
|
|
_seqbuf[_seqbufptr+7] = 0;\
|
|
_SEQ_ADVBUF(8);}
|
|
|
|
#define SEQ_PITCHBEND(dev, voice, value) SEQ_CONTROL(dev, voice, CTRL_PITCH_BENDER, value)
|
|
#define SEQ_BENDER_RANGE(dev, voice, value) SEQ_CONTROL(dev, voice, CTRL_PITCH_BENDER_RANGE, value)
|
|
#define SEQ_EXPRESSION(dev, voice, value) SEQ_CONTROL(dev, voice, CTRL_EXPRESSION, value)
|
|
#define SEQ_MAIN_VOLUME(dev, voice, value) SEQ_CONTROL(dev, voice, CTRL_MAIN_VOLUME, value)
|
|
|
|
#define SEQ_START_TIMER() {_SEQ_NEEDBUF(4);\
|
|
_seqbuf[_seqbufptr] = SEQ_SYNCTIMER;\
|
|
_seqbuf[_seqbufptr+1] = 0;\
|
|
_seqbuf[_seqbufptr+2] = 0;\
|
|
_seqbuf[_seqbufptr+3] = 0;\
|
|
_SEQ_ADVBUF(4);}
|
|
#define SEQ_SET_PATCH(dev, voice, patch) {_SEQ_NEEDBUF(8);\
|
|
_seqbuf[_seqbufptr] = SEQ_EXTENDED;\
|
|
_seqbuf[_seqbufptr+1] = SEQ_PGMCHANGE;\
|
|
_seqbuf[_seqbufptr+2] = (dev);\
|
|
_seqbuf[_seqbufptr+3] = (voice);\
|
|
_seqbuf[_seqbufptr+4] = (patch);\
|
|
_seqbuf[_seqbufptr+5] = 0;\
|
|
_seqbuf[_seqbufptr+6] = 0;\
|
|
_seqbuf[_seqbufptr+7] = 0;\
|
|
_SEQ_ADVBUF(8);}
|
|
|
|
#define SEQ_WAIT_TIME(ticks) {_SEQ_NEEDBUF(4);\
|
|
*(unsigned long *)&_seqbuf[_seqbufptr] = SEQ_WAIT | ((ticks) << 8);\
|
|
_SEQ_ADVBUF(4);}
|
|
|
|
#define SEQ_ECHO_BACK(key) {_SEQ_NEEDBUF(4);\
|
|
*(unsigned long *)&_seqbuf[_seqbufptr] = SEQ_ECHO | ((key) << 8);\
|
|
_SEQ_ADVBUF(4);}
|
|
|
|
#define SEQ_MIDIOUT(device, byte) {_SEQ_NEEDBUF(4);\
|
|
_seqbuf[_seqbufptr] = SEQ_MIDIPUTC;\
|
|
_seqbuf[_seqbufptr+1] = (byte);\
|
|
_seqbuf[_seqbufptr+2] = (device);\
|
|
_seqbuf[_seqbufptr+3] = 0;\
|
|
_SEQ_ADVBUF(4);}
|
|
#define SEQ_WRPATCH(patchx, len) {if (_seqbufptr) seqbuf_dump();\
|
|
if (write(seqfd, (char*)(patchx), len)==-1) \
|
|
perror("Write patch: /dev/sequencer");}
|
|
|
|
#endif
|
|
long soundcard_init(long mem_start);
|
|
#endif /* _SOUNDCARD_H_ */
|